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We explore Schwinger pair production in rotating time-dependent electric fields using the real-time
Dirac-Heisenberg-Wigner formalism. We determine the time evolution of the Wigner function as well as
asymptotic particle distributions neglecting backreactions on the electric field. Whereas qualitative features
can be understood in terms of effective Keldysh parameters, the field rotation leaves characteristic imprints
in the momentum distribution that can be interpreted in terms of interference and multiphoton effects.
These phenomena may seed characteristic features of QED cascades created in the antinodes of a high-
intensity standing wave laser field.
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I. INTRODUCTION

Schwinger pair production—or the spontaneous decay
of the QED vacuum in electric fields—is one of the rare
quantum field theory phenomena which is inherently non-
perturbative but analytically well understood. Unfortunately,
any attempt at verifying this understanding in macroscopic
electric fields is hampered by the exponentially small
production rate ∼ exp½−πm2=ðeEÞ�, where m is the electron
mass being huge for typical laboratory field strengths
E [1–3]. The rapid development of optical or x-ray high-
intensity lasers has lead to many suggestions for schemes
for a first discovery [4–14], also including the combination
of lasers and strong Coulomb fields [15–18].
However, while the highest field intensities in such

systems may indeed gradually approach the critical inten-
sity, Icr ¼ E2

cr ¼ ðm2

e Þ2 ≃ 4.3 × 1029 W=cm2, further pos-
sible physical processes may set in that could partly or
entirely swamp a pair production signal. In particular
QED cascades of successive radiation of accelerated
charges and particle production from hard photons are
expected to occur [19–28], which may even fundamentally
inhibit the generation of near critical intensities.
In view of a possible discovery of Schwinger pair

production in strong laser fields, this gives rise to a crucial
question: can a QED cascade seeded by an electron (sourced
by impurities of an imperfect vacuum) be distinguished from
a QED cascade seeded by Schwinger pair production?
Whereas the ensemble of electrons arising from impurities
are likely to have an isotropic initial momentum distribution,
the ensemble of Schwinger created pairs can be expected to
carry information about the directionality of the electric field
that lead to pair creation.

To quantify this difference for final observables, not
only the QED cascade has to be computed, but first of all,
the initial data from Schwinger pair production has to be
determined. For the cascade calculations performed so far,
this is far from being trivial as spatiotemporal dependencies
of the fields have to be accounted for. The simplest field
model often considered for cascade calculations is a
uniformly rotating homogeneous electric field. Such fields
serve as a model for the regions of highest electric field
strength in the antinodes of a circularly polarized standing
wave mode, where QED cascades are expected to occur
predominantly. By contrast, first-principles quantum field
theory methods for Schwinger pair production typically
allow for the treatment of constant unidirectional fields [2,3]
with one-dimensional dependencies on either space [29–32]
or time [32–40]. More involved fields soon lead to an
enormous increase in computational complexity [7,41–43].
In the present work, we consider for the first time

Schwinger pair production in a time-dependent rotating
spatially homogeneous electric field, that may help bringing
the quantum field theory studies a substantial step closer to
QED cascade calculations. For this, we use the real-time
off-equilibrium Dirac-Heisenberg-Wigner (DHW) (or sim-
ply Wigner) formalism on a mean-field level (neglecting
backreactions on the electromagnetic field) as developed in
[44]. We demonstrate that the coupled partial differential
equations (PDE) for the components of the Wigner function
can be mapped onto simpler (modified) quantum kinetic
equations, as first shown for unidirectional fields in [45,46].
This resemblance to quantum kinetic theory [5,47–51]
allows the use of the method of characteristics to solve
the PDE with conventional high-precision algorithms.
This technique gives access to the real-time evolution of

the distribution functions and physical observables such
as the asymptotic pair distributions in momentum space and
the total particle yield. We find that the qualitative features
of the latter can be interpreted within semiclassical pictures
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of pair production (inspired by atomic ionization) [31,33,35]
using an effective Keldysh parameter that accounts for the
time scales in the problem. By contrast, the momentum
distribution is strongly influenced by the field rotation,
giving rise to structures that can be interpreted in terms
of quantum interferences [12,52–54] and multiphoton proc-
esses. We believe that these characteristic structures can
serve as a seed for a QED cascade, potentially leaving its
imprints in the successive complex many-body dynamics. If
so, Schwinger pair production should bewell distinguishable
from more conventionally sourced QED cascades in rotating
electric fields.
This work is organized as follows: Section II briefly

summarizes the DHW formalism as it is needed for the main
part of the paper. In Sec. III the equations of motion for the
Wigner function are adapted to spatially homogeneous, but
time-dependent electric fields of arbitrary directionality.
This leads to a set of quantum kinetic equations generalizing
those previously studied in the literature to the case of
arbitrary time-dependent field directions. Our quantitative
results for a rotating field are presented in detail in Sec. IV.
Conclusions are drawn in Sec. V. Some useful details of the
numerical implementation are deferred to the Appendix.

II. THE WIGNER FUNCTION

The DHW formalism for Schwinger pair production has
first been presented in [44]. Comprehensive summaries for
the present context as well as exact solutions for particular
electric fields can be found in [45,46]. In the following, we
give a brief summary of the formalism as needed for the
present work, following the original literature. The starting
point is the Wigner operator defined as the Fourier
(Wigner) transform of the equal time density operator of
two Dirac field operators in the Heisenberg picture,

bWabðt; x⃗; p⃗Þ ≔ − 1

2

Z
ds⃗e− i

ℏp⃗·s⃗e
−ie

R
x⃗−s⃗=2
x⃗þs⃗=2

⃗̂Aðt;x⃗0Þ·dx⃗0

×

�
Ψ̂a

�
t; x⃗þ s⃗

2

�
; ˆ̄Ψb

�
t; x⃗ − s⃗

2

��
; (1)

where the Wilson line operator accounts for gauge invari-
ance. Here x⃗ is a center-of-mass coordinate of the underlying
two-point correlator, and s⃗ denotes a relative coordinate the
Fourier conjugate of which defines the kinetic momentum p⃗.
Replacing the gauge field operator by an external classical
field (corresponding to a mean-field or Hartree approxima-
tion), the vacuum expectation value of the Wigner operator
can be taken which defines the Wigner function W. Using
the equations of motion for the fermionic Heisenberg
operators, the dynamical equation for the Wigner function
can be written as

DtW ¼ − 1

2
D⃗x⃗½γ0γ⃗;W� − im½γ0;W� − iP⃗fγ0γ⃗;Wg (2)

with the pseudodifferential operators

Dt ¼ ∂t þ e
Z

1=2

−1=2
dλ~Eðt; ~xþ iλ ~∇~pÞ · ~∇~p;

~D~x ¼ ~∇~x þ e
Z

1=2

−1=2
dλ~Bðt; ~xþ iλ ~∇~pÞ × ~∇~p;

~P ¼ ~p − ie
Z

1=2

−1=2
dλλ~Bðt; ~xþ iλ ~∇~pÞ × ~∇~p:

Here, we have used the conventions fγμ; γνg ¼ þ2ημν ¼
þ2 diagð1;−1;−1;−1Þ and worked in temporal gauge
A0 ¼ 0. In the language of Feynman diagrams, the
mean-field approximation corresponds to neglecting radi-
ative corrections, which is justified by the smallness of
the fine-structure constant α. The Wigner function can be
decomposed in terms of a complete basis of the Clifford
algebra, (1; γ5; γμ; γμγ5; σμν ≔ i

2
½γμ; γν�),

W ¼ 1

4
ð1sþ iγ5pþ γμvμ þ γμγ5aμ þ σμνtμνÞ; (3)

with correspondingly transforming coefficient functions,
s;p; vμ;aμ; tμν. The equation of motion can be decomposed
accordingly, yielding

1∶ Dts ¼ þ2P⃗ · t⃗1

iγ5∶ Dtp ¼ −2P⃗ · t⃗2 − 2ma0

γ0∶Dtv0 ¼ −D⃗x⃗v⃗

γ0γ5∶ Dta0 ¼ −D⃗x⃗a⃗þ 2mp

γi∶Dtv⃗ ¼ −D⃗x⃗v0 − 2P⃗ × a⃗ − 2mt⃗1

γiγ5∶Dta⃗ ¼ −D⃗x⃗a0 − 2P⃗ × v⃗

σ0i∶ Dt t⃗
1 ¼ −D⃗x⃗ × t⃗2 − 2P⃗sþ 2mv⃗

1

2
ϵijkσ

jk∶Dt t⃗
2 ¼ þD⃗x⃗ × t⃗1 þ 2P⃗p; (4)

with

ð⃗t1Þi ≔ t0i − ti0; ð⃗t2Þi ≔ ϵi
jktjk:

A solution of these equations requires initial conditions.
For electromagnetic fields that vanish at asymptotically
early times, t → −∞, initial conditions are given by the
vacuum solution,

svac ¼
−2m
ωðp⃗Þ ; v⃗vac: ¼

−2p⃗
ωðp⃗Þ ; (5)

where ωðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p⃗2

p
. The coefficient functions can

be viewed as distribution functions in phase space with a
pseudo-probabilistic interpretation. A full probabilistic
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interpretation in coordinate or momentum space arises upon
integrating over momenta or coordinates, respectively.
An important auxiliary quantity is the combination

ϵðt; x⃗; p⃗Þ ¼ p⃗ · v⃗ðt; x⃗; p⃗Þ þmsðt; x⃗; p⃗Þ; (6)

which can be interpreted as a (phase space) energy density
of the fermionic fields. The corresponding one-particle
distribution function in phase space is given by the differ-
ence of this energy density as compared to the vacuum
energy density, normalized by the particle pair energies,

fðt; x⃗; p⃗Þ ¼ 1

2ωðp⃗Þ ðϵðt; x⃗; p⃗Þ − ϵvacðt; x⃗; p⃗ÞÞ: (7)

This distribution function will be of central interest for our
investigations. It is important to stress that the principles
of quantum field theory guarantee a particle interpretation
only at asymptotically large times. For instance, the total
number of particles (¼ number of anti-particles ¼ number
of pairs) produced out of the vacuum is given by

n ¼ lim
t→∞

Z
dΓfðt; x⃗; p⃗Þ; (8)

where dΓ denotes the phase space measure.

III. QUANTUM KINETIC EQUATIONS IN
HOMOGENEOUS ELECTRIC FIELDS

The Wigner formalism, in principle, can deal with pair
production in arbitrary electromagnetic fields. In practice,
computational cost inhibits a straightforward numerical
integration of the coupled set of partial differential equa-
tions, see [43] for a first solution in a space- and time-
dependent field in 1þ 1 dimensions. This limitation
suggests to concentrate on highly symmetric or effectively
dimensionally reduced configurations. In fact, in [45,46] it
has been shown that the Wigner formalism for unidirec-
tional time-dependent spatially homogeneous electric fields
can be mapped onto the simpler formalism provided by
quantum kinetic theory which has mostly been used in
practical computations. In the following, we will drop the
condition of unidirectionality in order to allow for rotating
fields. From a technical viewpoint, this leads to a higher
complexity of the problem in momentum space, but still
allows for a mapping of the Wigner formalism onto a
modified quantum kinetic description.
Confining ourselves to spatially homogeneous purely

electric fields (E⃗ ¼ E⃗ðtÞ; B⃗≡ 0), the equation of motion for
the Wigner function simplifies [44] to

ð∂t þ eE⃗ðtÞ · ∇⃗p⃗Þw ¼ Mw; (9)

with the ten nontrivial Wigner coefficient functions,

w ¼
�
s v⃗; a⃗; t⃗1

�
T
;

and M ¼

0
BBB@

0 0 0 2p⃗T

0 0 −2p⃗× −2m
0 −2p⃗× 0 0

−2p⃗ 2m 0 0

1
CCCA:

The coefficient functions p and t⃗2 vanish in this case.
Because of spatial homogeneity, all quantities no longer
depend on the space coordinate, but only on time and
kinetic momentum, e. g., w ¼ wðt; p⃗Þ.
Writing the vacuum solution wvac as

wvac ¼ ð svac ~vvac ~0; ~0 ÞT ¼ −2e1; (10)

it can straightforwardly be verified that e1 is a unit vector in
R10 with a standard scalar product, e1 · e1 ¼ 1. In the same
spirit, the one-particle distribution function as defined in
Eq. (7) can be written as

f ¼ 1

2
e1 · ðw − wvacÞ: (11)

Now, the PDE system (9) can be converted into an ordinary
differential equation (ODE) system by the method of
characteristics, cf. [44–46]. Inserting a specific path
p⃗ → π⃗ðtÞ into a PDE of the form

ð∂t þ biðtÞ∂pi
Þgjðt; p⃗Þ ¼ hjkðt; p⃗Þgkðt; p⃗Þ (12)

and comparing the result to

d
dt

gjðt; π⃗ðtÞÞ ¼ ½ð∂t þ ð∂tπiÞ∂pi
Þgjðt; p⃗Þ�p⃗¼π⃗ðtÞ; (13)

we find

biðtÞ ¼ ∂tπi: (14)

This implies that with

π⃗q⃗ðtÞ ¼
Z

t

0

b⃗ðt0Þdt0 þ π⃗0 þ q⃗; (15)

and some arbitrary constant π⃗0 to be fixed below, we can
solve

d
dt

~gjðt; q⃗Þ ¼ ~hjkðt; q⃗Þ~gkðt; q⃗Þ; (16)

in order to find the solution to the original equation along
the characteristics π⃗q⃗ðtÞ according to ~gjðt; q⃗Þ≡ gðt; π⃗q⃗ðtÞÞ.
Note that q⃗ now is only a parameter and can be freely
chosen before solving the equation. For a complete picture
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of the solution as a function of t and p⃗, we have to solve the
equation for several values of q⃗.
With this method, the equation of motion of the Wigner

function can be brought to the simple form

~w
:
¼ ~M ~w; (17)

where the tilde notation indicates as before that the
corresponding functions are evaluated along the path
p⃗ ¼ π⃗q⃗ðtÞ, and the resulting function is then understood
as a function of q⃗, e.g., ~wðt; q⃗Þ≡ wðt; p⃗ ¼ π⃗q⃗ðtÞÞ. For a
suitable choice of π⃗0, the characteristics π⃗q⃗ðtÞ coincide with
the classical momentum space paths of electrons in the
external field according to

π⃗q⃗ðtÞ ¼ e
Z

t

0

E⃗ðt0Þdt0 þ π⃗0 þ q⃗

¼ −eA⃗ðtÞ þ q⃗; (18)

where we have used the Weyl gauge and set π⃗0 ¼ −eA⃗ð0Þ
in the second line. With this choice, the variable q⃗ can be
interpreted as the canonical momentum whereas π⃗q⃗ðtÞ is
the kinetic momentum on a trajectory.
Also the one-particle distribution function ~f can be

considered along the characteristics parametrized by t
and q⃗,

~f ¼ 1

2
~e1 · ð ~w − ~wvacÞ: (19)

With Eq. (17) our original PDE problem is mapped onto an
ODE problem which is, in principle, amenable to standard
solution methods. Upon insertion of the solution into
Eq. (19), we can extract the physical information.
However, in practice, the problem is numerically chal-

lenging for the following reason: in a case where only few
pairs are created the solution only differs very slightly from
the vacuum solution. In order to compute this difference,
the numerical solution of Eq. (17) must be determined with
a very high precision. This problem is amplified further by
the fact that the projection onto the unit vector ~e1 also
results in the computation of small differences of numerical
quantities. Thus a reformulation of the equation of motion
is required to obtain better numerical sensitivity for small
pair creation rates. For simplicity the tilde symbol is
dropped from now on, and all following equations will
be considered along the characteristics.
For our reformulation, we decompose the Wigner

functions into a component parallel to e1 and its orthogonal
complement. The latter part is parametrized as T w9 where
T is a 10 × 9 matrix chosen such that eT1T ¼ oT (with o
being the zero vector). T must also be constructed such
that a 9 × 10 matrix R exists, that satisfies RT ¼ 19.
The quantity w9 denotes an auxiliary 9 component vector.
We can now plug the ansatz

w ¼ 2ðf − 1Þe1 þ T w9; (20)

which is clearly compatible with Eq. (19), into the equation
of motion. We obtain

2f
:
e1 þ 2ðf − 1Þe: 1 þ T

:
w9 þ T w

:
9 ¼ MT w9; (21)

where we have used thatMe1 ≡ o. Evolution equations for
f and w9 can finally be read off by applying e1 and R,
respectively, to both sides of the equation. The resulting
equations read

f
:
¼ 1

2
e
: T
1T w9

w
:
9 ¼ M9w9 þ 2ð1 − fÞRe

:
1 (22)

with

M9 ¼ RðM − e1e
: T
1 ÞT þR

:
T ; (23)

where 0 ¼ d
dtRT has been used. In our studies we have

chosen

T ¼
� −px=m −py=m −pz=m 0 � � � 0

19

�����
p⃗→π⃗q⃗ðtÞ

;

(24)

and accordingly

R ¼ ð o 19 Þ: (25)

With this choice

M9 ¼

0
BB@

A −2p⃗× −2m
−2p⃗× 0 0

B 0 0

1
CCA
��������
p⃗¼π⃗q⃗ðtÞ

;

where A ¼ −e
m2 þ p⃗2

p⃗ · E⃗T;

B ¼ 2

m
ðm213 þ p⃗ · p⃗TÞ:

The matrix M9 actually has a three dimensional kernel,
indicating a possible redundancy in the Wigner functions for
the present case. However, since the kernel is field- and thus
time-dependent, it is numerically more convenient to solve
the differential Eq. (22) without explicitly projecting out this
redundancy. In this form, the differential equations—though
still challenging—are accessible to straightforward numeri-
cal integration. The initial values for the original equations
simply translate into f ¼ 0 and w9 ¼ 0 for t → −∞.
In practice, the numerical integration is not initiated at
negative infinity but at some finite value. This corresponds to
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a discontinuous switch-on of the electric field, which leads to
artificial transient oscillations that subside sufficiently fast
for our purposes. This and some further details of the
numerical evolution of this set of equations are discussed
in Appendix A.

IV. ROTATING ELECTRIC FIELDS

The formalism as developed in the preceding section
works for spatially homogeneous, but time-dependent
electric fields of arbitrary (time-dependent) directionality.
As a specific and important example, we focus on rotating
electric fields from now on. More precisely, we consider a
field pulse of the form

E⃗ðtÞ ¼ E0

cosh2ðtτÞ

0
B@

cosðΩtÞ
sinðΩtÞ

0

1
CA; (26)

characterized by a maximal field value E0, an angular
rotation frequency Ω and a pulse duration τ. This field
configuration can be viewed as a model for the field in an
anti-node of a standing wave mode with appropriate circular
polarization.
For the discussion, it is useful to introduce the dimen-

sionless parameters

ε ¼ E0

Ecr
¼ eE0

m2
; σ ¼ Ωτ; (27)

where ε measures the maximum field strength in units of
the critical field, and σ is a measure for the number of full
rotation cycles within the pulse duration. The dimensionful
parameters will be given in units of the QED scale, i.e., the
electron mass scale. For instance, the pulse duration is
measured in units of the Compton time 1=m in units
where ℏ ¼ c ¼ 1.
The time evolution of this field is illustrated in Fig. 1. In

the limit Ω ¼ 0, the rotating field collapses to a nonrotating
Sauter-type field, which is one of the few examples where
the Wigner function can be calculated analytically, see,
e. g., [45]. Note that a carrier envelope phase ϕ with the
replacement Ωt → Ωtþ ϕ would have no effect, as it can
be transformed to zero by a rotation of the coordinate
system in the ðx; yÞ plane.

A. Total particle yield

The total number of pairs per unit volume N can be
calculated from the distribution function f by integrating
over all momenta at t → ∞, cf. Eq. (8),

N ¼
Z

dq3

ð2πÞ3 limt→∞
fðt; qÞ ¼

Z
dq3

ð2πÞ3 flimðqÞ: (28)

In practice, the time integration is stopped at some large but
finite time tlim. Since the electric field amplitude goes to

zero sufficiently fast for large times, also the time derivative
of f vanishes rather rapidly. For the numerical accuracy
reached in the present work, we have observed that
values of tlim of the order of 10τ are sufficient (see
Appendix A).
As a benchmark, it is useful to compare the particle yield

for the known Sauter-type field configuration (σ ¼ 0) with
that generated by rotating fields for different pulse dura-
tions and rotation frequencies. A compilation of results for
E0 ¼ Ecr=10 and for various rotation cycles σ ¼ 0;…; 5 as
a function of the pulse duration is depicted in Fig. 2.
Our results from numerically integrating the Wigner

equation (22) for various σ are displayed as symbols. In
order to obtain the particle yield N by integrating over q⃗,
we have chosen a suitable lattice in momentum space q⃗ and
calculated fðtlim; q⃗Þ for each lattice point. These results are

FIG. 1. Illustration of the rotating electric field given in
Eq. (26).

FIG. 2 (color online). Compilation of the total particle yield for
a peak field strength E0 ¼ εEcr with ε ¼ 1

10
for various rotation

cycles σ as a function of the pulse duration τ in units of the
Compton time. The solid line marks the analytically soluble case
of a nonrotating Sauter pulse with σ ¼ 0.
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compared to the analytically known particle yield for the
Sauter pulse for σ ¼ 0 [45,46] which is shown as a solid red
line. As a check, the numerically obtained results for σ ¼ 0
(black plus symbols) match the analytic curve adequately
over several orders of magnitude.
As a main new result, we find that for a given value of

pulse duration τ, the particle yield from a rotating pulse can
increase several orders of magnitude as compared to the
nonrotating case.
This phenomenon can be qualitatively understood in

simple terms: let us first recall that the characteristic shape
of the particle yield N ðτÞ from the Sauter pulse as
displayed by the solid curve in Fig. 2 can be discussed
in terms of the Keldysh adiabaticity parameter,

γ ¼ 1

τεm
¼ m

τeE0

: (29)

For the Sauter pulse, the value of γ separates the non-
perturbative Schwinger regime of pair production (γ ≪ 1)
from the perturbative multiphoton regime (γ ≫ 1).
In particular, the strong increase in the particle yield for
τ ≲ 10 in Fig. 2 (solid curve) is due to the onset of
multiphoton pair production.
Now, switching on the rotation also introduces another

time scale 1=Ω, such that the Keldysh parameter defined
in Eq. (29) is no longer unique, cf. [6]. In particular,
in the limit of rapid rotation Ω ≫ 1=τ we expect the pair
production process to be rather characterized by a Keldysh
parameter of the form

γΩ ¼ Ω
εm

; (30)

since the rotation frequency Ω sets the frequency scale for
the photons collectively dominating the rotating pulse.
In this sense, the rapid increase of the particle yield for

fixed τ but increasing Ω ¼ σ=τ visible in Fig. 2 can simply
be interpreted as the onset of multiphoton pair production
stimulated by the photon components of the field with
frequency scale Ω in the spirit of the folding model of [55].
In order to quantify this simple multiphoton picture, we can
define a combined Keldysh parameter that interpolates
between γ of Eq. (29) and γΩ of Eq. (30), for instance,

γ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2

p

τεm
: (31)

We emphasize that this is merely a simple choice and by no
means unique, other interpolating functions with γ� → γ for
σ → 0 and γ� → γΩ for σ → ∞ may equally well be used.
Figure 3 now shows the same data as Fig. 2 as a function

of γ�. We observe that the data for rotating fields with σ ≳ 1
appears to fall on a universal curve. We conclude that the
particle yield no longer depends on σ or τ individually but
rather on a combination which is approximately given by

our choice of γ� in Eq. (31). The shape of this universal
curve can also be deduced by analogy to the multiphoton
regime for linearly polarized oscillations. According to the
semiclassical calculations of Refs. [33,35], the multiphoton
pair production rate for fields of the form EðtÞ ¼
E0 cosðΩtÞ with γΩ ≫ 1 is given by

r ∝
�
eE0

2mΩ

�
4m=Ω

¼
�

1

2γΩ

�
4=ðεγΩÞ

: (32)

Replacing γΩ by γ� and using a fit to this functional
dependence on the Keldysh parameter yields the blue solid
line in Fig. 3 which satisfactorily matches the data in
the multiphoton regime for σ ≳ 1. We conclude that the
universal behavior can indeed be interpreted as a multi-
photon effect induced by the photons at frequency Ω
collectively dominating the rotating electric field.

B. Particle momentum distribution

More information than just the total particle yield is
encoded in the one-particle distribution function fðt; p⃗Þ. In
the present section, we first study the physically relevant
limit of asymptotic times t → tlim; more details on the
whole time evolution are discussed in the following
subsection.
In order to develop an intuition for the rotating case, let

us start with the simpler case of a Sauter pulse with σ ¼ 0,
cf. [45,46]. In this case, the distribution depends only on the
kinetic momentum px parallel to the direction of the electric
field and the modulus of the perpendicular momentum

p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
y þ p2

z

q
. The resulting distribution has a single

peak centered at px ¼ ετ and p⊥ ¼ 0.

FIG. 3 (color online). Particle yield as a function of γ� defined
in Eq. (31) (same data as in Fig. 2). The blue solid line shows our
simple model estimate inspired by a multiphoton picture,
matching the data on a universal curve for σ ≳ 1.
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An example for a field strength of ε ¼ 0.1 is shown in
Fig. 4 in terms of a contour plot in the px; py plane (which
is identical with the px; p⊥ plane for pz ¼ 0). The
quantitative values of the distribution function are given
as the numbers on the contour lines expressed in units given
in brackets in the plot title (10−12 in this case). The axes
ranges are chosen such that the plot is centered about the
main features of the distribution while maintaining a square
aspect ratio, i. e., the horizontal and vertical axis have the
same absolute scale. The contour plot is produced from a
smooth interpolating function; the red dots indicate the grid
of the numerically calculated data points.
The black cross marks the point where the canonical

momentum vanishes q⃗ ¼ 0. For the Sauter pulse, this is
equivalent to p⃗ ¼ eE0τe⃗x, cf. Eq. (18), which is the
position of the maximum of the peak. This is in agreement
with a simple semiclassical picture that particles are
predominantly created at rest through instantaneous tun-
neling around the time when the field has reached its
maximum and are afterwards accelerated by the electric
field to finite momentum.
Now, let us switch on rotation: for a moderately small

number of rotation cycles, σ ∼Oð1Þ, we observe that the
distribution in momentum space is circularly distorted, see
Fig. 5 for σ ¼ 3. In the semiclassical picture, this can be
understood from the fact that the field changes direction
during the creation of particles. As a consequence, the
particles are accelerated into different directions depending
on their instant of creation. In agreement with this simple
picture, we also find that the amount of circular distortion
depends on the pulse length. For instance, decreasing
the pulse duration for fixed rotation frequencies also the
circular distortion is weakened, as the created particles have
little time to follow the rotating field pulse. We also observe
that the peak of the distribution is no longer given by the

point of vanishing canonical momentum q⃗ ¼ 0 (black cross
in Fig. 5), but at least remains in the vicinity of this point.
It should be stressed that the semiclassical picture

cannot cover all aspects of pair production. Though it is
useful for understanding the asymptotic momentum dis-
tributions for the field configurations studied so far, it finds
its limitations in the next example. Even worse, it seems
rather useless for understanding the evolution of the
distribution function at finite times as discussed below in
subsection IV C.
Let us now study larger rotation frequency, i. e. a larger

number of rotation cycles σ, while keeping the pulse
duration fixed. The case of σ ¼ 6 is shown in Fig. 6.
For increasing σ, we observe that the circular distortion
closes into a ring, and another ring can form inside the first

FIG. 4 (color online). Particle momentum distribution created
by a Sauter pulse (σ ¼ 0) with a pulse duration of τ ¼ 10=m and
a peak field strength ε ¼ E0=Ecr ¼ 0.1.

FIG. 5 (color online). Momentum distribution of pairs created
by a rotating electric field pulse with σ ¼ 3 rotation cycles, a pulse
duration of τ ¼ 10=m and a peak field strength ε ¼ E0=Ecr ¼ 0.1.

FIG. 6 (color online). Momentum distribution of pairs created
by a rotating electric field pulse with σ ¼ 6 rotation cycles, a pulse
duration of τ ¼ 10=m and a peak field strength ε ¼ E0=Ecr ¼ 0.1.
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ring, while the momentum space radius of the outer
ring grows.
An understanding of this pattern requires to go beyond

the quasiclassical particle picture. In fact, the production
process is a quantum mechanical process, implying that
the produced particles also carry phase information. In
particular, the right-moving particles with positive px carry
a generically different phase than the left-moving particles
with negative px for the case of a circularly distorted
distribution. For larger σ, these ends of the distribution
now meet again in momentum space to form a ring. Since
this corresponds to a sum of quantum mechanical wave
functions with different phases, we expect to see an
interference pattern. This is in fact, what we observe along
the negative py axis at px ¼ 0.
We can even go one step further and try to relate the

maxima of the ring-shaped interference pattern to the
excess energy in a multiphoton pair production process:
a multiphoton picture for pair production implies that a
merger of n photons of frequency Ω distributed over the
electron and positron should give an average excess energy
of p ¼ 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnΩÞ2 − 4m2

p
per particle. In fact, for exam-

ple the outer ring in Fig. 6 has a radius of about p≃ 0.66m
which approximately matches with the current pulse
parameters for n ¼ 4, p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 · 0.6mÞ2 −m2

p
. Slight devi-

ations to this simple picture can be interpreted as signatures
of the effective mass of the fermion in the strong-field
environment [56].
As can be anticipated, the particle distribution becomes

isotropic for very high rotation frequencies, because the
field rotates many times under the envelope and does not
change much from one cycle to another. We observe this
behavior already for σ ¼ 10 for our pulse parameters, as is
depicted in Fig. 7.

We also observe that all distributions exhibit a mirror
symmetry in momentum space with respect to qx ¼ 0. This
is already the case for the Sauter pulse and holds still true
for the more involved momentum distributions generated
from the rotating electric field. At first sight, this looks
surprising, because the electric field at the instant of
reaching its peak field strength points into the x direction,
seemingly representing an asymmetry in this direction. As
shown in [54] for the case of the Sauter pulse, the observed
symmetry can be related to the time reversal symmetry of
the x component of the electric field. The very same
arguments go through for our choice of the rotating electric

FIG. 7 (color online). Momentum distribution of pairs created by
a rotating electric field pulse with σ ¼ 10 rotation cycles, a pulse
duration of τ ¼ 10=m and a peak field strength ε ¼ E0=Ecr ¼ 0.1.

FIG. 8 (color online). Time evolution of the distribution function
for a strong field pulse with ε ¼ 1 and pulse duration τ ¼ 10=m at
σ ¼ 1=2 rotation cycles.
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field and hence imply the same symmetry property for the
momentum space distribution.
From a phenomenological viewpoint, this leads us to an

important conclusion: for rotating electric field pulses with
rotation cycles on the order of σ ≳Oð1Þ, we observe a
characteristic particle distribution in momentum space
starting from moderately circularly distorted distributions
as in Fig. 5 to highly asymmetric circular distributions as
in Fig. 6. Most importantly, the dominant peak of the
distribution does not point into the direction of the peak
electric field (x direction in the present example), but
orthogonally to this direction within the plane of rotation.
We believe that this circular asymmetry can serve as a
characteristic signature for pair production.
We should mention that for increasing pulse durations

two numerical problems arise. The first problem is an
increase of the required computation time per trajectory.
This is due to oscillations of some components of the

function w9 which demand for the number of integration
steps being at least proportional to the pulse duration.
As a second problem, the momentum distribution devel-
ops filigree structures that require a large number of
lattice points. Both problems increase the necessary
computation time but can still be compensated by using
faster computers.

C. Time evolution

As emphasized above, the one-particle distribution
function can be interpreted as a phase space particle density
only at asymptotic times t → ∞. At intermediate times, it
has no physical meaning in terms of directly accessible
observables. Still, from Eq. (7), the distribution function
may give some intuition on a kind of normalized energy
density that may be attributed to virtual excitations of the
electron-positron field. This viewpoint is also suggested

FIG. 9 (color online). Time evolution of the distribution function leading to the momentum distribution shown in Fig. 6 resulting from a
rotating pulse with ε ¼ 1=10, τ ¼ 10=m and σ ¼ 6.
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within quantum kinetic theory where the Vlasov equation
for the distribution function is derived with the aid of a
Bogoliubov transformation. The latter connects vacuum
Fock space ladder operators with quasiparticle creation
and annihilation operators at intermediate times. Only for
asymptotic times when the field has subsided, these
quasiparticle operators can be uniquely connected with a
particle Fock space. Nonetheless the time evolution of the
function f continuously connects the asymptotic regimes
and hence carries relevant information that is worthwhile to
be studied. It should, however, be kept in mind that virtual
and real particle information is intertwined at intermediate
times. In the strong field regime, this interlocking seems
less severe such that the time evolution of the distribution
function can be interpreted straightforwardly. As an exam-
ple, we consider a pulse with field strength E0 ¼ Ecr, i. e.,
ε ¼ 1, pulse duration τ ¼ 10=m and σ ¼ 1=2 rotation
cycles. A series of snapshots at intermediate times shortly
before, during and after the pulse are shown in Fig. 8. When
the pulse starts to set in (top panel, t ¼ −8.94=m), virtual
field excitations can be observed near zero momentum
p⃗ ¼ 0. Whereas this zero-momentum peak is further
enhanced during the pulse evolution, some part of these
excitations is accelerated along the direction of the field
(predominantly ∼x direction). The distribution develops a
tail along the corresponding momentum direction that
acquires a slight circular distortion due to the field rotation,
cf. 2nd and 3rd panel at t ¼ −0.14=m and t ¼ 4.57=m,
respectively. Towards asymptotic times, the previously
dominant zero momentum peak of virtual excitations
vanishes again, and the momentum-space distribution of
outgoing real particles forms with the characteristic circular
distortion visible in the lowest panel at t ¼ 79.06=m.
(Apart from this distortion, the result is very similar to
that for the Sauter pulse for σ ¼ 0.)
It is interesting to note that the aforementioned mirror

symmetry of the asymptotic distribution about the qx ¼ 0
axis is not present at intermediate times. This can be
explained with the fact that the x component of the field
is not time reversal symmetric if the evolution is cut off
at some finite time t. Only the global field features the
required properties.
The separation between virtual excitations and real pairs

becomes less obvious at weaker field strengths. Quantum
mechanical phase and interference effects become more
important in this regime. This is illustrated in Fig. 9 for a
field strength of ε ¼ E0=Ecr ¼ 0.1 and a pulse duration of
τ ¼ 10=m with σ ¼ 6 rotation cycles. There is no clear
separation between a virtual excitation peak or a real
particle tail neither in height nor in momentum space. In
addition, the rotation of the field appears to induce stronger
interference effects. Only when the pulse has almost faded
away the virtual excitations relax and the circular distri-
bution pattern starts to form yielding the asymptotic result
of Fig. 6.

V. CONCLUSION AND OUTLOOK

We have investigated Schwinger pair production in
rotating time-dependent electric fields for the first time
using the DHW formalism for a numerical computation of
the Wigner function. With this method, we have access to
particle or antiparticle distributions in momentum space,
the total particle yield as well as the whole time evolution of
the production process.
We find that rotation generically enhances pair pro-

duction in comparison with a linearly polarized field
pulse. This is heuristically clear since rotation introduces
more Fourier modes that lead to a pair production increase
similar to multiphoton effects for linear oscillating
pulses. We have corroborated this interpretation by
introducing an effective Keldysh parameter that accounts
for the time scales of both the pulse as well as of the
rotation. For a sufficiently large number of rotation cycles,
the data for the total particle yield falls on a universal
curve. This universal curve can be parametrized by a
multiphoton description in terms of the effective Keldysh
parameter.
Even more interesting features can be read off from the

momentum space distribution of the produced particles.
The rotating field leaves several characteristic imprints on
the distribution depending on the number of rotation cycles.
Rotation can in particular be read off from the shape of
the distribution, from the (partly counterintuitive) location
of the peak, and from resulting interference patterns.
Depending on the parameter regime, some of these features
can be understood in a simple quasiclassical picture or in
terms of multiphoton physics, whereas an understanding of
the interferences requires a full quantitative treatment of the
quantum mechanical phase information.
From a technical viewpoint, we have shown that the

DHW equations can be solved with the method of char-
acteristics for general spatially homogeneous time-
dependent electric fields. In particular, a commonly made
restriction to unidirectional fields is not necessary. For this
generalized class of fields, the PDE system of DHW
equations can be mapped onto an ODE system similar
to quantum kinetic theory.
In view of our original motivation arising from QED

cascades, we believe that the characteristic momentum
space patterns of the distribution function can serve as a
decisive fingerprint of Schwinger pair production, provided
the QED successive cascade preserves a remnant of this
pattern in the final state distributions of either electrons,
positrons or photons. If so, a QED cascade seeded by the
pair production process studied in this work could be
quantitatively distinguished from a more mundanely
sourced cascade stimulated by isotropic vacuum impurities.
To answer this question, our results for the particle
distribution should be used as initial conditions of a
QED cascade calculation.
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APPENDIX: NUMERICAL DETAILS

Numerical solutions of Eq. (22) have been computed
using Wolfram Mathematica. It’s built-in numerical differ-
ential equation solver, NDSolve uses various solution
methods in combination with adaptive step size and error
estimation techniques. The main method used for ordinary
differential equations is LSODA which is part of the
ODEPACK package [57]. It dynamically switches between
nonstiff (Adams) and stiff (backward differentiation for-
mula) methods.
In order to achieve the required accuracy it is important

to set the error bounds for the adaptive step size. The
NDSolve method ofMathematica accepts two parameters
AccuracyGoal and PrecisionGoal. If a function
f is calculated from some ODE the resulting upper bound
for the estimate integration error is

Δmax ¼ 10−AccuracyGoal þ jfj10−PrecisionGoal; (A1)

where 10−AccuracyGoal is a tolerable absolute error and
10−PrecisionGoal is a tolerable relative error. The value of
the actual function f ranges over many orders of magni-
tude as shown in Fig. 10 for an example trajectory and a
typical set of parameters. The result of physical interest is
the comparatively small function value at asymptotically
large times. As the peak value near t ¼ 0 exceeds the
asymptotic result by many orders of magnitude, relative
errors are generically unacceptable, because the error
bound could then easily exceed the final physical value
during time steps near the peak value. We hence accept
only an absolute error by setting PrecisionGoal to the
special value Infinity.
Also the decay of the transient oscillations caused by

actually switching on the field at a finite (large negative)
time can be seen in Fig. 10.

As shown in Fig. 11, the employed methods can
reproduce analytical solutions quite well. In this plot, the
exact solution for the Sauter pulse with Ω ¼ 0 and τ ¼
10=m and ε ¼ 1 shown as a surface plot is superposed
by the numerical solutions along a set of characteristics
(colored line plots). Both solutions agree very well even in
the strongly oscillatory regime near the time of peak field
strength t ¼ 0.
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