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We present a comparison of two methods to compute the momentum spectrum and the Schwinger pair
creation rate for pulsed rotating electric fields: a numerical method based upon the real-time Dirac-
Heisenberg-Wigner formalism and a semiclassical approximation based on a scattering ansatz. For the
semiclassical method we propose to either perform numerical calculations or an additional approximation
based on an analytical solution for the constant rotating field. We find that the two numerical methods are
complementary with respect to computation time as well as accuracy. The approximate method shows the
same qualitative features while being computationally much faster. We additionally find that the unequal
production of pairs in different spin states reported for constant rotating fields with the scattering method is
in agreement with the Wigner function method.
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I. INTRODUCTION

The concept of a strong electric field producing electron
positron pairs from the vacuum, usually called Schwinger
pair production, was first discussed by Sauter in 1931 [1].
Since then it has been studied in detail in more complicated
field configurations.
Different methods were developed including those that

are exact on the mean-field level e.g. the quantum kinetic
theory (QKT) [2,3] and the real-time Dirac-Heisenberg-
Wigner (DHW) formalism [4,5]. A numerical method
based upon the DHW formalism has been developed [6],
which we will call the Wigner function method or, in short,
the Wigner method.
It is also possible to obtain exact results using a

scattering ansatz [7,8], but most of the time it is combined
with a semiclassical approximation [9–20]. This combina-
tion is sometimes referred to as the Wentzel-Kramers-
Brillouin (WKB) approach [8,21–23] or even as the WKB
approximation [7,21], while only the ansatz, but not the
approximation, is taken from the original WKB method.
We will thus not refer to the method discussed here as the
WKB method, but as the semiclassical scattering method.
Other semiclassical methods include the worldline instan-
ton method [24,25].
In semiclassical calculations simple field configurations

result in pair creation rates which are the same up to a factor

of 2 in scalar and spinor QED respectively. However if
there is more than one pair of classical turning points,
interference effects arise which lead to differing results
[8,26,27].
The first extensions of Sauter’s original work concen-

trated on one-component electric fields. In addition to
unidirectional fields depending on either space [28] or time,
exact solutions can be found in light cone variables [29,30].
In [23] a connection between these three special cases was
found using interpolating coordinates and the worldline
instanton method.
Recently more involved fields have also been studied

including electric fields that are not necessarily unidirec-
tional and are spatially inhomogeneous in up to three
dimensions [31] or depend on time [32–46] and unidirec-
tional fields that depend on space as well as on time [47].
A lot of interest is put upon field configurations that could
be found in counterpropagating lasers; this includes (non-
linear) Breit-Wheeler pair production [48,49] and pair
production in pure electric fields near the antinodes of
the magnetic field [32–36]. In the presence of very strong
fields QED cascades of successive radiation of accelerated
charges and particle production from hard photons are
expected to occur [37–46] and a lot of the research in this
area concentrates on rotating fields.
In semiclassical calculations the pair production rate is

given as an exponential term that has a prefactor. The
exponential term is given by the leading order, while the
prefactor is accessible in higher orders. The leading*alexander.blinne@uni‑jena.de
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semiclassical order (i.e. the exponential factor) of
Schwinger pair production for constant rotating fields
has been studied using the scattering method in [12,21]
and using the worldline instanton method in [50]. This was
extended to include the next order (which contributes to the
prefactor) in [51] for the scattering method and in [23] in
interpolating coordinates for the worldline instanton
method. Pair production for a pulsed rotating field has
first been studied in [6] using the Wigner method. For
generalizations to elliptically polarized fields see [52].
It was shown that in the case of linearly polarized, purely

electric fields the QKT is equivalent to the DHW formalism
[53] as well as to the scattering approach [7]. The worldline
instanton method and the semiclassical scattering method
have been shown to agree for one-component fields
[24,25,27] and for two-component fields [21].
In the current work we compare the results of the

semiclassical scattering method and the Wigner method
of [51] and [6] respectively for rotating electric field pulses
of the form

~EðtÞ ¼ EðtÞ

0
B@

cosðΩtÞ
sinðΩtÞ

0

1
CA; ð1Þ

where EðtÞ defines the shape of the pulse. For a fair
comparison, we mostly stay in the semiclassical regime.
In contrast to the case of a constant rotating pulse, it is
difficult to find an analytical solution for a general EðtÞ in
the semiclassical scattering approach. We thus propose two
different ways to proceed. The first is to carry out the
necessary computation numerically, the second is to per-
form an additional approximation which uses the analytic
results for the constant rotating field. We will refer to the
latter as locally constant rotating field approximation
(LCRFA).
Comparing the numerical methods we find that they are

complementary with respect to computation time as well as
with respect to computational accuracy. The LCRFA is
computationally much faster, behaves qualitatively like the
numerical methods and is a good approximation for long
enough pulses. Additionally we find that the two indepen-
dent solutions found for the scattering method can be
connected to a linear combination of spinor states with a
specific chirality and magnetic moment. With this knowl-
edge we succeed in reproducing these two independent
solutions using the Wigner method.
This paper is structured as follows: in the first three

sections we briefly introduce the methods which are
compared later. In Sec. II we review the Wigner method
and present a method to project the Wigner function onto
specific spinor states. The results of the scattering method
for two-component electric fields are derived directly from
the Dirac equation in Sec. III. The new LCRFA for rotating
electric fields is introduced in Sec. IV. In Sec. V we

compare the three methods with respect to accuracy and
computation time and we summarize our conclusions
in Sec. VI.
To make the main ideas more transparent we collect the

more technical discussion of the numerical methods in the
Appendixes A and B. For self-containedness the analytic
results for the constant rotating pulse and the nonrotating
Sauter pulse can be found in Appendixes C and D
respectively.

II. THE WIGNER FUNCTION

The equal-time Wigner function W is defined as the
vacuum expectation value of the Wigner operator Ŵ
given by

Ŵabð~x; ~p; tÞ ≔ −
1

2

Z
d~se−i~p·~se

−ie
R

~x−~s=2
~xþ~s=2

~̂Aðt;~x0Þ·d~x0

· ½Ψ̂aðt; ~xþ ~s=2Þ; ˆ̄Ψbðt; ~x − ~s=2Þ�
W ≔ h0jŴj0i:

For details of the formalism we refer to [4,6,53]. In general,
the equal-time Wigner function of the Dirac field can be
expressed by its components according to the Fierz
decomposition

Wð~p; ~x; tÞ ¼ 1

4
ð1sþ iγ5pþ γμvμ þ γμγ5aμ þ σμνtμνÞ: ð2Þ

In total there are 16 independent real components. The
Wigner function for a pure vacuum can be calculated
directly from the definition [4] and only four components
are nonzero:

svac ¼
−2m
ω

; ~vvac ¼
−2~p
ω

; ð3Þ

where

ω2 ≔ ~p2 þm2: ð4Þ
In general the components satisfy a system of coupled
partial differential equations that follows from the
Heisenberg equation of motion for the fermionic field
operators. Anywhere but in the Wilson line the electro-
magnetic field is purely treated on the mean-field level

~̂A → ~A. In a spatially homogeneous setup at most ten of the
16 components are nonzero, specifically

w ¼ ðs; ~v; ~a; ~tÞ⊺; ð~tÞi ≔ t0i − ti0:

The one-particle distribution function f can be calculated
from the phase space energy density

ε ¼ msþ ~p · ~v
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by normalizing to the energy of a single particle pair after
subtracting the vacuum solution, thus

f ¼ 1

2ω
ðε − εvacÞ:

This formula can be written in terms of a projection of the
Wigner function

f½W −Wvac� ¼
1

2ω
tr½ðW −WvacÞðm1þ ~p · ~γÞ�: ð5Þ

Starting from these definitions and using the Dirac
equation, a modified quantum kinetic equation [6] can
be derived, which can be solved numerically to calculate
the one-particle distribution function fðt; ~pÞ at t → ∞. This
involves the method of characteristics, which transforms
the partial differential equations into ordinary ones, by
requiring that the kinetic momentum ~p follows the solution
of the classical equation of motion for a positron in the
external field with canonical momentum ~q,

~pðtÞ ¼ ~q − e~AðtÞ:

Since results are always being taken for t → ∞ it is
convenient to gauge the vector potential ~A in such a way
that ~pðtÞ → ~q for t → ∞.
The modified quantum kinetic equation is a system of ten

equations for f and nine auxiliary quantities ~v, ~a, ~t which
can be identified with the aforementioned components
according to

sð~pðtÞ; tÞ ¼ ð1 − fð~q; tÞÞsvacð~pðtÞ; tÞ − ~pðtÞ · ~vð~q; tÞ;
~vð~pðtÞ; tÞ ¼ ð1 − fð~q; tÞÞ~vvacð~pðtÞ; tÞ þ ~vð~q; tÞ;
~að~pðtÞ; tÞ ¼ ~að~q; tÞ;
~tð~pðtÞ; tÞ ¼ ~tð~q; tÞ: ð6Þ

The kinetic momentum along the classical trajectory ~pðtÞ,
which clearly also depends parametrically on ~q, will be
denoted just ~p for the remainder of this section. The electric
field ~E is given by

~EðtÞ ¼ − _~AðtÞ

and the modified quantum kinetic equations read

_f¼ e
2ω

~E · ~v;

_v¼ e
2ω3

ð~pð~E · ~pÞ−ω2 ~EÞðf−1Þ− e
ω2

~pð~E · ~vÞ− ~p× ~a−2~t;

_~a¼−~p× ~v;

_~t¼ 2ð~vþ ~pð~p · ~vÞÞ:

Combined with the initial condition

f ¼ 0; ~v ¼ ~a ¼ ~t ¼ ~0

at t → −∞ , the initial value problem is well defined.
In this work the numerical integration has been carried

out using the Runge-Kutta-Cash-Karp-54 scheme as imple-
mented as part of the C++ library Boost.Numeric.Odeint
[54]. In order to sample the momentum distribution, a grid
of values for the canonical momentum ~q is chosen and
the initial value problem is solved for each grid point. As
the calculations for each grid point are independent, the
computation is easily parallelized. The results shown in this
work have been calculated using the Omega cluster at
Friedrich-Schiller-Universität Jena. A few more details
about the numerical calculations are explained in
Appendix A.
In [6] it was shown, that these equations also give

numerically the same spectra as QKT in the linear polar-
ized case.

A. Additional observables

In addition to the full one-particle distribution function,
the Wigner function gives access to information about the
spinor degrees of freedom of the Dirac field. In general, the
information about spin and chirality of the produced pairs
can be extracted from the Wigner function. For this we
apply the corresponding projection matrices to the Wigner
function and define, in analogy to Eq. (5), the projected
one-particle distribution function

fP½PðW−WvacÞ�≔
1

2ω
tr½PðW−WvacÞðm1þ ~p ·~γÞ�: ð7Þ

By inserting Eqs. (2), (3) and (6) into Eq. (7), formulas can
be derived to recover this information from the numerical
results.
Let us first consider chirality. The chiral projections are

given by

Pr=l ¼
1

2
ð1� γ5Þ:

If the above prescription is applied, the result is

fr=l ≔ f½Pr=lðW −WvacÞ� ð8Þ

¼ 1

4ω
ðmðs − svacÞ þ ~p · ð~v − ~vvacÞ ∓ ~p · ~aÞ ð9Þ

¼ 1

2

�
f ∓ 1

2ω
~p · ~a

�
: ð10Þ

Thus a chiral asymmetry δfc can be defined as

δfc ≔ fl − fr ¼
1

2ω
~p · ~a:

If the same approach is used for the charge or spin
projections
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P∓Q ¼ 1

2
ð1� γ0Þ

Pða;b;cÞ ¼
1

2
ð1þ aiγ2γ3 þ biγ3γ1 þ ciγ1γ2Þ

respectively, the asymmetry has a vanishing real part.
However, if both are combined to find the magnetic
moment

Pμ�z ¼ PQPð0;0;�1Þ þ P−QPð0;0;∓1Þ;

a real asymmetry δfμz can be defined as

δfμz ≔ fμþz − fμ−z ¼ 1

2ω
ðmaz þ ð~p × ~tÞzÞ: ð11Þ

It will be shown in Sec. V C that the two spin states, as
distinguished by the semiclassical method, can be recon-
structed from these two asymmetries of the Wigner
function.

III. THE SEMICLASSICAL SCATTERING
METHOD

The semiclassical method based on a scattering ansatz
[9–13,15,19,20] has recently been generalized to two-
component fields with the help of the squared Dirac
equation [51]. Here we reproduce the results without
squaring the Dirac equation.
Note that the scattering ansatz presented in the following

is exact until the approximation in Eq. (25) is performed.
Indeed, it is possible to construct a Riccati equation for the
reflection coefficient and to solve it numerically as was
done for one-component fields in [7,8]. However for one-
component electric fields the Riccati approach has been
shown to be equivalent to the QKT [7], which in turn is
equivalent to the Wigner method [53]. While this is not
necessarily true for the two-component case we still expect
the Ricatti approach to have a numerical behavior compa-
rable to the one of the Wigner method.

A. Decomposition of the spinor operator

We start from the Dirac equation

ð½i∂μ − eAμðxÞ�γμ −mÞΨð~x; tÞ ¼ 0

and decompose the Dirac field as

Ψ̂ðxÞ ¼
Z

dq3

ð2πÞ3 e
i~q ~x
X
s¼�1

ðψ ~q;sðtÞâ~q;s þ ~ψ ~q;sðtÞb̂†−~q;sÞ;

where

~ψ ~q;sðtÞ ≔ Cψ ~q;sðtÞ�

and the charge conjugation operator is given by

C ¼ iγ2γ0:

The Dirac field satisfies the canonical equal-time anti-
commutation relations

fΨ̂ð~x; tÞ; π̂ð~y; tÞg ¼ 1iδ3ð~x − ~yÞ;

provided the mode operators obey the anticommutation
relations

fâ~q;s; â
†
~k;r
g ¼ ð2πÞ3δ3ð~k − ~qÞδrs;

fb̂~q;s; b̂
†
~k;r
g ¼ ð2πÞ3δ3ð~k − ~qÞδrs;

fâ~q;s; b̂
†
~k;r
g ¼ 0;

and the modes satisfy the Wronskian conditionX
s¼�1

ðψ ~q;sðtÞψ ~q;sðtÞ† þ ~ψ ~q;sðtÞ ~ψ ~q;sðtÞ†Þ ¼ 1: ð12Þ

B. Equations for the Bogoliubov coefficients

For convenience we choose to work in the Weyl
representation, i.e.

γj ¼
�

0 σj

−σj 0

�
; γ0 ¼

�
0 1

1 0

�
;

where σj are the Pauli matrices.
For two-component fields solely depending on time

[AμðxÞ ¼ ð0; AxðtÞ; AyðtÞ; 0Þ] one can make the ansatz

ψ ~q;sðtÞ ¼ Cs

0
BBB@

smψ s
1ðtÞ

mψ s
2ðtÞ

−sðqz þ sϵ⊥Þψ s
1ðtÞ

ðqz þ sϵ⊥Þψ s
2ðtÞ

1
CCCA ð13Þ

for s ¼ �1. This ansatz can be derived from that in [51] if
one reconstructs the solution of the Dirac equation from the
solution of its squared version found there.
We observe that ψ ~q;sðtÞ and ψ ~q;−sðtÞ are independent

since

ψ ~q;sðtÞ† · ψ ~q;−sðtÞ ¼ 0:

The solutions we will find below for s ¼ �1 thus represent
two independent solutions to the Dirac equation.
Putting this into the Dirac equation leads to

i _ψ s
1ðtÞ þ sϵ⊥ψ s

1ðtÞ − spx−yðtÞψ s
2ðtÞ ¼ 0;

i _ψ s
2ðtÞ þ sϵ⊥ψ s

1ðtÞ − spxþyðtÞψ s
2ðtÞ ¼ 0;

where we have defined
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px�yðtÞ ≔ pxðtÞ � ipyðtÞ;
ϵ2⊥ ≔ q2z þm2:

The Wronskian condition in Eq. (12) holds if

jψ s
1ðtÞj2 þ jψ s

2ðtÞj2 ¼ 1; ð14Þ

and

Cs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϵ⊥ðqz þ ϵ⊥Þ
p :

If we now set

ψ s
1ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cpx−yðtÞ

p
ffiffiffiffiffiffiffiffiffiffiffi
2ωðtÞp ffiffiffiffiffiffiffiffiffiffiffiffiffi

cp∥ðtÞ
q �

αsðtÞ
e−

i
2
KsðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωðtÞ þ sϵ⊥
p þ iβsðtÞ

e
i
2
KsðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωðtÞ − sϵ⊥
p �

; ð15Þ

ψ s
2ðtÞ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cpxþyðtÞ

p
ffiffiffiffiffiffiffiffiffiffiffi
2ωðtÞp ffiffiffiffiffiffiffiffiffiffiffiffiffi

cp∥ðtÞ
q �

αsðtÞ
e−

i
2
KsðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωðtÞ − sϵ⊥
p − iβsðtÞ

e
i
2
KsðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωðtÞ þ sϵ⊥
p �

; ð16Þ

with the integrals

KsðtÞ ≔ K0ðtÞ − sKxyðtÞ; ð17Þ

K0ðtÞ ≔ 2

Z
t

−∞
ωðt0Þdt0; ð18Þ

KxyðtÞ ≔ ϵ⊥
Z

t

−∞

_pxðt0Þpyðt0Þ − _pyðt0Þpxðt0Þ
ωðt0Þp∥ðt0Þ2

dt0 ð19Þ

and

p∥ðtÞ2 ≔ pxðtÞ2 þ pyðtÞ2;

we find

_αsðtÞ ¼
_ω~qðtÞ
2ωðtÞG

sþðtÞeiKsðtÞβsðtÞ; ð20Þ

_βsðtÞ ¼
_ω~qðtÞ
2ωðtÞG

s
−ðtÞe−iKsðtÞαsðtÞ; ð21Þ

where

Gs
�ðtÞ ¼ is

ϵ⊥
p∥ðtÞ

� _pxðtÞpyðtÞ − _pyðtÞpxðtÞ
_pxðtÞpxðtÞ þ _pyðtÞpyðtÞ

ωðtÞ
p∥ðtÞ

:

Using Eqs. (15) and (16) in the normalization condition
equation (14) we find

jαsðtÞj2 þ jβsðtÞj2 ¼ 1:

C. Momentum spectrum of produced pairs

The transmission probability

Wsð~qÞ ≔ lim
t→∞

jβsðtÞj2 ð22Þ

can be interpreted as the number of produced electron
positron pairs as a function of the momentum ~q. Using
appropriate boundary conditions [8]

βsð−∞Þ ¼ 0; αsð−∞Þ ¼ 1;

one can find a multiple-integral description for _β�ðtÞ by
iteratively using Eqs. (20) and (21) following the ideas
introduced in [55]. We now use the fact that the integrals
are dominated by regions around the classical turning points

ωðt�p Þ ≔ 0: ð23Þ

According to Eq. (4) the turning points t�p are found in
complex conjugate pairs. By deforming the contour we
extract the singularities for the turning points for which

Im½K0ðtpÞ� < 0: ð24Þ

If in the following tp is used without the superscript� it will
always refer to the turning point of the pair t�p which fulfills
Eq. (24). Assuming that the turning points represent singu-
larities of order νtp, one finds [51,55]

_ω~qðtÞ
ωðtÞ ≈

dK0ðtÞ
dt

νtp
νtp þ 2

1

K0ðtÞ − K0ðtpÞ
: ð25Þ

One can now approximate the preexponential factor in each
integrand in the multiple-integral series by its behavior
around the poles tp given by Eq. (25) to find
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βsð∞Þ ≈ −2
X
tp

e−iKsðtpÞ sin
�

πνtp
2ðνtp þ 2Þ

�
: ð26Þ

This approximation is semiclassical in the sense that the
exponential factor, which is not approximated, presents
the leading semiclassical order. The approximation in
Eq. (26) breaks down if the turning points get too close
to each other in the complex plane, as we will detail in
Sec. V B.
Since the examples covered in the present work have

simple turning points, i.e. νtp ¼ 1, the semiclassical
momentum spectrum of Eq. (22) takes the form

Ws
SCð~qÞ ¼

����Xtp
e−iKsðtpÞ

����2: ð27Þ

IV. THE LOCALLY CONSTANT ROTATING
FIELD APPROXIMATION

It is possible to approximate the momentum spectrum of
pulsed rotating fields using the result for the rotating
rectangular pulse field

~E ¼ E0Rect

�
t
τ

�0B@
cosðΩtÞ
sinðΩtÞ

0

1
CA;

with the rectangular box function

RectðxÞ ¼ ΘðxÞ − Θðx − 1Þ;

where ΘðxÞ is the Heaviside step function. Fields of this
form can be treated analytically as shown in [51].
The idea is to replace the field by a sum of rectangular

pulses with pulse length τ0 and a different constant field
strength given by the form of the pulse EðtÞ, i.e. replace
EðtÞ by

EðtÞ ≈
X∞
j¼−∞

E

��
jþ 1

2

�
τ0

�
Rect

�
t
τ0

− j

�
:

Now one can compute the momentum spectrum of the
pair creation rate using the analytic result for the pair
creation rate for each of these pulses. The shorter the
length τ0 the better becomes this approximation. Using
that for the rectangle pulse the only turning points which
contribute are those whose real part lies within the pulse
range, it is possible to perform the limit τ0 → 0, which
leads to

Ws
approxð~qÞ ¼

���� X∞
j¼−∞

eKsð~q;EðRe½tj�ÞÞ
����2; ð28Þ

where Ksð~q; EÞ is the integral from Eq. (17) which is, for
the constant rotating field, given by Eqs. (C2) and (C3)
and tj represents the turning points given in Eq. (C1).
The LCRFA approximates the field by a constant rotating

field at every time. Therefore effects from the time variation
caused by the shape of the pulse are neglected with respect to
the effects of the rotation. Accordingly the approximation is
reasonable for long enough pulses in which the time scale of
the rotation 1=Ω is smaller than the time scale of the pulse τ,
i.e. σ ≔ Ωτ ≫ 1.

V. COMPARISON OF THE METHODS

In this section we compare the three methods we
described above. We do so for the example of the rotating
pulse in Eq. (1), where we choose the pulse to have the
shape of a Sauter pulse

EðtÞ ¼ ϵEc

cosh2ðt=τÞ ; Ec ≔
m2

e
; ð29Þ

where we defined the electric field in units of the critical
electric field

ϵ ¼ E0

Ec
:

This pulse has been studied before with the Wigner method
in [6]. It has the advantage that the limit to the nonrotating
pulse Ω → 0 can be treated analytically with both the
Wigner method and the scattering approach (see
Appendix D for more details).
As for the constant rotating field discussed in [51] we

find that there is an infinite number of turning points for the
rotating Sauter pulse. But in contrast to the constant field
case the turning points in the general case have different
real as well as different imaginary parts (see Appendix B
for a plot of the turning points). This would in principle
require a separate treatment of all of them. However the
closer a pair of turning points is to the real axis, the bigger
is its influence on the pair creation rate [8], such that it is
sufficient to study a finite number of turning points in order
to have a good approximation for the pair creation rate (see
Appendix B for details). Note that this holds true also
within the LCRFA, where it is sufficient to evaluate the sum
in Eq. (28) up to a finite jjj.
Proceeding numerically gives us the possibility to

compare the momentum spectrum calculated with the help
of the Wigner method and the numerical and LCRFA
semiclassical results in Sec. VA. For a more quantitative
comparison we compute the total pair creation rate and
compare the three methods concerning the result and the
computation time in Sec. V B. An interpretation of the two
solutions found for the scattering method in light of the
Wigner method is presented in Sec. V C.
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A. Comparison of momentum spectra

In order to compare the momentum spectra calculated by
all three methods, let us choose an illustrative example. Let
τ ¼ 10=m and σ ¼ 6. The Wigner method momentum
spectrum of this pulse has already been published in [6].
Figure 1 shows the spectrum as computed by all the available
methods. It turns out that the semiclassical method over-
estimates the pair production probability by roughly 12
percent as compared to the result of the Wigner method. The
result in LCRFA has the same order of magnitude as
the other results but underestimates certain features of the

momentum spectrum.Wewill see in the next section that this
is due to the small number of field cycles (σ ¼ 6) and that the
approximation gets better for bigger σ’s.

B. Comparison of the total particle yield

We can compute the total particle yield per volume from
the momentum spectrum by integrating over momentum
space:

Γs

V
≔
Z

d3q
ð2πÞ3Wsð~qÞ:

Comparing the results we find that the methods agree for an
intermediate range of pulse length τ (see Fig. 3).
We also find that the semiclassical method fails for

short pulses. This can be explained by looking at the
nonrotating Sauter pulse, which is studied in more detail in
Appendix D. Taking the turning points given by Eq. (D1)
into consideration, we find that, for decreasing eE0τ=m,
the turning points get closer in the complex plane [see
Fig. 2 for a plot of jωðtÞj around the turning points]. The
approximation performed in Sec. III assumes that Eq. (25)
holds for every turning point. This is not the case if the
different turning points get too close to each other in the
complex plane. We thus find that the semiclassical method
fails for short pulses since the semiclassical approximation
breaks down, which can be seen in the total pair creation
rate in Fig. 3. There we also see that the same happens for
the rotating Sauter pulse.
For longer pulses the Wigner method becomes numeri-

cally challenging. This is due to the fact that the integration
from t ¼ −∞ to t ¼ ∞, which is performed analytically in
the semiclassical method, needs more steps the longer the
pulse becomes. For pulses that are too long the precision of
the result is limited by computational errors (see Fig. 4 for a

FIG. 1. Momentum spectrum of the Sauter pulse for τ ¼ 10=m,
σ ¼ 6 and ϵ ¼ 0.1. (Top panel) TheWigner result. (Middle panel)
The semiclassical result divided by 1.12. (Bottom panel) The
result of the LCRFA divided by 0.83.

FIG. 2. Value of jωðtÞj for t ¼ Re½tp� þ iyτ depending on
eE0τ=m for qx ¼ 3m; qy ¼ qz ¼ 0. We see that for a small
eE0τ=m the turning points (red line) get closer and the
assumption that Eq. (25) holds for every turning point is not
satisfied anymore.

COMPARISON OF SEMICLASSICAL AND WIGNER … PHYSICAL REVIEW D 93, 025014 (2016)

025014-7



FIG. 3. Comparison of the total particle number per Compton volume of the rotating Sauter pulse for ϵ ¼ 0.1 as a function of the pulse
length τ. (Top panel) Solid lines show particle yield as calculated using the Wigner method, dashed lines show particle yield as
calculated using the semiclassical method. In the cases σ ∈ f6; 10g a noise suppression method has been used when integrating over the
spectra of the Wigner method to obtain the 3D totals. For pulse durations of the order of ten Compton times the semiclassical method
tends to overestimate the pair production rate, especially just below the resonances. For pulse durations approaching 1000 Compton
times or more, the numerical difficulties of the Wigner method become apparent. (Bottom panel) Dashed lines show the particle yield as
calculated using the numerical semiclassical method, dotted lines show particle yield as calculated using the LCRFA. One finds that for
long enough pulses the approximation agrees with the numerical results. For short pulses the approximation that the field is locally
constant gets worse. The fixed number of turning points used for the LCRFA (nine in this example) also contributes to the error; an
adaptive algorithm is used for the numerical method.

FIG. 4. Comparison of the total particle number per Compton volume of the rotating Sauter pulse for ϵ ¼ 0.1, σ ¼ 20 as a function of
the pulse length τ for different settings regarding precision. Solid lines show particle yield, dashed lines show processor time per
spectrum. The Wigner method quickly increases in computational time with increasing pulse length, until it becomes numerically
unfeasible. The semiclassical method, on the other hand, becomes numerically cheaper for longer pulses.
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comparison of the computation times of the numeri-
cal methods). We find that for σ ¼ 20 both numerical
methods have a comparable computation time around
ðτ ∼ 40 1

m –100
1
mÞ. For shorter pulses the Wigner method

is computationally faster, while for longer ones the semi-
classical method should be preferred.
The computation time, when using the LCRFA, is

dominated by the integration over the momentum spectrum
which has to be performed numerically. We find that the
approximation gets better for a longer pulse length τ and a
higher σ (see Fig. 3, observe, that within the LCRFA
calculations, the number of considered turning points has
been fixed to nine, in contrast to the adaptive method used
for the numerical method described in Appendix B). This
can be explained by the fact that the approximation of the
pulse being locally constant becomes better for longer
pulses, and that a larger σ means more rotations per pulse
length and hence larger rotation effects compared to pulse
shape effects.

C. Interpretation of the two solutions of the
semiclassical method

In Sec. III we found two independent solutions of the
Dirac equation which were interpreted as different spin
components in [51]. To compare these with the Wigner
method we can construct the projections

Ps ≔
1

2
ð1þ sγ5Þ − s

1

2
γ5

ðqz þ ϵ⊥Þ1þ γ3

ϵ⊥

¼ 1

2
1þ s

1

2

�
qz
ϵ⊥

ðPl − PrÞ þ
m
ϵ⊥

ðPμþz − Pμ−z Þ
�

ð30Þ

for s ¼ �1. These projections are idempotent

Ps · Ps ¼ Ps;

and orthogonal

Ps · P−s ¼ 0;

Ps þ P−s ¼ 1:

They also fulfill

Ps · ψ ~q;s ¼ ψ ~q;s; Ps · ψ ~q;−s ¼ 0

for the two independent solutions of the Dirac equation
defined in Eq. (13). Accordingly they project on the two
parts of the spectrum which correspond to these solutions.
In Eq. (30) it is evident that the two solutions from the
scattering method correspond to a linear combination of
chirality and magnetic momentum.
While in the context of the Wigner function, which

contains the full spinor information, fc and fμz , given in
Eqs. (8) and (11) respectively, are the physically more

relevant observables, we will construct fs to show the
connection to the solutions of the semiclassical method.
The projected one-particle function, as defined in Eq. (7),
using this projection is given by

fs ¼ f½PsðW −WvacÞ�

¼ 1

2
ðf þ sδfscÞ

with the corresponding asymmetry δfsc. The latter can be
related to the previously defined chiral and magnetic
momentum asymmetries δfc and δfμz respectively as

δfsc ¼
qz
ϵ⊥

δfc þ
m
ϵ⊥

δfμz :

Using this we find that the data for the semiclassical and
Wigner method agree (see Figs. 5 and 6). This shows that
the two independent solutions of the semiclassical method
represent spinor eigenstates of the linear combination of the
chirality and magnetic moment projection specified
in Eq. (30).

VI. CONCLUSION

In this work we compare the semiclassical pair creation
rate found using a scattering ansatz to the rate resulting
from the Wigner method. The numerical semiclassical
results are found to be complementary to the Wigner
results in terms of accuracy as well as computation time.
While the results agree for intermediate pulse lengths, for
short pulses the semiclassical approximation breaks down
and the computation time becomes high. The advantage of
the semiclassical method is that one does not have to
integrate numerically with respect to real time. This is
especially useful for long pulse lengths since numerical
problems arise in the Wigner method, which increase the
required computation time and limit accuracy.
We also introduce the LCRFA for rotating field pulses

and show that it has the same features as the numerical
results and works especially well for pulse lengths
τ ≫ 1=m. This is intriguing since the parameters of current
and near future laser systems fulfill this requirement. It can
therefore be used to study different pulse shapes qualita-
tively. This is of special interest since it was shown that pair
creation depends sensitively on the pulse shape of the lasers
[37,56–62]. Using an optimization approach similar to the
one used in [63] one could use the LCRFA to investigate a
great number of possible pulse shapes because of the small
computation time compared to numerical methods. The
latter could be used subsequently to verify the results for
interesting pulse shapes.
The two independent solutions of the Dirac equation,

which are used in the scattering approach, were associated
with spin states in [51]; here we provide further
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interpretation in terms of the chirality and magnetic
moment. This interpretation is based upon projection
operators, which give back the semiclassical spectra that
correspond with those two solutions using only the infor-
mation contained in the Wigner function.

As mentioned in [51] the fact that one of these solutions
dominates the spectrum for a certain range of parameters
might help to differentiate pairs produced by the Schwinger
process from other particles detected in high energy
experiments.

FIG. 6. Comparison of the particle yield for the semiclassical Wþ and W− solutions with the corresponding Wigner function
projections fþ and f−. The Wigner method data suffer from a lack of precision for higher τ. The þ data points have been calculated
using higher precision. We find that the results agree with each other.

FIG. 5. Comparison of spectra for semiclassical þ and − solutions as well as corresponding spectra from the Wigner method. The
pulse parameters are τ ¼ 46.42=m, σ ¼ 20. Except for an interference pattern around px ∼ 0.4 in fþ, which is not found in the
semiclassical results, the spectra of the two methods agree with each other.

ALEXANDER BLINNE and ECKHARD STROBEL PHYSICAL REVIEW D 93, 025014 (2016)

025014-10



ACKNOWLEDGMENTS

The authors thank Holger Gies and She-Sheng Xue for
the many fruitful discussions. E. S. acknowledges his
discussions with Carlos Argüelles and Clément Stahl.
E. S. is supported by the Erasmus Mundus Joint
Doctorate Program by Grant No. 2012-1710 from the
Education, Audiovisual and Culture Executive Agency
of the European Commission. A. B. acknowledges dis-
cussions with Julia Borchardt, Christian Kohlfürst, Stefan
Lippoldt, David Schinkel and Nico Seegert. A. B. is
supported by the Deutsche Forschungsgemeinschaft under
Grants No. GRK 1523/2 and No. SFB-TR18.

APPENDIX A: NUMERICAL ASPECTS OF THE
WIGNER METHOD

The Runge-Kutta-Cash-Karp-54 implementation [54] as
used in this work features an automatic step size control.
The implementation accepts two parameters, abserr and
relerr, and then chooses the step size such that it ensures the
approximate integration error to be smaller than

ε ¼ abserr þ jxjrelerr:
Previous experience [6] showed that relerr should be set to 0,
because of big intermediate function values, which would
spoil the overall precision. As a result the only external
parameter to the numerical calculations is the absolute error
tolerance abserr ¼ 10−k. When using double precision with
the fast-math compiler optionvalues fork up to14 canbeused.

APPENDIX B: NUMERICAL ASPECTS OF THE
SEMICLASSICAL METHOD

In order to calculate the semiclassical pair production
rates, first the classical turning points of the given potential

need to be found. This is done by numerically solving
ωðtpÞ ¼ 0 for complex tp using a Newton-Raphson
method, which needs an initial guess that is in some sense
close to the desired solution. The known turning points for
the constant rotating field discussed in Appendix C and
given in Eq. (C1) may be used as a starting point.
Unfortunately, these points are too far away from the
desired solutions to have them found reliably by the
numerical search. If however the field strength parameter
E0 in Eq. (C1) is replaced by the pulse shape EðtjÞ,

E0 → EðtjÞ ¼ E0

1

coshðReðtjÞÞ2
; ðB1Þ

the result is a good enough starting point (see Fig. 7 for a
depiction of this behavior). In fact these are the turning
points of the LCRFA which is studied in Sec. IV. In this
way we also get a nomenclature for the turning points, by
giving them the same name as the corresponding ones of
the constant rotating field.
For the computation the momentum grid is divided into

several parts for parallelization. For each of these parts the
number of used pairs of turning points is chosen adaptively.
To this end, the turning point t0 is considered first.
Afterwards, for an increasing integer j, tj and t−j are added
in pairs until their contribution to Wsð~qÞ is less than 0.1%.
The semiclassical method relies heavily on integrals in

the complex plane. These are expressed in terms of multiple
real integrals by parametrization of the integration paths.
Afterwards the GNU Scientific Library is used to carry out
the numerical integrals, specifically with the use of adaptive
Gauss-Kronrod and Clenshaw-Curtis rules. The adaptive
algorithms are also tuned by an absolute and a relative error
tolerance. Still, it is necessary to evaluate the vector
potential for complex times. The indefinite integral of
the field given by Eqs. (1) and (29) can be given as

FIG. 7. This figure shows how the turning points for the pulsed rotating field are found. The turning points of the constant rotating field
are shifted away from the real axis by replacing the field strength parameter by the pulse shape (upward arrow). Afterwards the correct
turning points can be found by a numerical search (smaller arrow).
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Z
~EðtÞdt ¼ E0τ

2
·

0
B@

e−itΩH1 þ eitΩH2 − e
t
τð2−iτΩÞ τΩ

2iþτΩH3 þ e
t
τð2þiτΩÞ τΩ

2i−τΩH4 þ 2 cosðtΩÞ tanhðtτÞ
ie−itΩH1 − ieitΩH2 þ e

t
τð2−iτΩÞ τΩ

−2þiτΩH3 − e
t
τð2þiτΩÞ τΩ

2þτΩH4 þ 2 sinðtΩÞ tanhðtτÞ
0

1
CA; ðB2Þ

with

H1 ¼ 2F1

�
1;−

i
2
τΩ; 1 −

i
2
τΩ;−e2t

τ

�

H2 ¼ 2F1

�
1;

i
2
τΩ; 1þ i

2
τΩ;−e2t

τ

�

H3 ¼ 2F1

�
1; 1 −

i
2
τΩ; 2 −

i
2
τΩ;−e2t

τ

�

H4 ¼ 2F1

�
1; 1þ i

2
τΩ; 2þ i

2
τΩ;−e2t

τ

�
;

where 2F1 denotes the Gaussian hypergeometric function.
Due to the singularities at solutions of cosh2ðt=τÞ ¼ 0, the
vector potential must have branch cut discontinuities.
These singularities are found on the imaginary axis at

tk ¼
2kþ 1

2
πτ:

The form given in Eq. (B2) is discontinuous on straight
lines that start at the singularities and continue parallel to

the real axis towards positive real infinity. However in the
region with negative real and positive imaginary parts
the potential given in Eq. (B2) is continuous. By
exploiting the symmetries of the electric field Ex=yðtÞ →
�Ex=yð−tÞ, this continuous portion can be carefully
mirrored towards the right-hand side of the imaginary
axis leaving all the discontinuities strictly on the imagi-
nary axis. Finally the evaluation of the Gaussian hyper-
geometric function with complex arguments is left to a
code described in [64] which is available under the name
AEAE at the Computer Physics Communications Pro-
gram Library.

APPENDIX C: RESULTS FOR THE CONSTANT
ROTATING PULSE

The integrals of Eqs. (18) and (19) at the turning points
for the constant rotating field have been computed pre-
viously in [51]. Here we reproduce them for the sake of
completeness. The turning points and the integrals can be
found to be

Ωt�k ¼ arcsin

�
qx
q∥

�
� i arcosh

 
ðq2∥ þ ϵ2⊥Þð ΩmϵÞ2 þm2

2ð ΩmϵÞq∥m

!
þ 2πk; ðC1Þ

Kð~q; E0Þ ¼ i
4ϵ⊥
Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2þ

q "
E

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2−
1 − y2þ

s !
−K

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2−
1 − y2þ

s !
− 2kiE

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2− − y2þ
1 − y2þ

s !#
þ Φ; ðC2Þ

Kxyð~q; E0Þ ¼ −
igffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2þ

p
"
K

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2−
1 − y2þ

s !
− y−yþΠ

 
1 − y2−;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2−
1 − y2þ

s !#
þ Φxy

þ 2k
gffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − y2þ
p

"
ð1 − y−yþÞK

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2− − y2þ
1 − y2þ

s !
þ ðy2− − 1Þ yþ

y−
Π

 
1

y2−

y2− − y2þ
1 − y2þ

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2− − y2þ
1 − y2þ

s !#
; ðC3Þ

where

y� ≔ i
Ωq∥ � eE0

Ωϵ⊥
; q∥ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q
:

The quantities Φ and Φxy are physically irrelevant global
phases.

APPENDIX D: ANALYTIC CALCULATION OF
THE MOMENTUM SPECTRUM FOR THE

SAUTER PULSE

In this appendix we want to calculate the integral K0ðtÞ
for the nonrotating Sauter pulse which is given by Eqs. (1)
and (29) for Ω ¼ 0. We start from the potential
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AμðxÞ ¼ ð0; AðtÞ; 0; 0Þ;

AðtÞ ¼ eE0τ

�
1þ tanh

�
t
τ

��
:

The turning points as defined in Eq. (23) can be found to be

t�j ¼ τ artanh

�
qx � i~ϵ⊥
eE0τ

− 1

�
þ iπjτ; ðD1Þ

for j ∈ N with

~ϵ2⊥ ≔ ϵ2⊥ þ q2y:

This means we find an infinite number of turning points
which all have the same real part,

sj ¼ Reðt�j Þ ¼
1

4
log

�
q2x þ ~ϵ2⊥

ðqx − 2eE0τÞ2 þ ~ϵ2⊥

�
:

The integral from Eq. (18) gives

K0ðtÞ ¼ −τ
2

γ
log

�
γ

m
ðωðtÞ þ qxÞ þ tanh

�
t
τ

��

− τ
X
l¼�1

lql

�
log

�
1 − l tanh

�
t
τ

��
− log

��
γ

m
qx þ l

��
γ

m
qx þ tanh

�
t
τ

��
þ γ2

m2
ðqlωðtÞ þ ~ϵ2⊥Þ

��
þ ~Φ; ðD2Þ

where ~Φ is a physically irrelevant global phase and we
introduced the Keldysh parameter for the pulse length τ
which is defined as

γ ≔
m

eE0τ
;

and we also defined

q� ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
qx −

ms
γ
ð1� 1Þ

�
2

þ ~ϵ2⊥

s
:

Using the explicit form of the turning points of Eq. (D1)
and assuming E0 > 0 we find that the imaginary part of the
integral from Eq. (18) at the turning points is given by

Im½K0ðt�j Þ� ¼ ∓π

2
τ
1

γ
ðγqþ þ γq− − 2mÞ:

According to the condition in Eq. (24) only the turning
points for which the imaginary part is negative contribute.
That still leaves an infinite number of turning points which
will give the same contribution to the sum in Eq. (27).
However Eq. (27) only holds if the turning points have a
different real part. This is connected to how the contour is
deformed to extract the contributions of the poles. We
chose the contour such that it follows the real axis up to sp
and then approaches the turning point in a line parallel to
the imaginary axis. If turning points have the same real part
it is sufficient to take one integral which encircles all of the
turning points. Using Eq. (D2) we find

Z
t�jþ1

t�j

ωðt0Þdt0 ¼ 0:

This means that only the integral from sp to tþp contributes
for the Sauter pulse, since the contributions of the other
ones vanish due to the periodic form of ωðtÞ. Accordingly
the semiclassical momentum spectrum defined in Eq. (27)
takes the form

WSC
s ð~qÞ ¼ exp

�
−
π

ϵ

1

γ2

�
γqþ
m

þ γq−
m

− 2

��
:

This can be compared to the exact result, which for instance
can be obtained in the real-time DHW formalism and is
[5,53]

Wsð~qÞ ¼
sinh ð1

2
π
ϵ
1
γ2
½2þ γqþ

m − γq−
m �Þsinh ð1

2
π
ϵ
1
γ2
½2− γqþ

m þ γq−
m �Þ

sinhðπϵ 1γ qþm Þsinh ðπϵ 1γ qþm Þ
:

Using the fact that sinhðxÞ ≈ 1
2
expðxÞ for large x we find

for ϵγ ∼ 1=τm ≪ 1

Wsð~qÞ ≈
τm≫1

WSC
s ð~qÞ;

such that the semiclassical result is approximating the exact
one well for long enough pulses. As described in Sec. V for
shorter pulses the turning points get too close in the
complex plane and the approximation in Eq. (25)
breaks down.
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