25-29 July 2022
TPI, FSU Jena
Europe/Berlin timezone

`GR-Athena++`: puncture evolutions on vertex-centered oct-tree AMR

27 Jul 2022, 17:15
15m
Abbeanum/Ground floor-HS1 - Hörsaal 1 (TPI, FSU Jena)

Abbeanum/Ground floor-HS1 - Hörsaal 1

TPI, FSU Jena

Fröbelstieg 1, 07743 Jena
20

Speaker

Dr Boris Daszuta (Friedrich-Schiller-Universität Jena)

Description

GR-Athena++ is a general-relativistic, high-order, vertex-centered solver that extends the oct-tree, adaptive mesh refinement capabilities of the astrophysical (radiation) magnetohydrodynamics code Athena++. To simulate dynamical spacetimes GR-Athena++ uses the Z4c evolution scheme of numerical relativity coupled to the moving puncture gauge. Stable and accurate binary black hole merger evolutions are demonstrated in convergence testing, cross-code validation, and verification against state-of-the-art effective-one-body waveforms. GR-Athena++ leverages the task-based parallelism paradigm of Athena++ to achieve excellent scalability. Strong scaling efficiencies above 95% for up to 1.2×1e4 CPUs and excellent weak scaling up to 1e5 CPUs in a production binary black hole setup with adaptive mesh refinement are measured. GR-Athena++ thus allows for the robust simulation of compact binary coalescences and and offers a viable path towards numerical relativity at exascale.

Presentation Materials

There are no materials yet.