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• We have already heard about some features of one  
     metric truncations for effective average actions  
     with exponential parametrization. 

Talks: Percacci, Knorr 
Posters: Falls, Labus

• We heard about an f(R) truncation in the conventional linear param. 

Talk: Litim

• Here is discussed the f(R) case in the non linear “exp” representation.        
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Outline

• Framework

• Parameterization and gauge fixing 

• Flow equations.

• An example of global solution         

• Conclusions and outlook
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Useful since able to unify the fundamental and effective theory point of view.

Framework

4

What is the fundamental nature of gravitational interaction?    Of spacetime? And matter?

• Sequence of theories with trasmutation/generation of (some) degrees of freedom?
• Single fundamental theory? QFT       Stringy        Discrete models           …

Criteria?           Experimental input (hard)       Simplicity/Beauty/Unification          … 

Simplest attempt: 
A gravitational QFT described by a metric and diffeomorphism symmetry,  
whose dynamics reveals a UV fixed point with finite dim. critical surface. 

If bare action has no irrelevant operators, it is asymptotically safe. 
Otherwise description is effective, originating from a more fundamental theory.

At least classical field theory and effective field theory are good descriptions for gravity. 

Will an answer ever come?

RG paradigm

Bottom-up approach. (Donoghue)



Asymptotic safety paradigm using FRG techniques for the effective action                            (Reuter)   

This approach is clearly in constrast to the stringy ideas of UV/IR duality,  
related to assuming black-hole formation in transplanckian scattering.                                    (Lust) 
(a fact not necessarily true for a quantum gravitational theory in the UV) 

In this framework we cannot avoid the use of a background field formalism. 
In a metric formulation (euclidean):  

- Issue of background independence for double metric description / modified splitting Ward Identities. 
- Issue of choosing truncations as well as coarse-graining schemes. Simple enough,                                                   

but able to keep the most important features of the full theory. 

Many degrees of approximations in the covariant description: 
Single metric (field) descriptions can be still  non local and complicated:  

On maximally symmetric background (e.g. a sphere), for a local “LPA” truncation,  
pure gravity still not so trivial! 

Approach

�[gµ⌫ ,�]

gµ⌫ (ḡµ⌫ , hµ⌫)
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Appendix B: Hessian

The action is

�[gµ⌫ ] =

Z
ddx

p
gf (R) (B.1)

Its first variation is

Z
ddx

p
g

��

�gµ⌫
hµ⌫ =

Z
ddx

p
ḡhµ⌫


1

2
ḡµ⌫f(R̄) + r̄µr̄⌫f 0(R̄)� ḡµ⌫r̄2f 0(R̄)� R̄µ⌫f 0(R̄)

�
(B.2)

Its second variation is

1

2

Z
ddx

p
g

�2�

�gµ⌫�g⇢�
hµ⌫h⇢� =

Z
ddx

p
g

(
1

2
f 00 (R)

⇣
h↵�r↵r�rµr⌫hµ⌫ � 2hr2r↵r�h↵�

+h(r2)2h� 2r↵r�h↵�Rµ⌫h
µ⌫ + 2r2hRµ⌫h

µ⌫ +Rµ⌫R↵�h
µ⌫h↵�

⌘

+
1

2
f 0 (R)

⇣
h↵�r2h↵� + hrµr⌫h

µ⌫ � 4h↵�r↵rµh�µ + 2h↵�rµr↵h�µ

�hr2h+ 4Rµ⌫h
µ�h⌫� � 2Rµ⌫h

µ⌫h
⌘
+ f (R)

✓
�1

4
hµ⌫h

µ⌫ +
1

8
h2

◆)
.

To get to the exponential parametrization just replace

hµ⌫ ! hµ⌫ +
1

2
⇣hµ⇢h

⇢
⌫ (B.3)

and keep terms of second order in h. The parameter ⇣ allows continuous interpolation between

the two parametrizations.

Putting ⇣ = 1 we find that the Hessian in exponential parametrizationis equal to the one in

linear parametrization plus the terms:

Z
ddx

p
ḡ
1

2
hµ⇢h

⇢
⌫


1

2
ḡµ⌫f(R̄) + r̄µr̄⌫f 0(R̄)� ḡµ⌫r̄2f 0(R̄)� R̄µ⌫f 0(R̄)

�
(B.4)

We fix the background to be a sphere.

1. York decomposition

We now proceed with the York decomposition for the tracefree part of h:

h̃µ⌫ = hTT
µ⌫ + r̄⌫⇠

⌫ + r̄⌫⇠
µ + r̄µr̄⌫� � 1

d
ḡµ⌫r̄2� . (B.5)
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Gravity sector: the metric
We use an exponential parameterization of the metric with euclidean signature:

by Benedetti [25] and Falls [26]. In the following we will not pursue this idea, but rather we

will employ a di↵erent parametrization of the field and choice of gauge fixing that automatically

avoid the issue.

III. THE NEW FLOW EQUATIONS

A. Exponential parametrization

Instead of the traditional linear quantum-background split g
µ⌫

= ḡ
µ⌫

+ h
µ⌫

we shall use in

this paper an exponential parametrization

g
µ⌫

= ḡ
µ⇢

(eh)⇢
⌫

(III.1)

where ḡ is a fixed but arbitrary background. This expansion has been used previously in [27]. See

also [28] for a recent discussion in a context that is closer to the present one. Some geometrical

motivation for the use of this formula is given in Appendix A. We assume in this paper that the

path integral measure is simple when expressed in terms of the field h thus defined. We discuss

in appendix B the Jacobian relating this measure to the one of the linear parametrization.

We will use the background metric ḡ to raise and lower indices. Then due to the symmetry

of g
µ⌫

and ḡ
µ⌫

also the tensor h
µ⌫

= ḡ
µ⇢

h⇢
⌫

is symmetric. We have

g
µ⌫

= ḡ
µ⌫

+ h
µ⌫

+
1

2
h
µ�

h�
⌫

+ . . . (III.2)

gµ⌫ = ḡµ⌫ � hµ⌫ +
1

2
hµ�h

�

⌫ + . . . (III.3)

In contrast to the usual linear split, here also the covariant metric is nonpolynomial in the

quantum field hµ
⌫

. Another significant di↵erence is that, due to the formula det eh = etrh, only

the trace part of h enters in the definition of the determinant, at all orders. As a result
p
g

does not contribute to the action of traceless fluctuations, which are therefore independent of

the potential. We can split

hµ
⌫

= hT
µ

⌫

+ 2!�µ
⌫

(III.4)

where trh = 2d! and hT is tracefree. Then

p
g = ed!

p
ḡ =

p
ḡ

✓
1 + d! +

1

2
d2!2 + . . .

◆
. (III.5)
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p
g = eh/2

p
ḡ =

p
ḡ

✓
1 +

h

2
+

h2

8
+ · · ·

◆

Remark:  at quantum level the off shell effective action is equivalent to  
other parameterizations if 

• a Jacobian is taken into account 
• the geometric formulation a la Vilkowisky-De Witt in considered, indeed                                                        

e.g. expectations values are not trivially related, …

We take the attitude that the metric has a non linear nature,  
preferring the exponential parameterization.

6

trh = h = 2d!

Think about frames and vielbeins… coset space

Remark: non linear transformation —>  momentum coarse-graining qualitative different!

As a change of variables the Jacobian is well defined.

h are completely absent. For such a theory, in the single field approximation for the average

e↵ective action, the flow equation is obtained from the one of full gravity in the unimodular

gauge by removing the corresponding ghost contribution, which is a constant term in both

equations for v and f . Since the running of f does not depend on v but only on its derivatives,

this is consistent with the fact that in unimodular gravity the constant term in the potential is

an integration constant. In this framework any constant value of v at the fixed point would not

contain any physical information.

There are several obvious extensions of the truncation that we plan to return to in the

future. Also, we have focused here mainly on the mathematical properties of the system of flow

equations, but ultimately one is interested in physical applications. In this regard we observe

that the fixed point FP2 in d = 4 has the properties that were discussed in [15] as prerequisites

for the construction of interesting cosmological models. With the linearized perturbations given

here and with numerical integration of the flow equation it will be possible to analyze in detail

several scenarios.

Note added. While this paper was being considered for publication, a work by Borchardt

and Knorr [56] appeared where they describe the use of pseudo-spectral methods to solve linear

and non-linear ODEs. They describe a numerical solution of the full fixed point equations in

three dimensions (VI.1,VI.2). In contrast to the solution of the equations (III.46,III.47) that we

described in section IV.B, this solution has a growing f that never crosses zero.

Appendix A: Multiplicative quantum-background split

The metric is generally thought of as a tensor, hence as a “linear” object. This can be

misleading. In General Relativity the metric is subject to the constraint of being non-degenerate

and of having a fixed signature. These constraints define a nonlinear subspace in the space of

symmetric tensors, and the metric is assumed to lie in this subspace. To understand this

subspace better, observe that a metric can be defined by giving a frame and declaring it to be

orthonormal. This defines a surjective map from the set of all frames, which is in one-to-one

correspondence with the group GL(d), to the set of metrics. Two frames that di↵er by the action

of a (pseudo)-orthogonal transformation define the same metric. Hence the set of all metrics

with signature (p, q) at a point can be identified with the coset space GL(d)/O(p, q), which is an

open subset in the space of symmetric tensors. It is not a priori clear whether the gravitational

34

(See also Nink)  



Gauge transformations

The quantum gauge transformation for the fluctuations 
defined in the exponential parametrization:  
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Gravity is a gauge theory: physics does not  
change under diffeomorphisms.

Note the absence of ⇠0 from the expansion. Also note that the kinetic operator of the ! field is

not the conformal scalar operator (which has a factor 4 instead of 2 in the denominator).

B. Gauge choice

At this point we have to choose a gauge. In order to simplify the equations as much as possible

we will choose a “physical” gauge, which amounts to putting the gauge-variant components of

h
µ⌫

to zero. Such gauges have been discussed earlier in a similar context in [21], see also [29–31].

The transformation of the metric under an infinitesimal di↵eomorphism ✏ is given by the Lie

derivative

�
✏

g
µ⌫

= L
✏

g
µ⌫

⌘ ✏⇢@
⇢

g
µ⌫

+ g
µ⇢

@
⌫

✏⇢ + g
⌫⇢

@
µ

✏⇢ . (III.12)

As usual, we have to define transformations of ḡ and h that, used in (III.1), yield (III.12). The

simplest one is the background transformation. If we treat ḡ and h as tensors under �
✏

, i.e.

�(B)
✏

ḡ
µ⌫

= L
✏

ḡ
µ⌫

; �(B)
✏

hµ
⌫

= L
✏

hµ
⌫

. (III.13)

then also

�(B)
✏

(eh)µ
⌫

= L
✏

(eh)µ
⌫

(III.14)

and (III.12) follows. By definition, the “quantum” gauge transformation of h is such as to

reproduce (III.12) when ḡ is held fixed:

�(Q)
✏

ḡ
µ⌫

= 0 ; ḡ
µ⇢

�(Q)
✏

(eh)⇢
⌫

= L
✏

g
µ⌫

. (III.15)

From the properties of the Lie derivative we have

L
✏

g
µ⌫

= L
✏

ḡ
µ⇢

(eh)⇢
⌫

+ ḡ
µ⇢

L
✏

(eh)⇢
⌫

= (r̄
⇢

✏
µ

+ r̄
µ

✏
⇢

)(eh)⇢
⌫

+ g
µ�

(e�h)�
⇢

L
✏

(eh)⇢
⌫

(III.16)

Then we find

(e�h�(Q)
✏

eh)µ
⌫

= (e�hL
✏

eh)µ
⌫

+ (e�h)µ
⇢

(r̄⇢✏
�

+ r̄
�

✏⇢)(eh)�
⌫

(III.17)

Expanding for small h we find:

�(Q)
✏

hµ
⌫

= (L
✏

ḡ)µ
⌫

+ L
✏

hµ
⌫

+ [L
✏

ḡ, h]µ
⌫

+O(✏h2) . (III.18)

We note that the first two terms coincide with the quantum transformation when one uses the

linear background decomposition. In the following we shall only be interested in the functional
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Note the absence of ⇠0 from the expansion. Also note that the kinetic operator of the ! field is

not the conformal scalar operator (which has a factor 4 instead of 2 in the denominator).

B. Gauge choice

At this point we have to choose a gauge. In order to simplify the equations as much as possible

we will choose a “physical” gauge, which amounts to putting the gauge-variant components of

h
µ⌫

to zero. Such gauges have been discussed earlier in a similar context in [21], see also [29–31].

The transformation of the metric under an infinitesimal di↵eomorphism ✏ is given by the Lie

derivative

�
✏

g
µ⌫

= L
✏

g
µ⌫

⌘ ✏⇢@
⇢

g
µ⌫

+ g
µ⇢

@
⌫

✏⇢ + g
⌫⇢

@
µ

✏⇢ . (III.12)

As usual, we have to define transformations of ḡ and h that, used in (III.1), yield (III.12). The

simplest one is the background transformation. If we treat ḡ and h as tensors under �
✏

, i.e.

�(B)
✏

ḡ
µ⌫

= L
✏

ḡ
µ⌫

; �(B)
✏

hµ
⌫

= L
✏

hµ
⌫

. (III.13)

then also

�(B)
✏

(eh)µ
⌫

= L
✏

(eh)µ
⌫

(III.14)

and (III.12) follows. By definition, the “quantum” gauge transformation of h is such as to

reproduce (III.12) when ḡ is held fixed:

�(Q)
✏

ḡ
µ⌫

= 0 ; ḡ
µ⇢

�(Q)
✏

(eh)⇢
⌫

= L
✏

g
µ⌫

. (III.15)

From the properties of the Lie derivative we have

L
✏

g
µ⌫

= L
✏

ḡ
µ⇢

(eh)⇢
⌫

+ ḡ
µ⇢

L
✏

(eh)⇢
⌫

= (r̄
⇢

✏
µ

+ r̄
µ

✏
⇢

)(eh)⇢
⌫

+ g
µ�

(e�h)�
⇢

L
✏

(eh)⇢
⌫

(III.16)

Then we find

(e�h�(Q)
✏

eh)µ
⌫

= (e�hL
✏

eh)µ
⌫

+ (e�h)µ
⇢

(r̄⇢✏
�

+ r̄
�

✏⇢)(eh)�
⌫

(III.17)

Expanding for small h we find:

�(Q)
✏

hµ
⌫

= (L
✏

ḡ)µ
⌫

+ L
✏

hµ
⌫

+ [L
✏

ḡ, h]µ
⌫

+O(✏h2) . (III.18)

We note that the first two terms coincide with the quantum transformation when one uses the

linear background decomposition. In the following we shall only be interested in the functional
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For a single metric truncation, to define the gauge fixing  
and ghost propagators, it is enough to keep:

�
k

(h; ḡ) for h = 0. It is therefore su�cient to consider only the first term in (III.18). Since

�
(Q)
✏

ḡ = 0 we can write

�(Q)
✏

h
µ⌫

= r̄
µ

✏
⌫

+ r̄
⌫

✏
µ

+O(h) (III.19)

Using the background ḡ we can decompose the transformation parameter ✏µ in its longitudinal

and transverse parts:

✏µ = ✏Tµ +
1p
�r̄2

r̄
µ

 ; r̄
µ

✏Tµ = 0 . (III.20)

The inverse square root of the background Laplacian has been inserted conventionally in the

definition of  so that it has the same dimension as ✏µ. We can then calculate the separate

transformation properties of the York-decomposed metric under longitudinal and transverse

infinitesimal di↵eomorphisms. We have

�
✏

T ⇠µ = ✏Tµ ; �
 

! = �1

d

p
�r̄2 ; �

 

� =
2p
�r̄2

 , (III.21)

all other transformations being zero. Note that � and ! are gauge-variant but the combination

2! � 1
d

r̄2� is invariant. In terms of the redefined variables (III.10) we have

�
✏

T ⇠0
µ

=

r
�r̄2 � R̄

d
✏T
µ

; �
 

�0 = 2

s

�r̄2 � R̄

d� 1
 . (III.22)

First we pick the “unimodular gauge” det g = det ḡ. 2 In unimodular gravity this is imposed

as an a priori condition on the metric: by definition the path integral is then over metrics

with fixed determinant. Here we start from the usual path integral over all metrics and take

det g = det ḡ as a partial gauge condition. This means that we have to take into account a ghost

term. To find the ghost operator we first observe that in the exponential parametrization the

unimodular gauge condition is

! = 0 . (III.23)

From (III.21) one then finds that the path integral must contain a ghost determinant

det(
p
�r̄2) =

p
det(�r̄2). As usual, this can be rewritten as a path integral over a real

anticommuting scalar ghost

S
g!

=

Z
ddx

p
ḡ c(�r̄2)c (III.24)

2 One often just sets det g = 1. This is incompatible with the choice of a dimensionful metric, that we prefer. Also
note that on a compact manifold the gauge group does not allow one to make constant rescalings of the metric,
so that the overall scale of the metric remains a physical degree of freedom. We ignore it in the following, since
it does not a↵ect the running of the terms in our truncation.
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York decomposition of the metric:

Hilbert action

Z

ddx
p
ḡ
h 1

4
hµ⌫r̄2hµ⌫ � 1

2
hµ⌫r̄µr̄⇢h⇢

⌫ +
1

2
(trh)r̄µr̄⌫h

µ⌫ � 1

4
(trh)r̄2(trh)

+
1

2
R̄µ⇢⌫�h

µ⌫h⇢� � 1

2
R̄µ⌫h

µ⌫(trh) +
1

8
R̄(trh)2

i

(A.13)

We now proceed with the York decomposition for h:

hµ⌫ = hTT
µ⌫ + r̄µ⇠⌫ + r̄⌫⇠µ + r̄µr̄⌫� � 1

d
ḡµ⌫r̄2� +

h

d
ḡµ⌫ , (A.14)

Then we use the following relations, which hold on the sphere Sd:

Z

dx
p
ḡ hµ⌫r̄2hµ⌫ =

Z

dx
p
ḡ
h

hTT
µ⌫r̄2hTT µ⌫ � 2⇠µ

✓

r̄2 +
R̄

d

◆✓

r̄2 +
d+ 1

d(d� 1)
R̄

◆

⇠µ

+
d� 1

d
�r̄2

✓

r̄2 +
2R̄

d� 1

◆✓

r̄2 +
R̄

d� 1

◆

� +
1

d
(trh)r̄2(trh)

i

,

Z

dx
p
ḡ hµ⌫rµr⇢h

⇢⌫ =

Z

dx
p
ḡ
h

� ⇠µ

✓

r̄2 +
R̄

d

◆2

⇠µ +
(d� 1)2

d2
�r̄2

✓

r̄2 +
R̄

d� 1

◆2

�

+
2(d� 1)

d2
(trh)r̄2

✓

r̄2 +
R̄

d� 1

◆

� +
1

d2
(trh)r̄2(trh)

i

,

Z

dx
p
ḡ hµ⌫h

µ⌫ =

Z

dx
p
ḡ
h

hTT
µ⌫h

TT µ⌫
+ 2⇠µ

✓

�r̄2 � R̄

d

◆

⇠µ

+
d� 1

d
�r̄2

✓

r̄2 +
R̄

d� 1

◆

� +
1

d
(trh)2

i

. (A.15)

Appendix B: Transformation properties

The transformation of the metric under an infinitesimal di↵eomorphism ✏ is given by the Lie

derivative

�✏gµ⌫ = L✏gµ⌫ ⌘ ✏⇢@⇢gµ⌫ + gµ⇢@⌫✏
⇢ + g⌫⇢@µ✏

⇢ . (B.1)

As usual, we have to define transformations of ḡ and h which used in (A.1) yield (B.1). The

simplest one is the background transformation. If we treat ḡ and h as tensors under �✏, i.e.

�(B)
✏ ḡµ⌫ = L✏ḡµ⌫ ; �(B)

✏ hµ⌫ = L✏h
µ
⌫ . (B.2)

then also

�(B)
✏ (eh)µ⌫ = L✏(e

h)µ⌫ (B.3)

and (B.1) follows.
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�
k

(h; ḡ) for h = 0. It is therefore su�cient to consider only the first term in (III.18). Since

�
(Q)
✏

ḡ = 0 we can write

�(Q)
✏

h
µ⌫

= r̄
µ

✏
⌫

+ r̄
⌫

✏
µ

+O(h) (III.19)

Using the background ḡ we can decompose the transformation parameter ✏µ in its longitudinal

and transverse parts:

✏µ = ✏Tµ + r̄µ

1p
�r̄2

 ; r̄
µ

✏Tµ = 0 . (III.20)

The inverse square root of the background Laplacian has been inserted conventionally in the

definition of  so that it has the same dimension as ✏µ. We can then calculate the separate

transformation properties of the York-decomposed metric under longitudinal and transverse

infinitesimal di↵eomorphisms. We have

�
✏

T ⇠µ = ✏Tµ ; �
 

! = �1

d

p
�r̄2 ; �

 

� =
2p
�r̄2

 , (III.21)

all other transformations being zero. Note that � and ! are gauge-variant but the combination

2! � 1
d

r̄2� is invariant. In terms of the redefined variables (III.10) we have

�
✏

T ⇠0
µ

=

r
�r̄2 � R̄

d
✏T
µ

; �
 

�0 = 2

s

�r̄2 � R̄

d� 1
 . (III.22)

First we pick the “unimodular gauge” det g = det ḡ. 2 In unimodular gravity this is imposed

as an a priori condition on the metric: by definition the path integral is then over metrics

with fixed determinant. Here we start from the usual path integral over all metrics and take

det g = det ḡ as a partial gauge condition. This means that we have to take into account a ghost

term. To find the ghost operator we first observe that in the exponential parametrization the

unimodular gauge condition is

! = 0 . (III.23)

From (III.21) one then finds that the path integral must contain a ghost determinant

det(
p
�r̄2) =

p
det(�r̄2). As usual, this can be rewritten as a path integral over a real

anticommuting scalar ghost

S
g!

=

Z
ddx

p
ḡ c(�r̄2)c (III.24)

2 One often just sets det g = 1. This is incompatible with the choice of a dimensionful metric, that we prefer. Also
note that on a compact manifold the gauge group does not allow one to make constant rescalings of the metric,
so that the overall scale of the metric remains a physical degree of freedom. We ignore it in the following, since
it does not a↵ect the running of the terms in our truncation.
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and similarly for the diffeomorphism generator

�
k

(h; ḡ) for h = 0. It is therefore su�cient to consider only the first term in (III.18). Since

�
(Q)
✏

ḡ = 0 we can write

�(Q)
✏

h
µ⌫

= r̄
µ

✏
⌫

+ r̄
⌫

✏
µ

+O(h) (III.19)

Using the background ḡ we can decompose the transformation parameter ✏µ in its longitudinal

and transverse parts:

✏µ = ✏Tµ + r̄µ

1p
�r̄2

 ; r̄
µ

✏Tµ = 0 . (III.20)

The inverse square root of the background Laplacian has been inserted conventionally in the

definition of  so that it has the same dimension as ✏µ. We can then calculate the separate

transformation properties of the York-decomposed metric under longitudinal and transverse

infinitesimal di↵eomorphisms. We have

�
✏

T ⇠µ = ✏Tµ ; �
 

! = �1

d

p
�r̄2 ; �

 

� =
2p
�r̄2

 , (III.21)

all other transformations being zero. Note that � and ! are gauge-variant but the combination

2! � 1
d

r̄2� is invariant. In terms of the redefined variables (III.10) we have

�
✏

T ⇠0
µ

=

r
�r̄2 � R̄

d
✏T
µ

; �
 

�0 = 2

s

�r̄2 � R̄

d� 1
 . (III.22)

First we pick the “unimodular gauge” det g = det ḡ. 2 In unimodular gravity this is imposed

as an a priori condition on the metric: by definition the path integral is then over metrics

with fixed determinant. Here we start from the usual path integral over all metrics and take

det g = det ḡ as a partial gauge condition. This means that we have to take into account a ghost

term. To find the ghost operator we first observe that in the exponential parametrization the

unimodular gauge condition is

! = 0 . (III.23)

From (III.21) one then finds that the path integral must contain a ghost determinant

det(
p
�r̄2) =

p
det(�r̄2). As usual, this can be rewritten as a path integral over a real

anticommuting scalar ghost

S
g!

=

Z
ddx

p
ḡ c(�r̄2)c (III.24)

2 One often just sets det g = 1. This is incompatible with the choice of a dimensionful metric, that we prefer. Also
note that on a compact manifold the gauge group does not allow one to make constant rescalings of the metric,
so that the overall scale of the metric remains a physical degree of freedom. We ignore it in the following, since
it does not a↵ect the running of the terms in our truncation.

9

�
k

(h; ḡ) for h = 0. It is therefore su�cient to consider only the first term in (III.18). Since
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(Q)
✏

ḡ = 0 we can write

�(Q)
✏

h
µ⌫

= r̄
µ

✏
⌫

+ r̄
⌫

✏
µ

+O(h) (III.19)

Using the background ḡ we can decompose the transformation parameter ✏µ in its longitudinal

and transverse parts:

✏µ = ✏Tµ + r̄µ

1p
�r̄2

 ; r̄
µ

✏Tµ = 0 . (III.20)

The inverse square root of the background Laplacian has been inserted conventionally in the

definition of  so that it has the same dimension as ✏µ. We can then calculate the separate

transformation properties of the York-decomposed metric under longitudinal and transverse

infinitesimal di↵eomorphisms. We have

�
✏

T ⇠µ = ✏Tµ ; �
 

! = �1

d

p
�r̄2 ; �

 

� =
2p
�r̄2

 , (III.21)

all other transformations being zero. Note that � and ! are gauge-variant but the combination

2! � 1
d

r̄2� is invariant. In terms of the redefined variables (III.10) we have

�
✏

T ⇠0
µ

=
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�r̄2 � R̄

d
✏T
µ

; �
 

�0 = 2

s

�r̄2 � R̄

d� 1
 . (III.22)

First we pick the “unimodular gauge” det g = det ḡ. 2 In unimodular gravity this is imposed

as an a priori condition on the metric: by definition the path integral is then over metrics

with fixed determinant. Here we start from the usual path integral over all metrics and take

det g = det ḡ as a partial gauge condition. This means that we have to take into account a ghost

term. To find the ghost operator we first observe that in the exponential parametrization the

unimodular gauge condition is

! = 0 . (III.23)

From (III.21) one then finds that the path integral must contain a ghost determinant

det(
p
�r̄2) =

p
det(�r̄2). As usual, this can be rewritten as a path integral over a real

anticommuting scalar ghost

S
g!

=

Z
ddx

p
ḡ c(�r̄2)c (III.24)

2 One often just sets det g = 1. This is incompatible with the choice of a dimensionful metric, that we prefer. Also
note that on a compact manifold the gauge group does not allow one to make constant rescalings of the metric,
so that the overall scale of the metric remains a physical degree of freedom. We ignore it in the following, since
it does not a↵ect the running of the terms in our truncation.
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� h = �2
p
�r̄2 

Gauge invariant quantities 

s = h� r̄2� hTT
µ⌫

To adsorbe some Jacobians one can redefine: 

For the scalar field we also expand around a background �̄:

� = �̄+ �� . (III.6)

We then expand the action (I.1) to second order in h and ��. Collecting all the terms we find

Z
ddx

p
ḡ

"
F (�̄)

⇣1
4
h
µ⌫

(�r̄2)hµ⌫ +
1

2
h
µ⌫

r̄µr̄⇢h
⇢

⌫ � 1

2
(trh)r̄

µ

r̄
⌫

hµ⌫ +
1

4
(trh)r̄2(trh)

�1

2
R̄

µ⇢⌫�

hµ⌫h⇢� +
1

2
R̄

µ⌫

hµ⌫(trh)� 1

8
R̄ (trh)2

⌘

�F 0(�̄)

✓
r̄

µ

r̄
⌫

hµ⌫ � r̄2(trh)� R̄
µ⌫

hµ⌫ +
1

2
R̄ (trh)

◆
��

+
1

2
��(�r̄2 + V 00(�̄)� F 00(�̄)R̄)��+

1

2
V 0(�̄)(trh)��+

1

8
V (�̄)(trh)2

#
(III.7)

This is identical to equation (6) in [24], which was derived using a linear split, except for two

terms that are missing here:

�1

2
F (�̄)R̄µ⌫h

µ⇢

h⇢
⌫

� 1

4
(V (�̄)� F (�̄)R̄)h

µ⌫

hµ⌫ . (III.8)

The latter came from the expansion to second order of the square root of the determinant of g.

It is absent here because in the exponential parametrization the determinant depends only on

the trace part of h.

We then proceed with the York decomposition for the tracefree part of h:

hT
µ⌫

= hTT

µ⌫

+ r̄
µ

⇠
⌫

+ r̄
⌫

⇠
µ

+ r̄
µ

r̄
⌫

� � 1

d
ḡ
µ⌫

r̄2� , (III.9)

where r̄µhTT

µ⌫

= 0 and r̄µ⇠
µ

= 0. As usual it is convenient to further redefine

⇠0
µ

=

r
�r̄2 � R̄

d
⇠
µ

; �0 =
p

�r̄2

s

�r̄2 � R̄

d� 1
� . (III.10)

Collecting all terms we can rewrite the quadratic action in terms of the independent fields

hTT , ⇠0, �0, ! and ��:

Z
dx

p
ḡ

"
F (�̄)

 
1

4
hTT

µ⌫

✓
�r̄2 +

2R̄

d(d� 1)

◆
hTT

µ⌫ � (d� 1)(d� 2)

4d2
�0 ��r̄2

�
�0

�(d� 1)(d� 2)

d
!

s

(�r̄2)

✓
�r̄2 � R̄

d� 1

◆
�0 � (d� 1)(d� 2)!

✓
�r̄2 +

(d� 2)R̄

2(d� 1)

◆
!

!

�F 0(�̄)
d� 1

d
��

 s

(�r̄2)

✓
�r̄2 � R̄

d� 1

◆
�0 + 2d

✓
�r̄2 +

(d� 2)R̄

2(d� 1)

◆
!

!

+
1

2
��(�r̄2 + V 00(�̄)� F 00(�̄)R̄)��+ V 0(�̄)d!��+

1

2
V (�̄)d2!2

#
(III.11)
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Transformations: 



Gauge fixing and ghosts

8

We shall use here the so called physical gauge fixing: set to zero the gauge dependent fluctuations. 
Therefore in the path integral there remain two kind of gauge invariant fluctuations:  s  and  hTT

µ⌫

We face two possible GF choices:

Remark: for compact spaces (e.g. a sphere) no diffeomorphism can change the constant mode of h.

Faddeev Popov determinants: varying the GF conditions.

I:     II:     ⇠0µ = 0 , �0 = 0

�(⇠0µ)

(This gauge condition has been discussed previously in [32]. There, the ghost was a complex

scalar. This di↵erence is due to the di↵erent definition of  in (III.20).)

The unimodular gauge condition completely breaks the invariance under longitudinal in-

finitesimal di↵eomorphisms, but leaves a residual gauge freedom that consists of the volume-

preserving di↵eomorphisms, which are generated by the transverse vector ✏T . From (III.22) we

see that this residual freedom can be fixed by further choosing

⇠0
µ

= 0 , (III.25)

which gives rise to a ghost determinant det

✓q
�r̄2 � R̄

d

◆
=

r
det

⇣
�r̄2 � R̄

d

⌘
. Again, this

can be written as a path integral over an anticommuting real transverse vector

S
g⇠

=

Z
ddx

p
ḡ c

µ

ḡµ⌫
✓
�r̄2 � R̄

d

◆
c
⌫

(III.26)

Equations (III.23,III.25) define the “unimodular physical gauge”, which is the gauge condition

that, unless otherwise stated, will be used in the rest of the paper.

Before proceeding it is instructive, however, to think for a moment of an alternative choice.

Since the combination 2! � 1
d

r2� is gauge invariant, one may alternatively also pick the gauge

�0 = 0 . (III.27)

From (III.22) one then finds that the path integral must contain a ghost determinant

det

✓q
�r̄2 � R̄

d�1

◆
=

r
det

⇣
�r̄2 � R̄

d�1

⌘
. As usual, this can be rewritten as a path inte-

gral over a real anticommuting scalar ghost

S
g�

0 =

Z
ddx

p
ḡ c

✓
�r̄2 � R̄

d� 1

◆
c (III.28)

This choice may seem more natural but for our purposes it is less useful. The reason is that if

we set �0 = 0, in the Hessian (III.11) there remains a kinetic term for ! which depends explicitly

on V , whereas if we set ! = 0 all kinetic operators are independent of V . Since our purpose is

precisely to avoid singularities due to the appearance of V in the kinetic operators, it is clear

that for us here the second choice is preferable.

C. Digression on Einstein-Hilbert gravity

Since physical gauges are not very familiar, in this section we make a little digression to test

our procedure in a setting that is better understood. We consider the special case when F and
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�(�0)

�
k

(h; ḡ) for h = 0. It is therefore su�cient to consider only the first term in (III.18). Since

�
(Q)
✏

ḡ = 0 we can write

�(Q)
✏

h
µ⌫

= r̄
µ

✏
⌫

+ r̄
⌫

✏
µ

+O(h) (III.19)

Using the background ḡ we can decompose the transformation parameter ✏µ in its longitudinal

and transverse parts:

✏µ = ✏Tµ + r̄µ

1p
�r̄2

 ; r̄
µ

✏Tµ = 0 . (III.20)

The inverse square root of the background Laplacian has been inserted conventionally in the

definition of  so that it has the same dimension as ✏µ. We can then calculate the separate

transformation properties of the York-decomposed metric under longitudinal and transverse

infinitesimal di↵eomorphisms. We have

�
✏

T ⇠µ = ✏Tµ ; �
 

! = �1

d

p
�r̄2 ; �

 

� =
2p
�r̄2

 , (III.21)

all other transformations being zero. Note that � and ! are gauge-variant but the combination

2! � 1
d

r̄2� is invariant. In terms of the redefined variables (III.10) we have

�
✏

T ⇠0
µ

=

r
�r̄2 � R̄

d
✏T
µ

; �
 

�0 = 2

s

�r̄2 � R̄

d� 1
 . (III.22)

First we pick the “unimodular gauge” det g = det ḡ. 2 In unimodular gravity this is imposed

as an a priori condition on the metric: by definition the path integral is then over metrics

with fixed determinant. Here we start from the usual path integral over all metrics and take

det g = det ḡ as a partial gauge condition. This means that we have to take into account a ghost

term. To find the ghost operator we first observe that in the exponential parametrization the

unimodular gauge condition is

! = 0 . (III.23)

From (III.21) one then finds that the path integral must contain a ghost determinant

det(
p
�r̄2) =

p
det(�r̄2). As usual, this can be rewritten as a path integral over a real

anticommuting scalar ghost

S
g!

=

Z
ddx

p
ḡ c(�r̄2)c (III.24)

2 One often just sets det g = 1. This is incompatible with the choice of a dimensionful metric, that we prefer. Also
note that on a compact manifold the gauge group does not allow one to make constant rescalings of the metric,
so that the overall scale of the metric remains a physical degree of freedom. We ignore it in the following, since
it does not a↵ect the running of the terms in our truncation.
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(This gauge condition has been discussed previously in [32]. There, the ghost was a complex

scalar. This di↵erence is due to the di↵erent definition of  in (III.20).)

The unimodular gauge condition completely breaks the invariance under longitudinal in-

finitesimal di↵eomorphisms, but leaves a residual gauge freedom that consists of the volume-

preserving di↵eomorphisms, which are generated by the transverse vector ✏T . From (III.22) we

see that this residual freedom can be fixed by further choosing

⇠0
µ

= 0 , (III.25)

which gives rise to a ghost determinant det

✓q
�r̄2 � R̄

d

◆
=

r
det

⇣
�r̄2 � R̄

d

⌘
. Again, this

can be written as a path integral over an anticommuting real transverse vector

S
g⇠

=

Z
ddx

p
ḡ c

µ

ḡµ⌫
✓
�r̄2 � R̄

d

◆
c
⌫

(III.26)

Equations (III.23,III.25) define the “unimodular physical gauge”, which is the gauge condition

that, unless otherwise stated, will be used in the rest of the paper.

Before proceeding it is instructive, however, to think for a moment of an alternative choice.

Since the combination 2! � 1
d

r2� is gauge invariant, one may alternatively also pick the gauge

�0 = 0 . (III.27)

From (III.22) one then finds that the path integral must contain a ghost determinant

det

✓q
�r̄2 � R̄

d�1

◆
=

r
det

⇣
�r̄2 � R̄

d�1

⌘
. As usual, this can be rewritten as a path inte-

gral over a real anticommuting scalar ghost

S
g�

0 =

Z
ddx

p
ḡ c

✓
�r̄2 � R̄

d� 1

◆
c (III.28)

This choice may seem more natural but for our purposes it is less useful. The reason is that if

we set �0 = 0, in the Hessian (III.11) there remains a kinetic term for ! which depends explicitly

on V , whereas if we set ! = 0 all kinetic operators are independent of V . Since our purpose is

precisely to avoid singularities due to the appearance of V in the kinetic operators, it is clear

that for us here the second choice is preferable.

C. Digression on Einstein-Hilbert gravity

Since physical gauges are not very familiar, in this section we make a little digression to test

our procedure in a setting that is better understood. We consider the special case when F and
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⇠0µ = 0 , h = const.

�(h�const)



f(R) truncation:
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Using gauge invariant variables and the Lichnerowicz operators the Hessian looks very simple:

Appendix B: Hessian

The action is

�[gµ⌫ ] =

Z
ddx

p
gf (R) (B.1)

Its first variation is

Z
ddx

p
g

��

�gµ⌫
hµ⌫ =

Z
ddx

p
ḡhµ⌫


1

2
ḡµ⌫f(R̄) + r̄µr̄⌫f 0(R̄)� ḡµ⌫r̄2f 0(R̄)� R̄µ⌫f 0(R̄)

�
(B.2)

Its second variation is

1

2

Z
ddx

p
g

�2�

�gµ⌫�g⇢�
hµ⌫h⇢� =

Z
ddx

p
g

(
1

2
f 00 (R)

⇣
h↵�r↵r�rµr⌫hµ⌫ � 2hr2r↵r�h↵�

+h(r2)2h� 2r↵r�h↵�Rµ⌫h
µ⌫ + 2r2hRµ⌫h

µ⌫ +Rµ⌫R↵�h
µ⌫h↵�

⌘

+
1

2
f 0 (R)

⇣
h↵�r2h↵� + hrµr⌫h

µ⌫ � 4h↵�r↵rµh�µ + 2h↵�rµr↵h�µ

�hr2h+ 4Rµ⌫h
µ�h⌫� � 2Rµ⌫h

µ⌫h
⌘
+ f (R)

✓
�1

4
hµ⌫h

µ⌫ +
1

8
h2

◆)
.

To get to the exponential parametrization just replace

hµ⌫ ! hµ⌫ +
1

2
⇣hµ⇢h

⇢
⌫ (B.3)

and keep terms of second order in h. The parameter ⇣ allows continuous interpolation between

the two parametrizations.

Putting ⇣ = 1 we find that the Hessian in exponential parametrizationis equal to the one in

linear parametrization plus the terms:

Z
ddx

p
ḡ
1

2
hµ⇢h

⇢
⌫


1

2
ḡµ⌫f(R̄) + r̄µr̄⌫f 0(R̄)� ḡµ⌫r̄2f 0(R̄)� R̄µ⌫f 0(R̄)

�
(B.4)

We fix the background to be a sphere.

1. York decomposition

We now proceed with the York decomposition for the tracefree part of h:

h̃µ⌫ = hTT
µ⌫ + r̄⌫⇠

⌫ + r̄⌫⇠
µ + r̄µr̄⌫� � 1

d
ḡµ⌫r̄2� . (B.5)

4

Substituting the York decomposition (B.1) into (2.5), we find

I

(2) = �1

4
h

TT

µ⌫

h
f

0(R̄)
⇣
�2 �

4

d

R̄

⌘
+ f(R̄)

i
h

TT µ⌫ +
1

2d

h
2R̄f

0(R̄)� df(R̄)
i
⇠

µ

⇣
�1 �

2

d

R̄

⌘
⇠

µ

+
d� 1

4d
�

h2(d� 1)

d

f

00(R̄)�0

⇣
�0 �

R̄

d� 1

⌘
+

d� 2

d

f

0(R̄)
⇣
�0 +

2

d� 2
R̄

⌘
� f(R̄)

i

⇥ �0

⇣
�0 �

R̄

d� 1

⌘
�

+
1

4
h

h2(d� 1)2

d

2
f

00(R̄)
⇣
�0 �

R̄

d� 1

⌘2
+

(d� 1)(d� 2)

d

2
f

0(R̄)
⇣
�0 �

2

d� 1
R̄

⌘

+
d� 2

2d
f(R̄)

i
h

+
1

2
h

h2(d� 1)2

d

2
f

00(R̄)
⇣
�0 �

R̄

d� 1

⌘
+

(d� 1)(d� 2)

d

2
f

0(R̄)
i

⇥ �0

⇣
�0 �

2

d� 1
R̄

⌘
�, (2.10)

which agrees with [1]. When the exponential parametrization (2.3) is used, we find

I

(2)
exp

= �1

4
f

0(R̄)hTT

µ⌫

⇣
�2 �

2

d

R̄

⌘
h

TT µ⌫

+
d� 1

4d
�

h2(d� 1)

d

f

00(R̄)
⇣
�0 �

R̄

d� 1

⌘
+

d� 2

d

f

0(R̄)
i
�2

0

⇣
�0 �

R̄

d� 1

⌘
�

+
1

4
h

h2(d� 1)2

d

2
f

00(R̄)
⇣
�0 �

R̄

d� 1

⌘2
+

(d� 1)(d� 2)

d

2
f

0(R̄)
⇣
�0 �

2

d� 2
R̄

⌘
+

1

2
f(R̄)

i
h

+
d� 1

2d
h

h2(d� 1)

d

f

00(R̄)
⇣
�0 �

R̄

d� 1

⌘
+

d� 2

d

f

0(R̄)
i
�0

⇣
�0 �

2

d� 1
R̄

⌘
�. (2.11)

Remarkably all terms containing ⇠

µ

cancel out. For f(R̄) = R̄

2, this agrees with our previous
result [21]. If we use the gauge-invariant variable

s = h+�0�, (2.12)

Eq. (2.11) can be rewritten as

I

(2)
exp

= �1

4
f

0(R̄)hTT

µ⌫

⇣
�2 �

2

d

R̄

⌘
h

TT µ⌫

+
d� 1

4d
s

h2(d� 1)

d

f

00(R̄)
⇣
�0 �

R̄

d� 1

⌘
+

d� 2

d

f

0(R̄)
i⇣

�0 �
R̄

d� 1

⌘
s

+h

⇣1
8
f(R̄)� 1

4d
f

0(R̄)R̄
⌘
h. (2.13)

Note that the last term, which is gauge-dependent, is proportional to the field equation. This
term vanishes for F (R̄) = R̄

d/2, which is R̄2 for four dimensions.

On the sphere, we have R̄

µ⇢⌫�

= R̄

d(d�1)(ḡµ⌫ ḡ⇢� � ḡ

µ�

ḡ

⌫⇢

), and (2.13) reduces to

I

(2)
exp

= �1

4
f

0(R̄)hTT

µ⌫

⇣
�+

2

d(d� 1)
R̄

⌘
h

TT µ⌫

+
d� 1

4d
s

h2(d� 1)

d

f

00(R̄)
⇣
�� R̄

d� 1

⌘
+

d� 2

d

f

0(R̄)
i⇣

�� R̄

d� 1

⌘
s

+h

⇣1
8
f(R̄)� 1

4d
f

0(R̄)R̄
⌘
h, (2.14)

where � = �r2.

3

Zero on shell

Appendix D: Gauge fixing

Appendix E: Using a scalar gauge invariant variable

The variable s = h�r̄2� is gauge invariant. In terms of the rescaled field I have the relations:
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Plugging the last one into Eq. (B.8) we get
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The Jacobian associated to this change of variable is Det
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. The

det in the denominator cancels with the ghost related to the gauge fixing of h leaving only the

ghost from the vector gauge fixing.The other determinant can be absorbed by a redefinition
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We note that the gauge dependent part in h is zero on-shell since it is proportional to the

trace of the equation of motion. One can also consider the scalar sector written in terms of the

gauge invariant variable s and �. With this choice the part depending on the gauge invariant

variable is di↵erent from the previous choice, and indeed the gauge fixing � = 0 leads to result

di↵erent from the gauge fixing h = 0. This fact owes to the gauge dependence still present

before performing the gauge fixing.

The same happens in the linear parameterisation. As one can see from Eq. (B.7) which

correspond to the linear parameterisation after setting ⇠ = 0, the parts in � and h are di↵erent.
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Imposing a physical gauge on      and       it is easy to see that  
only the vector ghots contribution survives. In Einstein gravity the scalar does not propagate. 
Same result if using De Donder gauge fixing.

⇠0µ h

To be compared with… 
(Codello-Percacci_Rahmede, 
Demmel-Saueresseig-Zanusso, 

Eichhorn) 
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We consider the following family of coarse-graining schemes, depending on three endomorphisms. 
which affect the summation of the fluctuations of different spin.

Flow of the effective average action (we consider d=4):

in (3.3), we obtain

Tr(s)[W (2)] =
1

(4⇡)d/2

Z

S

d
d

d

x

p
ḡ

X

n�0

b

(s)
2nQd/2�n

[W ]R̄n

, (3.6)

where

Q

m

[W ] =
1

�(m)

Z 1

0
dzz

m�1
W [z]. (3.7)

We choose R

k

(z) = (k2� z)✓(k2� z) = k

2(1� y)✓(1� y), and then Ṗ

k

= Ṙ

k

= 2k2✓(k2� z).
For the spin 2 case, we find

Q

m

[W ](2) =
1

�(m)

Z 1

0
dzz

m�1 ḟ

0(R̄)(k2 � z) + 2f 0(R̄)k2

f

0(R̄)
⇣
k

2 � E(2) +
2

d(d�1)R̄

⌘
✓(k2 � z) (3.8)

We also choose

E(2) = �↵R̄, E(0) = ��R̄, E(1) = ��R̄, (3.9)

and define

r ⌘ R̄k

�2
. (3.10)

Set z = yk

2 and then we have

Q

m

[W ](2) =
k

2m

�(m)

Z 1

0
dyy

m�1 ḟ

0(R̄)(1� y) + 2f 0(R̄)

f

0(R̄)
⇣
1 + ↵r + 2

d(d�1)r

⌘
✓(1� y)

=
k

2m

�(m+ 2)

ḟ

0(R̄) + 2(m+ 1)f 0(R̄)

f

0(R̄)
⇣
1 + ↵r + 2

d(d�1)r

⌘
. (3.11)

Similarly we find for spin 1

Q

m

[W ](1) =
k

2m

�(m+ 1)

2

1 + (� � 1
d

)r
. (3.12)

For spin 0, we have

Q

m

[W ](0) =
1

�(m)

Z 1

0
dzz

m�1 ḟ

00(R̄)(k2 � z) + 2f 00(R̄)k2

f

00(R̄)
⇣
k

2 � E(0) � 1
d�1R̄

⌘
+ d�2

2(d�1)f
0(R̄)

✓(k2 � z). (3.13)

To evaluate this, we define

'(r) = k

�d

f(R̄), (3.14)

Noting that ḟ(R̄) = k

d[d'(r) � 2r'0(r) + '̇(r)], f 0(R̄) = k

d�2
'

0(r) and f

00(R̄) = k

d�4
'

00(r), we
obtain

Q

m

[W ](0) =
1

�(m)

Z
k

2

0
dzz

m�1 ('̇
00 � 2r'000 + (d� 4)'00)(k2 � z) + 2'00

k

2

'

00
⇣
k

2 � E(0) � 1
d�1R̄

⌘
+ d�2

2(d�1)k
2
'

0

=
k

2m

�(m+ 2)

'̇

00 � 2r'000 + (d� 2 + 2m)'00

'

00
⇣
1 + (� � 1

d�1)r
⌘
+ d�2

2(d�1)'
0
. (3.15)

6

Pk(2) = 2+Rk(2) , 2 = �+ E(s) , � = �r2 ,

The endos are defined by three real parameters:
  gauge invariant            vector ghost 
      (spin=2,0)                   (spin=1)

Then there are the ghost determinants

Det
⇣
�1 �

2

d

R̄

⌘
Det

⇣
�0 �

1

d� 1� �

R̄

⌘
(2.25)

and finally we have the Jacobian

Det
⇣
�1 �

2

d

R̄

⌘1/2
Det�1/2

0 Det
⇣
�0 �

R̄

d� 1

⌘1/2
(2.26)

We see that the gauge-dependent factors cancels out, and the result is gauge independent.

3 Functional renormalization group equation

We employ the type II cuto↵ defined in [12]. By the standard procedure, we get the functional
renormalization group equation (FRGE)

�̇
k

=
1

2
Tr(2)

2

4 ḟ

0(R̄)R
k

(2) + f

0(R̄)Ṙ
k

(2)

f

0(R̄)
⇣
P

k

(2)� E(2) +
2

d(d�1)R̄

⌘

3

5

+
1

2
Tr(0)

2

4 ḟ

00(R̄)R
k

(2) + f

00(R̄)Ṙ
k

(2)

f

00(R̄)
⇣
P

k

(2)� E(0) � 1
d�1R̄

⌘
+ d�2

2(d�1)f
0(R̄)

3

5

�1

2
Tr(1)

"
Ṙ

k

(2)

P

k

(2)� E(1) � 1
d

R̄

#
, (3.1)

where the dot denote the logarithmic derivative with respect to the scale k, E(s) (s = 0, 1, 2) are
terms linear in the scalar curvature, and

P

k

(2) = 2+R

k

(2), 2 = �+ E(s), (3.2)

with the cuto↵ function R

k

(2). The subscripts to the traces represent contributions from dif-
ferent spin sectors.

3.1 Heat kernel expansion

The evaluation of the traces are done as follows: First, consider

Tr(s)[W (2)] =

Z 1

0
d�W̃ (�)Tr(s)[e

��2] (3.3)

where W̃ (�) is the inverse Laplace transform of W (z):

W (z) =

Z 1

0
d�e

�z�

W̃ (�). (3.4)

Using the heat kernel expansion

Tr(s)[e
��2] =

1

(4⇡�)d/2

Z

S

d
d

d

x

p
ḡ

X

n�0

b

(s)
2n�

n

R̄

n

, (3.5)

5

The traces can be evaluated in different ways:  
- Heat kernel expansion 
- spectral sums on the sphere

This scheme is spectrally 
adjusted: coarse-graining is 
affected by the shape of  f(R)!

Both have some limitations in the IR 
and for large R.

(Litim)Rk(z) = (k2 � z)✓(k2 � z)

(optimized cutoff)
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The Heat Kernel expansion valid at small R leads to the following well known construction:

Then we get the following HK coefficients

Inclusion of the constant mode for h. 

Add
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Similarly we find for spin 1
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We find the coe�cients for d = 4 are

b0 b2 b4 b6

Spin 0 1 1
6 + �

�511+360�+1080�2

2160
19085�64386�+22680�2+45360�3

272160

Spin 1 3 1
4 + 3� �607+360�+2160�2

1440
37259�152964�+45360�2+181440�3

362880

Spin 2 5 �5
6 + 5↵ �1�360↵+1080↵2

432
311�126↵�22680↵2+45360↵3

54432

Note that these coe�cients b2n for n � 2 disagree with [12, 32] even if we set ↵ = � = � = 0, but
this is because there the contributions from the Killing were included and the sum was taken
from a = 0 (s = 0), a = 1 (s = 1), a = 2 (s = 2).
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In terms of ', Q
m

[W ](2) is also rewritten as

Q

m

[W ](2) =
k

2m

�(m+ 2)

'̇

0 � 2r'00 + (d+ 2m)'0

'

0
⇣
1 + ↵r + 2

d(d�1)r

⌘
. (3.16)

Finally let us discuss the contribution of the constant mode from h in the sphere which is
a compact manifold. One can choose a coarse-graining scheme where this infrared mode never
appears in the flow equation and consider to add in the deep infrared at k = 0 the contribution
directly in the e↵ective action. Alternatively we can consider the alternative scheme where we
add to the flow equation on the r.h.s. of Eq. (3.1) the following term:
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8f(R̄)� 1

4D R̄f

0(R̄)
(3.17)

3.1.1 4D

The heat kernel coe�cients b

(s)
2n for 4D are given in [12, 32] for type I cuto↵. We extend the

calculation to our case and give the results in Appendix D. Substituting all these into (3.1), we
obtain (need modification)
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If we include the contribution of the constant mode of trace h, we have an additional term
to the r.h.s. of Eq. (3.18)
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0 (3.20)

which has been obtained dividing the expression in Eq. (3.17) for D = 4 by the corresponding
volume of the sphere and passing to dimensionless quantities.

3.2 Spectral sum approach for d = 4

In the following we compute the traces in Eq. (3.1) by summing directly the corresponding
functions of the eigenvalues of the Laplacian on the sphere as

Tr(s)[W (�+ E(s))] =
X

l

M

l

(d, s)W (�
l

(d, s) + E(s)) (3.21)
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Dimensionless variables: 
The flow equation, for an optimized cutoff reads

in (3.3), we obtain
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ḡ

X

n�0

b

(s)
2nQd/2�n

[W ]R̄n

, (3.6)
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d[d'(r) � 2r'0(r) + '̇(r)], f 0(R̄) = k

d�2
'

0(r) and f

00(R̄) = k

d�4
'

00(r), we
obtain

Q

m

[W ](0) =
1

�(m)

Z
k

2

0
dzz

m�1 ('̇
00 � 2r'000 + (d� 4)'00)(k2 � z) + 2'00

k

2

'

00
⇣
k

2 � E(0) � 1
d�1R̄

⌘
+ d�2

2(d�1)k
2
'

0

=
k

2m

�(m+ 2)

'̇

00 � 2r'000 + (d� 2 + 2m)'00

'

00
⇣
1 + (� � 1

d�1)r
⌘
+ d�2

2(d�1)'
0
. (3.15)

6

in (3.3), we obtain

Tr(s)[W (2)] =
1

(4⇡)d/2

Z

S

d
d

d

x

p
ḡ
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In terms of ', Q
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[W ](2) is also rewritten as
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Finally let us discuss the contribution of the constant mode from h in the sphere which is
a compact manifold. One can choose a coarse-graining scheme where this infrared mode never
appears in the flow equation and consider to add in the deep infrared at k = 0 the contribution
directly in the e↵ective action. Alternatively we can consider the alternative scheme where we
add to the flow equation on the r.h.s. of Eq. (3.1) the following term:
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3.1.1 4D

The heat kernel coe�cients b

(s)
2n for 4D are given in [12, 32] for type I cuto↵. We extend the

calculation to our case and give the results in Appendix D. Substituting all these into (3.1), we
obtain (need modification)
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If we include the contribution of the constant mode of trace h, we have an additional term
to the r.h.s. of Eq. (3.18)
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which has been obtained dividing the expression in Eq. (3.17) for D = 4 by the corresponding
volume of the sphere and passing to dimensionless quantities.

3.2 Spectral sum approach for d = 4

In the following we compute the traces in Eq. (3.1) by summing directly the corresponding
functions of the eigenvalues of the Laplacian on the sphere as

Tr(s)[W (�+ E(s))] =
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l

M
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(d, s) + E(s)) (3.21)
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Finally let us discuss the contribution of the constant mode from h in the sphere which is
a compact manifold. One can choose a coarse-graining scheme where this infrared mode never
appears in the flow equation and consider to add in the deep infrared at k = 0 the contribution
directly in the e↵ective action. Alternatively we can consider the alternative scheme where we
add to the flow equation on the r.h.s. of Eq. (3.1) the following term:
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3.1.1 4D
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If we include the contribution of the constant mode of trace h, we have an additional term
to the r.h.s. of Eq. (3.18)
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which has been obtained dividing the expression in Eq. (3.17) for D = 4 by the corresponding
volume of the sphere and passing to dimensionless quantities.

3.2 Spectral sum approach for d = 4

In the following we compute the traces in Eq. (3.1) by summing directly the corresponding
functions of the eigenvalues of the Laplacian on the sphere as

Tr(s)[W (�+ E(s))] =
X

l

M

l

(d, s)W (�
l
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Finally let us discuss the contribution of the constant mode from h in the sphere which is
a compact manifold. One can choose a coarse-graining scheme where this infrared mode never
appears in the flow equation and consider to add in the deep infrared at k = 0 the contribution
directly in the e↵ective action. Alternatively we can consider the alternative scheme where we
add to the flow equation on the r.h.s. of Eq. (3.1) the following term:
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3.1.1 4D

The heat kernel coe�cients b

(s)
2n for 4D are given in [12, 32] for type I cuto↵. We extend the

calculation to our case and give the results in Appendix D. Substituting all these into (3.1), we
obtain (need modification)
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If we include the contribution of the constant mode of trace h, we have an additional term
to the r.h.s. of Eq. (3.18)
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which has been obtained dividing the expression in Eq. (3.17) for D = 4 by the corresponding
volume of the sphere and passing to dimensionless quantities.

3.2 Spectral sum approach for d = 4

In the following we compute the traces in Eq. (3.1) by summing directly the corresponding
functions of the eigenvalues of the Laplacian on the sphere as

Tr(s)[W (�+ E(s))] =
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l
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(d, s) + E(s)) (3.21)
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The Heat Kernel expansion valid at small R leads to the following well known construction:
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Finally let us discuss the contribution of the constant mode from h in the sphere which is
a compact manifold. One can choose a coarse-graining scheme where this infrared mode never
appears in the flow equation and consider to add in the deep infrared at k = 0 the contribution
directly in the e↵ective action. Alternatively we can consider the alternative scheme where we
add to the flow equation on the r.h.s. of Eq. (3.1) the following term:
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If we include the contribution of the constant mode of trace h, we have an additional term
to the r.h.s. of Eq. (3.18)
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which has been obtained dividing the expression in Eq. (3.17) for D = 4 by the corresponding
volume of the sphere and passing to dimensionless quantities.

3.2 Spectral sum approach for d = 4

In the following we compute the traces in Eq. (3.1) by summing directly the corresponding
functions of the eigenvalues of the Laplacian on the sphere as

Tr(s)[W (�+ E(s))] =
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(d, s)W (�
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Finally let us discuss the contribution of the constant mode from h in the sphere which is
a compact manifold. One can choose a coarse-graining scheme where this infrared mode never
appears in the flow equation and consider to add in the deep infrared at k = 0 the contribution
directly in the e↵ective action. Alternatively we can consider the alternative scheme where we
add to the flow equation on the r.h.s. of Eq. (3.1) the following term:

��̇ =
d

2

k

d
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d + 1
8f(R̄)� 1

4D R̄f

0(R̄)
(3.17)

3.1.1 4D

The heat kernel coe�cients b

(s)
2n for 4D are given in [12, 32] for type I cuto↵. We extend the

calculation to our case and give the results in Appendix D. Substituting all these into (3.1), we
obtain (need modification)
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. (3.19)

If we include the contribution of the constant mode of trace h, we have an additional term
to the r.h.s. of Eq. (3.18)
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which has been obtained dividing the expression in Eq. (3.17) for D = 4 by the corresponding
volume of the sphere and passing to dimensionless quantities.

3.2 Spectral sum approach for d = 4

In the following we compute the traces in Eq. (3.1) by summing directly the corresponding
functions of the eigenvalues of the Laplacian on the sphere as

Tr(s)[W (�+ E(s))] =
X

l

M
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If we include the contribution of the constant mode of trace h, we have an additional term
to the r.h.s. of Eq. (3.18)
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which has been obtained dividing the expression in Eq. (3.17) for D = 4 by the corresponding
volume of the sphere and passing to dimensionless quantities.

3.2 Spectral sum approach for d = 4

In the following we compute the traces in Eq. (3.1) by summing directly the corresponding
functions of the eigenvalues of the Laplacian on the sphere as
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where the eigenvalues and the corresponding multiplicities are given in Table 4. For simplicity
we restrict our analysis to 4 dimensions. We shall use the same optimized cuto↵ so that the
support of R

k

(�
l

(d, s) + E(s)) will be restricted to the modes l  l̄

(s), where the upper bound
is determined by �

l

(d, s) + E(s)  k

2. In particular for the di↵erent spins we shall have the
following R dependent restrictions:

l̄

(2)= �3

2
+

1

2

r
48

k

2

R

+17+48↵ , l̄

(1)= �3
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+

1

2

r
48

k

2

R

+13+48� , l̄

(0)= �3

2
+

1

2

r
48

k

2

R

+9+48�

(3.22)
The modes should be integrated up to the integer part of these upper bounds, but one would

obtain a discontinuous structure in the flow equation. Since the sum can be written as an exact
function (a polynomial) of these upper bounds, we shall keep them as real variables. To reduce
the error we shall perform the average of the sums taken up to l̄(s) and l̄(s)�1. This average
has also the nice property of removing the dependence in the square roots from all the spectral
sums.

Then we obtain the following flow equation in terms of dimensionless variables as before

'̇� 2r'0 + 4' =
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, (3.23)

where
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=
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�53 + 24� + 108�2

�
+ r

3
�
15� 53� + 12�2 + 36�3

�

2304⇡2
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2
�
�11 + 10� + 24�2

�
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,

d5 =
�72� 18r(1 + 8�) + r

2
�
19� 18� � 72�2

�

192⇡2
. (3.24)

One can notice that the structure of the equations (3.18) and (3.23) is the same. In fact,
(3.23) is written as (3.18) with the coe�cients

c1 =
5

108
[6 + (6↵� 1)r][6 + (6↵+ 1)r][3 + (3↵� 2)r],

c2 =
5

108
[6 + (6↵� 1)r][144 + 9(20↵� 3)r + 2(6↵+ 1)(3↵� 2)r2],

c3 =
1

72
[2 + (2� + 3)r][3 + (3� � 1)r][6 + (6� � 5)r],

c4 =
1

8
[2 + (2� � 1)r][12 + (12� + 11)r],

c5 = 12 + 3(8� + 1)r +

✓
12�2 + 3� � 19

6

◆
r

2
. (3.25)

4 Scaling solutions in 4D

We now analyze the properties of di↵erential equations obtained from (3.18) or (3.23) by setting
derivatives of ' with respect to ln k in the space of polynomials of the scalar curvature and study
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The modes should be integrated up to the integer part of these upper bounds, but one would

obtain a discontinuous structure in the flow equation. Since the sum can be written as an exact
function (a polynomial) of these upper bounds, we shall keep them as real variables. To reduce
the error we shall perform the average of the sums taken up to l̄(s) and l̄(s)�1. This average
has also the nice property of removing the dependence in the square roots from all the spectral
sums.
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The modes should be integrated up to the integer part of these upper bounds, but one would

obtain a discontinuous structure in the flow equation. Since the sum can be written as an exact
function (a polynomial) of these upper bounds, we shall keep them as real variables. To reduce
the error we shall perform the average of the sums taken up to l̄(s) and l̄(s)�1. This average
has also the nice property of removing the dependence in the square roots from all the spectral
sums.

Then we obtain the following flow equation in terms of dimensionless variables as before
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The modes should be integrated up to the integer part of these upper bounds, but one would
obtain a discontinuous structure in the flow equation. Since the sum can be written as an exact
function (a polynomial) of these upper bounds, we shall keep them as real variables. To reduce
the error we shall perform the average of the sums taken up to l̄(s) and l̄(s)�1. This average
has also the nice property of removing the dependence in the square roots from all the spectral
sums.

Then we obtain the following flow equation in terms of dimensionless variables as before
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One can notice that the structure of the equations (??) and (??) is the same. In fact, (??)
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The modes should be integrated up to the integer part of these upper bounds, but one would

obtain a discontinuous structure in the flow equation. Since the sum can be written as an exact
function (a polynomial) of these upper bounds, we shall keep them as real variables. To reduce
the error we shall perform the average of the sums taken up to l̄(s) and l̄(s)�1. This average
has also the nice property of removing the dependence in the square roots from all the spectral
sums.

Then we obtain the following flow equation in terms of dimensionless variables as before
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One can notice that the structure of the equations (3.18) and (3.23) is the same. In fact,
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The modes should be integrated up to the integer part of these upper bounds, but one would

obtain a discontinuous structure in the flow equation. Since the sum can be written as an exact
function (a polynomial) of these upper bounds, we shall keep them as real variables. To reduce
the error we shall perform the average of the sums taken up to l̄(s) and l̄(s)�1. This average
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One can notice that the structure of the equations (3.18) and (3.23) is the same. In fact,
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In terms of ', Q
m

[W ](2) is also rewritten as

Q

m

[W ](2) =
k

2m

�(m+ 2)

'̇

0 � 2r'00 + (d+ 2m)'0

'

0
⇣
1 + ↵r + 2

d(d�1)r

⌘
. (3.16)

Finally let us discuss the contribution of the constant mode from h in the sphere which is
a compact manifold. One can choose a coarse-graining scheme where this infrared mode never
appears in the flow equation and consider to add in the deep infrared at k = 0 the contribution
directly in the e↵ective action. Alternatively we can consider the alternative scheme where we
add to the flow equation on the r.h.s. of Eq. (3.1) the following term:

��̇ =
d

2

k

d

k

d + 1
8f(R̄)� 1

4D R̄f

0(R̄)
(3.17)

3.1.1 4D

The heat kernel coe�cients b

(s)
2n for 4D are given in [12, 32] for type I cuto↵. We extend the

calculation to our case and give the results in Appendix D. Substituting all these into (3.1), we
obtain (need modification)

32⇡2('̇� 2r'0 + 4')

=
c1('̇0 � 2r'00) + c2'

0

'

0[6 + (6↵+ 1)r]
+

c3('̇00 � 2r'000) + c4'
00

[3 + (3� � 1)r]'00 + '

0 �
c5

4 + (4� � 1)r
, (3.18)

where

c1 = 5 + 5
⇣
3↵� 1
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⌘
r +

⇣
15↵2 � 5↵� 1

72

⌘
r

2 +
⇣
5↵3 � 5

2
↵

2 � ↵

72
+

311

9072

⌘
r

3
,

c2 = 40 + 15(6↵� 1)r +
⇣
60↵2 � 20↵� 1

18

⌘
r

2 +
⇣
10↵3 � 5↵2 � ↵

36
+

311

4536

⌘
r

3
,

c3 =
1

2

h
1 +

⇣
3� +

1

2

⌘
r +

⇣
3�2 + � � 511

360

⌘
r

2 +
⇣
�

3 +
1

2
�

2 � 511

360
� +

3817

9072

⌘
r

3
i
,

c4 = 3 + (6� + 1)r +
⇣
3�2 + � � 511

360

⌘
r

2
,

c5 = 12 + 2(12� + 1)r +
⇣
12�2 + 2� � 607

180

⌘
r

2
. (3.19)

If we include the contribution of the constant mode of trace h, we have an additional term
to the r.h.s. of Eq. (3.18)

8

3

r

2

16 + 2'� r'

0 (3.20)

which has been obtained dividing the expression in Eq. (3.17) for D = 4 by the corresponding
volume of the sphere and passing to dimensionless quantities.

3.2 Spectral sum approach for d = 4

In the following we compute the traces in Eq. (3.1) by summing directly the corresponding
functions of the eigenvalues of the Laplacian on the sphere as

Tr(s)[W (�+ E(s))] =
X

l

M

l

(d, s)W (�
l

(d, s) + E(s)) (3.21)

7

On the sphere the laplacian 
has eigenvalues 
with multiplicities 

(Benedetti-Caravelli, Demmel-Saueresseig-Zanusso)
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Writing the FP equation as N/D, N=0 is a quintic polynomial. The ansatz

With probability one in the space of the endomorphisms the asymptotic behavior goes like

to [13], its denominators are of lower order and
the function ' does not appear undi↵erentiated
in the r.h.s.. In the Einstein-Hilbert truncation,
this reduces to the statement that the cosmological
constant does not appear in the flow of Newton’s
constant [14], a fact that allows nonsingular flows
in the infrared.

Scaling solutions. The normal form of the flow
equation has a singularity at r = 0 and further
fixed singularities depending on �. The analysis
of [7] showed that isolated solutions are expected
to occur when the number of fixed singularities
matches the order of the equation. This is the
case when � < 0.3945 (counting only singularities
for positive r). Instead of analyzing numerically
the equations for fixed ↵, �, �, we treat these pa-
rameters as unknowns to solve for. For large r the
scaling solutions are expected to grow like r2, pos-
sibly with logarithmic corrections. The simplest
possible solutions are therefore of the form

'(r) = g0 + g1r + g2r
2
. (6)

If we insert this ansatz in the flow equation and
write the fixed point equation as a single fraction,
its numerator is a fifth order polynomial in r. By
equating to zero the coe�cients of all powers of
r one obtains a system of six equations for the six
unknowns g0, g1, g2, ↵, � and �. This system has a
number of solutions whose properties are reported
in the table.

103↵ 103� 103� 103g̃0⇤ 103g̃1⇤ 103g̃2⇤ ✓

�593 �73.5 �177 7.28 �8.42 1.71 3.78

�616 �70.7 �154 7.42 �8.64 1.74 3.75

�564 �80.3 �168 6.82 �8.77 1.83 3.70

�543 �87.4 �126 6.31 �9.47 2.06 3.43

�420 �100.5 �3.19 4.90 �10.2 2.83 2.93

�173 �2.98 244 4.53 �8.34 2.70 2.18

�146 �64973 250 2.90 �10.7 0.0006 2.58

�109 �22267 307 2.90 �10.4 0.0045 2.45

109 �3564 526 2.84 �7.83 0.094 C

377 �1305 794 2.57 �4.37 0.214 > 4

TABLE I: The properties of the exact quadratic so-
lutions: parameters (first three columns), couplings
(nest three columns) and critical exponent (last col-
umn). ”C” stands for ”complex.

Since the denominator of the equation has at
least one zero for positive r that is not matched
by a corresponding zero of the numerator, the so-
lutions shown are valid on the whole positive real
axis except for isolated points.

All fixed points have a critical exponent that is
exactly equal to 4, corresponding to the volume de-
gree of freedom. The last column reports the most
relevant exponent besides this, obtained from an
analysis based on a polynomial expansion around
the origin. The first six lines are solutions with ex-
actly two relevant directions; the two subsequent
ones have three relevant directions. The last two
lines have four relevant directions, of which two
are complex conjugate (denoted by C); further-
more the last has a critical exponent that is larger
than four. The other solutions have only real criti-
cal exponents, contrary to previous analyses in full
f(R) gravity. We consider this a desirable feature.

We observe that for all these scaling solutions,
the equation of motion 2f � Rf

0 = 0 has the so-
lution R⇤ = �2g0k2/g1, and therefore avoid the
possible issue of the redundancy of all eigenpertur-
bations [8]. Since g0 > 0 and g1 < 0 the solution
is compatible with spherical topology.

The numerical similarities between the six so-
lutions of the first group and the two solutions
of the second group suggests that perhaps they
are the same scaling solution in di↵erent cuto↵
schemes. (The quantitatively non-negligible dif-
ferences by factors of order one are typical for the
scheme dependence in this type of calculations.)
To substantiate this hypothesis we have studied
the polynomial approximation to the flow equa-
tion along straight paths in the space of param-
eters joining the di↵erent solutions. (For exam-
ple, ↵(t) = �0.593 � 0.0227t, �(t) = �0.0735 +
0.00281t,�(t) = �0.177 + 0.0226t interpolates be-
tween the first two solutions when 0  t  1.) We
have considered truncations to sixth order polyno-
mials, and find that for any pair of solutions in the
first group there exists a continuous interpolation.
Likewise, the two solutions of the second group are
continuously related.

In addition to the expansion around r = 0 we
have also considered the asymptotic behavior of
the solutions for large r. For generic values of ↵,
�, � it is of the form

'(r) = Ar

2 + a1r + a0 + a�1/r + a�2/r
2 + . . .

where A is a free parameter and ai are given func-
tions of ↵, �, �. For ↵ = 1/6 also the parameter A
is fixed. For � = 0 or � = 1/4 the leading term goes
like r

2 log r and also subsequent terms have loga-
rithmic corrections. It will clearly be important to
match these behaviors and establish numerically
the existence of scaling solutions of (4) for other
cuto↵ choices.

While we do not have an exact, nor a complete
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g0, g1, g2, ↵, �, �solves N=0 for several sets of the unknowns
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Since the denominator of the equation has at
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relevant exponent besides this, obtained from an
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the origin. The first six lines are solutions with ex-
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are complex conjugate (denoted by C); further-
more the last has a critical exponent that is larger
than four. The other solutions have only real criti-
cal exponents, contrary to previous analyses in full
f(R) gravity. We consider this a desirable feature.

We observe that for all these scaling solutions,
the equation of motion 2f � Rf

0 = 0 has the so-
lution R⇤ = �2g0k2/g1, and therefore avoid the
possible issue of the redundancy of all eigenpertur-
bations [8]. Since g0 > 0 and g1 < 0 the solution
is compatible with spherical topology.

The numerical similarities between the six so-
lutions of the first group and the two solutions
of the second group suggests that perhaps they
are the same scaling solution in di↵erent cuto↵
schemes. (The quantitatively non-negligible dif-
ferences by factors of order one are typical for the
scheme dependence in this type of calculations.)
To substantiate this hypothesis we have studied
the polynomial approximation to the flow equa-
tion along straight paths in the space of param-
eters joining the di↵erent solutions. (For exam-
ple, ↵(t) = �0.593 � 0.0227t, �(t) = �0.0735 +
0.00281t,�(t) = �0.177 + 0.0226t interpolates be-
tween the first two solutions when 0  t  1.) We
have considered truncations to sixth order polyno-
mials, and find that for any pair of solutions in the
first group there exists a continuous interpolation.
Likewise, the two solutions of the second group are
continuously related.

In addition to the expansion around r = 0 we
have also considered the asymptotic behavior of
the solutions for large r. For generic values of ↵,
�, � it is of the form

'(r) = Ar

2 + a1r + a0 + a�1/r + a�2/r
2 + . . .

where A is a free parameter and ai are given func-
tions of ↵, �, �. For ↵ = 1/6 also the parameter A
is fixed. For � = 0 or � = 1/4 the leading term goes
like r

2 log r and also subsequent terms have loga-
rithmic corrections. It will clearly be important to
match these behaviors and establish numerically
the existence of scaling solutions of (4) for other
cuto↵ choices.

While we do not have an exact, nor a complete
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numerical solution except at the special points
listed, the existence of continuous polynomial de-
formations suggests very strongly that the exis-
tence of the scaling solutions is not limited to the
special cuto↵ choices listed in the table. Instead,
we conjecture that the scaling solution exists in a
whole open subspace of parameters and that the
e↵ect of choosing special values of the parameters
is to give the scaling solution a very simple func-
tional form.

We have also looked for polynomial solutions
with more traditional cuto↵ choices. With the so-
called type I cuto↵ ↵ = � = � = 0, truncating at
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�1.86⇥ 10�5
r

3 � 5.02⇥ 10�6
r

4 � 9.11⇥ 10�7
r

5

�2.00⇥ 10�7
r

6 � 4.23⇥ 10�8
r

7 � 9.51⇥ 10�9
r
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with critical exponents 4, 2.21, �2.51, �5.21,
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7 + 8.31⇥ 10�10
r
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with critical exponents 4, 1.91, �1.54, �4.73,
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From a preliminary analysis of polynomial ex-
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II cuto↵s.

Alternative equation. Performing the spectral
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di↵erent coe�cients:
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This equation admits again some exact quadratic
solutions. The interesting ones are

103↵ 103� 103� 103g̃0⇤ 103g̃1⇤ 103g̃2⇤ ✓

�97.8 38.9 319 4.31 �7.46 2.85 2.03

�438 �122 �21.0 4.67 �10.4 3.14 3.2

134 �2765 551 2.82 �7.70 0.13 C

505 �715 922 2.16 �2.65 0.21 > 4

�564 �63.8 �147 7.83 �6.80 1.35 > 4

The first has two relevant directions and is the
analogue of the first six solutions of (5); the fol-
lowing one has three relevant directions; the third
has four relevant directions and the last two have
at least one critical exponent larger than four, pos-
sibly a complex conjugate pair, but with very slow
convergence with the order of the polynomial.

Much of what was said for the other equation
can be repeated with small changes in this case.

Discussion. The main positive result of this
work is the existence of special quadratic scaling
solutions for particular cuto↵ choices, which re-
main close to this shape when the cuto↵ is var-
ied generically. These solutions provide further
evidence for asymptotic safety of gravity. The
fact that they show similarities to the Starobin-
sky model of inflation (which is favored by current
cosmological data) is also encouraging.

While these results definitely constitute progress
relative to polynomial truncations, the situation is
still not satisfactory. The existence of physically
undesirable solutions with critical exponents larger
than four suggest that these may be artifacts of the
approximations made and that they may go away

4

Note that for these values there exists at least one              for which D=0. 
Thefore such solutions are defined everywhere apart from at least one isolated point! 

r > 0

Various solutions have just two relavant directions 
(UV attractive) with real eigenvalues (- 4, -   )

to [13], its denominators are of lower order and
the function ' does not appear undi↵erentiated
in the r.h.s.. In the Einstein-Hilbert truncation,
this reduces to the statement that the cosmological
constant does not appear in the flow of Newton’s
constant [14], a fact that allows nonsingular flows
in the infrared.

Scaling solutions. The normal form of the flow
equation has a singularity at r = 0 and further
fixed singularities depending on �. The analysis
of [7] showed that isolated solutions are expected
to occur when the number of fixed singularities
matches the order of the equation. This is the
case when � < 0.3945 (counting only singularities
for positive r). Instead of analyzing numerically
the equations for fixed ↵, �, �, we treat these pa-
rameters as unknowns to solve for. For large r the
scaling solutions are expected to grow like r2, pos-
sibly with logarithmic corrections. The simplest
possible solutions are therefore of the form

'(r) = g0 + g1r + g2r
2
. (6)

If we insert this ansatz in the flow equation and
write the fixed point equation as a single fraction,
its numerator is a fifth order polynomial in r. By
equating to zero the coe�cients of all powers of
r one obtains a system of six equations for the six
unknowns g0, g1, g2, ↵, � and �. This system has a
number of solutions whose properties are reported
in the table.

103↵ 103� 103� 103g̃0⇤ 103g̃1⇤ 103g̃2⇤ ✓

�593 �73.5 �177 7.28 �8.42 1.71 3.78

�616 �70.7 �154 7.42 �8.64 1.74 3.75

�564 �80.3 �168 6.82 �8.77 1.83 3.70

�543 �87.4 �126 6.31 �9.47 2.06 3.43

�420 �100.5 �3.19 4.90 �10.2 2.83 2.93

�173 �2.98 244 4.53 �8.34 2.70 2.18

�146 �64973 250 2.90 �10.7 0.0006 2.58

�109 �22267 307 2.90 �10.4 0.0045 2.45

109 �3564 526 2.84 �7.83 0.094 C

377 �1305 794 2.57 �4.37 0.214 > 4

TABLE I: The properties of the exact quadratic so-
lutions: parameters (first three columns), couplings
(nest three columns) and critical exponent (last col-
umn). ”C” stands for ”complex.

Since the denominator of the equation has at
least one zero for positive r that is not matched
by a corresponding zero of the numerator, the so-
lutions shown are valid on the whole positive real
axis except for isolated points.

All fixed points have a critical exponent that is
exactly equal to 4, corresponding to the volume de-
gree of freedom. The last column reports the most
relevant exponent besides this, obtained from an
analysis based on a polynomial expansion around
the origin. The first six lines are solutions with ex-
actly two relevant directions; the two subsequent
ones have three relevant directions. The last two
lines have four relevant directions, of which two
are complex conjugate (denoted by C); further-
more the last has a critical exponent that is larger
than four. The other solutions have only real criti-
cal exponents, contrary to previous analyses in full
f(R) gravity. We consider this a desirable feature.

We observe that for all these scaling solutions,
the equation of motion 2f � Rf

0 = 0 has the so-
lution R⇤ = �2g0k2/g1, and therefore avoid the
possible issue of the redundancy of all eigenpertur-
bations [8]. Since g0 > 0 and g1 < 0 the solution
is compatible with spherical topology.

The numerical similarities between the six so-
lutions of the first group and the two solutions
of the second group suggests that perhaps they
are the same scaling solution in di↵erent cuto↵
schemes. (The quantitatively non-negligible dif-
ferences by factors of order one are typical for the
scheme dependence in this type of calculations.)
To substantiate this hypothesis we have studied
the polynomial approximation to the flow equa-
tion along straight paths in the space of param-
eters joining the di↵erent solutions. (For exam-
ple, ↵(t) = �0.593 � 0.0227t, �(t) = �0.0735 +
0.00281t,�(t) = �0.177 + 0.0226t interpolates be-
tween the first two solutions when 0  t  1.) We
have considered truncations to sixth order polyno-
mials, and find that for any pair of solutions in the
first group there exists a continuous interpolation.
Likewise, the two solutions of the second group are
continuously related.

In addition to the expansion around r = 0 we
have also considered the asymptotic behavior of
the solutions for large r. For generic values of ↵,
�, � it is of the form

'(r) = Ar

2 + a1r + a0 + a�1/r + a�2/r
2 + . . .

where A is a free parameter and ai are given func-
tions of ↵, �, �. For ↵ = 1/6 also the parameter A
is fixed. For � = 0 or � = 1/4 the leading term goes
like r

2 log r and also subsequent terms have loga-
rithmic corrections. It will clearly be important to
match these behaviors and establish numerically
the existence of scaling solutions of (4) for other
cuto↵ choices.

While we do not have an exact, nor a complete
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the function ' does not appear undi↵erentiated
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The equation of motion                        is satisfied by R>0 and there is no redundancy of the 
eigenperturbations in the domain of existence. (Dietz-Morris)



Global solutions: some parameter constraints 
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Are there non trivial and not simple global solutions? Analysis for the spectral sum flow.

We assume at the beginning the absence of moving singularities. 
Fixed singularities: look at coeff. of          ,              and at the ghost term.'000 1/'0

'000

zeros of rc3

1/'0

-1.0 -0.5 0.5 1.0 1.5 2.0 β

-4

-2

2

4

-1.0 -0.5 0.5 1.0 α

-10

-5

5

10

Ghost term

-1.0 -0.5 0.5 1.0 γ

-10

-5

5

10

Example: 

From       we get 2 fixed singularities at positive r=0 , 2.  �
From       we allow the existence of an extremum at r=6/5 , 3.↵
From       we ensure that no other fixed singularities arise from the ghost term.      �

↵ = �1

6
, � =

1

3
, � � 1

4



A global solution: numerical analysis  
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We consider the case: ↵ = �1

6
, � =

1

3
, � =

1

2

Polynomial analysis around the origin 
up to order 16 (black):  it becomes very  
stable and suggests indeed a global solution 
with a minimum in 6/5.

2 relevant direction. 
Real Critical 
exponents: 4, 1.83

Regularity conditions at r=0 and r=2 together with the condition of minimum at r=6/5 
fix completely the three parameters for the Cauchy problem. 

0.5 1.0 1.5 2.0 2.5 r

-0.002

0.002

0.004

φ

Strategy: 
1) Provide analytical polynomial expansions in terms of two parameters at the points 0, 6/5, 2. 

0                                      6/5                                    2
'0(0) , '00(0) '(6/5) , '00(6/5) '0(2) , '00(2)

2)  Evolve num. from 0+ to 6/5 imposing the condition of minimum         curve in  
     Evolve num. from 2-  to 6/5 imposing the condition of minimum         curve in 

'0(0) , '00(0)

'0(2) , '00(2)

3)  Map the two curves into two curves in 6/5 in the plane  '(6/5) , '00(6/5)

4)  The intersection fixes completely the parameters of the solution. 



   Numerical analysis  2 
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         Evolution from 0+ to 6/5                                          Evolution from 2- to 6/5 
 (red point at polynomial solution) 

Intersecting the curves mapped to r=6/5 

-0.0010 -0.0005
φ(6/5)

0.004

0.006

0.008

0.010

0.012

0.014

0.016
φ''(6/5)

0.002 0.003 0.004 0.005 φ'(2)

-0.0035

-0.0030

-0.0025

-0.0020

-0.0015

-0.0010

-0.0005

φ''(2)

-0.016 -0.014 -0.012 -0.010 -0.008 -0.006 φ'(0)
0.0065

0.0070

0.0075

0.0080

0.0085

0.0090

0.0095
φ''(0)

'(6/5) = �0.0007136 · · ·

'00(6/5) = 0.006256 · · ·

The intersecting solution is slightly deformed compared to the approximate polynomial solution. 

Remark: the evolution between betweek 2- and 6/5 encounters also moving singularities 
               in other regions of the parameter plane! 



   Numerical analysis 3 
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The solution (blue) is constructed from a numerical evolution  
in the intervals 6/5- to 0, 6/5+ to 2- and from 2+ to r>2  
and using the analytic polynomial expansions around 6/5 and 2. 
Order 16 polynomial solution around the origin (red). 0.5 1.0 1.5 2.0 2.5 3.0 r

-0.004

-0.002

0.002

0.004

0.006

0.008
φ

Possible to study at polynomial expansion around the minimum. 
It looks as a better approximation  (green curve, order 16).        Zooming close to the origin:

0.5 1.0 1.5 2.0 2.5 3.0 r

-0.005

0.005

0.010
φ

Asymptotic expansion: 'as(r) = Ar2 +
1053Ar

50� 13824⇡2A
+

1051066368⇡4A2 + 107637120⇡2A� 1943075

6144⇡2 (25� 6912⇡2A)2
+O

✓
1

r

◆

0.0 0.1 0.2 0.3 0.4 0.5 r
0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

φ

4 5 6 7 8 r
0.02

0.04

0.06

0.08

0.10

φ

Comparison of asymptotic expansion (purple) 
with numerical solution at large r (blue) 
after tuning the parameter A.



Some consideration on the domain of f(r).  
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The Heat Kernel expansion is reliable only for small                     so that there is no access 
at fixed R to the IR limit.

r = R/k2

For fhe spectral sum approach we considered the average of the sums for all the spins of modes  
with two different upper bounds, both starting from 2 because of the Killing symmetries.

2  l  l̄(s) , 2  l  l̄(s) � 1

For large                    depending on the endomorphisms there might be no room to some modes. r = R/k2

On the other end it is also not clear what means a coarse-graining  
at length scales larger that the dimension of the compact manifold.  
Therefore one might question if at fixed R one shoud look for a  
global scaling solution defined on the full positive semiaxes. 
The situation looks better for noncompact background manifolds.



• The flow equation are constructed with a spectrally adjusted coarse-graining 
      scheme, using either and HK expansion or a spcetral sum on the sphere. 

Conclusions

• We have revisited the f(R) truncation using a non linear parametrization 
     of the exponential form in a single metric truncation.

• The choice of gauge invariant fluctuations and gauge fixing, based on a spin 
     decomposition leads to simple structure of the Hessian. 

•  Pure quadratic solutions valid everywhere apart from finite points exist. 
     Other global solutions can be constructed numerically. 
     The latter have typically 2 relevant directions. 
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• The sphere, which is a compact manifold poses some limitations in  
     the cosntruction of a flow in the IR limit. As already noted an upper bound 
     in the curvature may appears even if the equation defines f(R) everywhere. 
     



Outlook

• Pure cutoff schemes lead to more complicated flow equations.  
     Not yet analyzed. 

• A similar analysis on non compact backgrounds has been started.

• An urgent issue is the one related to background independence.

• Inclusion of matter (e.g. scalar) at this level:  

20

Fk(⇢, R)

• Inclusion of  the anomalous dimension.

• More general truncations.



21

Thank you!


