Some results for a f(R) truncation for a QG action using the exponential parametrization of the metric

# Gian Paolo Vacca INFN - Bologna

Work in collaboration with R. Percacci and N. Ohta Phys.Rev. D92 (2015) 6, 061501, To appear



SIFT 2015 Jena November 6, 2015

1

• We have already heard about some features of one metric truncations for effective average actions with <u>exponential</u> parametrization.

Talks: Percacci, Knorr Posters: Falls, Labus

• We heard about an f(R) truncation in the conventional <u>linear</u> param.

Talk: Litim

• Here is discussed the f(R) case in the non linear "exp" representation.

### Outline

- Framework
- Parameterization and gauge fixing
- Flow equations.
- An example of global solution
- Conclusions and outlook

### Framework

What is the fundamental nature of gravitational interaction? Of spacetime? And matter? Will an answer ever come?

- <u>Single</u> fundamental theory? **QFT** Stringy Discrete models ...
- <u>Sequence</u> of theories with trasmutation/generation of (some) degrees of freedom?

Criteria? Experimental input (hard) Simplicity/Beauty/Unification

#### RG paradigm

Useful since able to unify the <u>fundamental</u> and <u>effective</u> theory point of view.

Bottom-up approach.

#### (Donoghue)

At least classical field theory and effective field theory are good descriptions for gravity.

Simplest attempt: A gravitational QFT described by a metric and diffeomorphism symmetry, whose dynamics reveals a UV fixed point with finite dim. critical surface.

If bare action has no irrelevant operators, it is asymptotically safe. Otherwise description is effective, originating from a more fundamental theory.



## Approach

Asymptotic safety paradigm using FRG techniques for the effective action  $\Gamma[g_{\mu\nu}, \phi]$  (Reuter)

This approach is clearly in constrast to the stringy ideas of UV/IR duality, related to assuming black-hole formation in transplanckian scattering. (a fact not necessarily true for a quantum gravitational theory in the UV)

In this framework we cannot avoid the use of a background field formalism. In a metric formulation (euclidean):  $g_{\mu\nu}(\bar{g}_{\mu\nu}, h_{\mu\nu})$ 

- Issue of background independence for double metric description / modified splitting Ward Identities.

(Lust)

 Issue of choosing truncations as well as coarse-graining schemes. Simple enough, but able to keep the most important features of the full theory.

Many degrees of approximations in the covariant description: Single metric (field) descriptions can be still <u>non local</u> and complicated:

On maximally symmetric background (e.g. a sphere), for a local "LPA" truncation, pure gravity still not so trivial!

$$\Gamma[g_{\mu\nu}] = \int \mathrm{d}^d x \sqrt{g} f(R)$$

5

## Gravity sector: the metric

We use an exponential parameterization of the metric with euclidean signature:

$$g_{\mu\nu} = \bar{g}_{\mu\rho} (e^h)^{\rho}{}_{\nu} \qquad \qquad \sqrt{g} = e^{h/2} \sqrt{\bar{g}} = \sqrt{\bar{g}} \left( 1 + \frac{h}{2} + \frac{h^2}{8} + \cdots \right) \qquad trh = h = 2d\omega$$

As a change of variables the Jacobian is well defined.

We take the attitude that the metric has a non linear nature, preferring the exponential parameterization.

Think about frames and vielbeins... coset space GL(d)/O(p,q)

(See also Nink)

<u>Remark</u>: at quantum level the <u>off shell effective action</u> is equivalent to other parameterizations if

- a Jacobian is taken into account
- the <u>geometric formulation</u> a la Vilkowisky-De Witt in considered, indeed e.g. expectations values are not trivially related, ...

<u>**Remark**</u>: non linear transformation —> momentum coarse-graining qualitative different!

### Gauge transformations

Gravity is a gauge theory: physics does not change under diffeomorphisms.

a

$$\delta_{\epsilon}g_{\mu\nu} = \mathcal{L}_{\epsilon}g_{\mu\nu} \equiv \epsilon^{\rho}\partial_{\rho}g_{\mu\nu} + g_{\mu\rho}\partial_{\nu}\epsilon^{\rho} + g_{\nu\rho}\partial_{\mu}\epsilon^{\rho}$$

The quantum gauge transformation for the fluctuations defined in the exponential parametrization:  $\delta_{\epsilon}^{(Q)} h^{\mu}{}_{\nu} = (\mathcal{L}_{\epsilon}\bar{g})^{\mu}{}_{\nu} + \mathcal{L}_{\epsilon} h^{\mu}{}_{\nu} + [\mathcal{L}_{\epsilon}\bar{g},h]^{\mu}{}_{\nu} + O(\epsilon h^2) .$ 

$$\delta_{\epsilon}^{(Q)}h_{\mu\nu} = \bar{\nabla}_{\mu}\epsilon_{\nu} + \bar{\nabla}_{\nu}\epsilon_{\mu} + O(h)$$

 $h_{\mu\nu} = h^{TT}{}_{\mu\nu}$ York decomposition of the metric:

and similarly for the diffeomorphism generator

$$\bar{\psi} + \bar{\nabla}_{\mu}\xi_{\nu} + \bar{\nabla}_{\nu}\xi_{\mu} + \bar{\nabla}_{\mu}\bar{\nabla}_{\nu}\sigma - \frac{1}{d}\bar{g}_{\mu\nu}\bar{\nabla}^{2}\sigma + \frac{n}{d}\bar{g}_{\mu\nu}\bar{\nabla}^{2}\sigma + \frac{n}{d}\bar{g}_{\mu\nu}\bar{\nabla}^{2}$$

Transformations:

$$\delta_{\epsilon T} \xi^{\mu} = \epsilon^{T\mu} \quad \delta_{\psi} \sigma = \frac{2}{\sqrt{-\bar{\nabla}^2}} \psi \qquad \delta_{\psi} h = -2\sqrt{-\bar{\nabla}^2} \psi$$

To adsorbe some Jacobians one can redefine:

$$\xi'_{\mu} = \sqrt{-\bar{\nabla}^2 - \frac{\bar{R}}{d}} \xi_{\mu} ; \qquad \sigma' = \sqrt{-\bar{\nabla}^2} \sqrt{-\bar{\nabla}^2 - \frac{\bar{R}}{d-1}} \sigma'$$

Gauge invariant quantities  $s = h - \bar{\nabla}^2 \sigma \qquad h_{\mu\nu}^{TT}$ 

 $\mu\nu$ 

### Gauge fixing and ghosts

We shall use here the so called physical gauge fixing: set to zero the gauge dependent fluctuations. Therefore in the path integral there remain two kind of gauge invariant fluctuations: s and  $h_{\mu\nu}^{TT}$ 

We face two possible GF choices:

I:  $\xi'_{\mu} = 0$ , h = const. II:  $\xi'_{\mu} = 0$ ,  $\sigma' = 0$ 

Remark: for compact spaces (e.g. a sphere) no diffeomorphism can change the constant mode of h.

Faddeev Popov determinants: varying the GF conditions.

$$\delta(\xi'_{\mu}) \qquad \det\left(\sqrt{-\bar{\nabla}^2 - \frac{\bar{R}}{d}}\right)$$
  
$$\delta(h - \text{const}) \qquad \det(\sqrt{-\bar{\nabla}^2})$$
  
$$\delta(\sigma') \qquad \det\left(\sqrt{-\bar{\nabla}^2 - \frac{\bar{R}}{d-1}}\right)$$

**f(R) truncation:** 
$$\Gamma[g_{\mu\nu}] = \int d^d x \sqrt{g} f(R)$$

Using gauge invariant variables and the Lichnerowicz operators the Hessian looks very simple:

$$\begin{split} I_{exp}^{(2)} &= -\frac{1}{4} f'(\bar{R}) h_{\mu\nu}^{TT} \Big( \Delta_2 - \frac{2}{d} \bar{R} \Big) h^{TT \, \mu\nu} \\ &+ \frac{d-1}{4d} s \Big[ \frac{2(d-1)}{d} f''(\bar{R}) \Big( \Delta_0 - \frac{\bar{R}}{d-1} \Big) + \frac{d-2}{d} f'(\bar{R}) \Big] \Big( \Delta_0 - \frac{\bar{R}}{d-1} \Big) s \\ &+ h \Big( \frac{1}{8} f(\bar{R}) - \frac{1}{4d} f'(\bar{R}) \bar{R} \Big) h. \end{split}$$

Then on a maximally symmetric space (sphere) and using the rescaled gauge invariant variable:

$$\begin{split} &\frac{1}{2} \int dx \sqrt{\bar{g}} \left[ -\frac{1}{2} f'(\bar{R}) h^{TT}{}_{\mu\nu} \left( -\bar{\nabla}^2 + \frac{2\bar{R}}{d(d-1)} \right) h^{TT}{}^{\mu\nu} \right. \\ &+ \frac{(d-1)^2}{d^2} s' \left( f''(\bar{R}) \left( -\bar{\nabla}^2 - \frac{\bar{R}}{d-1} \right) + \frac{(d-2)}{2(d-1)} f'(\bar{R}) \right) s' \\ &+ h \left( \frac{1}{4} f(\bar{R}) - \frac{1}{2d} \bar{R} f'(\bar{R}) \right) h \end{split}$$

$$r' = \sqrt{-\bar{\nabla}^2 - \frac{R}{d-1}}s$$

#### To be compared with...

(Codello-Percacci\_Rahmede, Demmel-Saueresseig-Zanusso, Eichhorn)

Imposing a physical gauge on  $\xi'_{\mu}$  and h it is easy to see that only the vector ghots contribution survives. In Einstein gravity the scalar does not propagate. Same result if using De Donder gauge fixing.

#### Flow Equation

We consider the following family of coarse-graining schemes, depending on three endomorphisms. which affect the summation of the fluctuations of different spin.

 $P_k(\Box) = \Box + R_k(\Box), \quad \Box = \Delta + E_{(s)}, \quad \Delta = -\nabla^2,$ 

The endos are defined by three real parameters:  $E_{(2)} = -\alpha \bar{R}, \quad E_{(0)} = -\beta \bar{R}, \quad E_{(1)} = -\gamma \bar{R}$ 

 $E_{(2)} = -\alpha \bar{R}, \quad E_{(0)} = -\beta \bar{R}, \quad E_{(1)} = -\gamma \bar{R}$ gauge invariant vector ghost (spin=2,0) (spin=1)

Flow of the effective average action (we consider d=4):

$$\begin{split} \dot{\Gamma}_{k} &= \frac{1}{2} \mathrm{Tr}_{(2)} \left[ \frac{\dot{f}'(\bar{R}) R_{k}(\Box) + f'(\bar{R}) \dot{R}_{k}(\Box)}{f'(\bar{R}) \left( P_{k}(\Box) - E_{(2)} + \frac{2}{d(d-1)} \bar{R} \right)} \right] \\ &+ \frac{1}{2} \mathrm{Tr}_{(0)} \left[ \frac{\dot{f}''(\bar{R}) R_{k}(\Box) + f''(\bar{R}) \dot{R}_{k}(\Box)}{f''(\bar{R}) \left( P_{k}(\Box) - E_{(0)} - \frac{1}{d-1} \bar{R} \right) + \frac{d-2}{2(d-1)} f'(\bar{R})} \right] \\ &- \frac{1}{2} \mathrm{Tr}_{(1)} \left[ \frac{\dot{R}_{k}(\Box)}{P_{k}(\Box) - E_{(1)} - \frac{1}{d} \bar{R}} \right], \end{split}$$

This scheme is spectrally adjusted: coarse-graining is affected by the shape of f(R)!

(optimized cutoff)

 $R_k(z) = (k^2 - z)\theta(k^2 - z)$  (Litim)

The traces can be evaluated in different ways:

- Heat kernel expansion
- <u>spectral sums</u> on the sphere

Both have some limitations in the IR and for large R.

#### Flow from Heat Kernel

The Heat Kernel expansion valid at small R leads to the following well known construction:

$$\operatorname{Tr}_{(s)}[W(\Box)] = \frac{1}{(4\pi)^{d/2}} \int_{S^d} d^d x \sqrt{\bar{g}} \sum_{n \ge 0} b_{2n}^{(s)} Q_{d/2-n}[W] \bar{R}^n \qquad Q_m[W] = \frac{1}{\Gamma(m)} \int_0^\infty dz z^{m-1} W[z] = \frac{1}{\Gamma$$

Then we get the following HK coefficients

|        | $b_0$ | $b_2$                   | $b_4$                                      | $b_6$                                                                   |
|--------|-------|-------------------------|--------------------------------------------|-------------------------------------------------------------------------|
| Spin 0 | 1     | $\frac{1}{6} + \beta$   | $\frac{-511+360\beta+1080\beta^2}{2160}$   | $\frac{19085 - 64386\beta + 22680\beta^2 + 45360\beta^3}{272160}$       |
| Spin 1 | 3     | $\frac{1}{4} + 3\gamma$ | $\frac{-607+360\gamma+2160\gamma^2}{1440}$ | $\tfrac{37259 - 152964\gamma + 45360\gamma^2 + 181440\gamma^3}{362880}$ |
| Spin 2 | 5     | $-\frac{5}{6}+5\alpha$  | $\frac{-1-360\alpha+1080\alpha^2}{432}$    | $\frac{311 - 126\alpha - 22680\alpha^2 + 45360\alpha^3}{54432}$         |

Ac

Dimensionless variables:  $r \equiv \bar{R}k^{-2}$   $\varphi(r) = k^{-d}f(\bar{R})$  d = 4The flow equation, for an optimized cutoff reads

$$32\pi^{2}(\dot{\varphi} - 2r\varphi' + 4\varphi) = \frac{c_{1}(\dot{\varphi}' - 2r\varphi'') + c_{2}\varphi'}{\varphi'[6 + (6\alpha + 1)r]} + \frac{c_{3}(\dot{\varphi}'' - 2r\varphi''') + c_{4}\varphi''}{[3 + (3\beta - 1)r]\varphi'' + \varphi'} - \frac{c_{5}}{4 + (4\gamma - 1)r}$$

$$\begin{aligned} c_1 &= 5 + 5 \left(3\alpha - \frac{1}{2}\right) r + \left(15\alpha^2 - 5\alpha - \frac{1}{72}\right) r^2 + \left(5\alpha^3 - \frac{5}{2}\alpha^2 - \frac{\alpha}{72} + \frac{311}{9072}\right) r^3, \\ c_2 &= 40 + 15(6\alpha - 1)r + \left(60\alpha^2 - 20\alpha - \frac{1}{18}\right) r^2 + \left(10\alpha^3 - 5\alpha^2 - \frac{\alpha}{36} + \frac{311}{4536}\right) r^3, \\ c_3 &= \frac{1}{2} \left[1 + \left(3\beta + \frac{1}{2}\right) r + \left(3\beta^2 + \beta - \frac{511}{360}\right) r^2 + \left(\beta^3 + \frac{1}{2}\beta^2 - \frac{511}{360}\beta + \frac{3817}{9072}\right) r^3\right], \\ c_4 &= 3 + (6\beta + 1)r + \left(3\beta^2 + \beta - \frac{511}{360}\right) r^2, \\ c_5 &= 12 + 2(12\gamma + 1)r + \left(12\gamma^2 + 2\gamma - \frac{607}{180}\right) r^2. \end{aligned}$$

Inclusion of the constant mode for h.

$$\operatorname{Id} \qquad \quad \frac{8}{3} \frac{r^2}{16 + 2\varphi - r\varphi}$$

#### Flow from Spectral Sum

The Heat Kernel expansion valid at small R leads to the following well known construction:

$$\operatorname{Fr}_{(s)}[W(\Delta + E_{(s)})] = \sum_{l} M_{l}(d, s)W(\lambda_{l}(d, s) + E_{(s)})$$

On the sphere the laplacian has eigenvalues  $\lambda_l(d, s)$ with multiplicities  $M_l(d, s)$ 

For an optimized cutoff then coarse-graining is regulated by  $R_k(\lambda_l(d,s) + E_{(s)})$ with support  $\lambda_l(d,s) + E_{(s)} \leq k^2$ , that is  $l \leq \overline{l}^{(s)}$  for

$$\bar{l}^{(2)} = -\frac{3}{2} + \frac{1}{2}\sqrt{48\frac{k^2}{R} + 17 + 48\alpha}, \ \bar{l}^{(1)} = -\frac{3}{2} + \frac{1}{2}\sqrt{48\frac{k^2}{R} + 13 + 48\gamma}, \ \bar{l}^{(0)} = -\frac{3}{2} + \frac{1}{2}\sqrt{48\frac{k^2}{R} + 9 + 48\beta}$$

Averaging sums with  $\bar{l}_{(s)}$  and  $\bar{l}_{(s)}-1$ 

(Benedetti-Caravelli, Demmel-Saueresseig-Zanusso)

$$32\pi^{2}(\dot{\varphi} - 2r\varphi' + 4\varphi) = \frac{c_{1}(\dot{\varphi}' - 2r\varphi'') + c_{2}\varphi'}{\varphi'[6 + (6\alpha + 1)r]} + \frac{c_{3}(\dot{\varphi}'' - 2r\varphi''') + c_{4}\varphi''}{[3 + (3\beta - 1)r]\varphi'' + \varphi'} - \frac{c_{5}}{4 + (4\gamma - 1)r}$$

$$c_{1} = \frac{5}{108} [6 + (6\alpha - 1)r] [6 + (6\alpha + 1)r] [3 + (3\alpha - 2)r],$$

$$c_{2} = \frac{5}{108} [6 + (6\alpha - 1)r] [144 + 9(20\alpha - 3)r + 2(6\alpha + 1)(3\alpha - 2)r^{2}],$$

$$c_{3} = \frac{1}{72} [2 + (2\beta + 3)r] [3 + (3\beta - 1)r] [6 + (6\beta - 5)r],$$

$$c_{4} = \frac{1}{8} [2 + (2\beta - 1)r] [12 + (12\beta + 11)r],$$

$$c_{5} = 12 + 3(8\gamma + 1)r + \left(12\gamma^{2} + 3\gamma - \frac{19}{6}\right)r^{2}.$$

Inclusion of the constant mode for h.

$$\frac{8}{3} \frac{r^2}{16 + 2\varphi - r\varphi}$$

### Quadratic FP "solutions"

With probability one in the space of the endomorphisms the asymptotic behavior goes like  $r^2$ Writing the FP equation as N/D, N=0 is a quintic polynomial. The ansatz  $\varphi(r) = g_0 + g_1 r + g_2 r^2$ solves N=0 for several sets of the unknowns  $g_0, g_1, g_2, \alpha, \beta, \gamma$ 

#### Heat Kernel flow

| $10^3 \alpha$ | $10^3\beta$ | $10^3\gamma$ | $10^{3}\tilde{g}_{0*}$ | $10^{3}\tilde{g}_{1*}$ | $10^{3}\tilde{g}_{2*}$ | θ    |
|---------------|-------------|--------------|------------------------|------------------------|------------------------|------|
| -593          | -73.5       | -177         | 7.28                   | -8.42                  | 1.71                   | 3.78 |
| -616          | -70.7       | -154         | 7.42                   | -8.64                  | 1.74                   | 3.75 |
| -564          | -80.3       | -168         | 6.82                   | -8.77                  | 1.83                   | 3.70 |
| -543          | -87.4       | -126         | 6.31                   | -9.47                  | 2.06                   | 3.43 |
| -420          | -100.5      | -3.19        | 4.90                   | -10.2                  | 2.83                   | 2.93 |
| -173          | -2.98       | 244          | 4.53                   | -8.34                  | 2.70                   | 2.18 |
| -146          | -64973      | 250          | 2.90                   | -10.7                  | 0.0006                 | 2.58 |
| -109          | -22267      | 307          | 2.90                   | -10.4                  | 0.0045                 | 2.45 |
| 109           | -3564       | 526          | 2.84                   | -7.83                  | 0.094                  | С    |
| 377           | -1305       | 794          | 2.57                   | -4.37                  | 0.214                  | >4   |

#### Spectral sum flow

| $10^3 \alpha$ | $10^3\beta$ | $10^3\gamma$ | $10^3 \tilde{g}_{0*}$ | $10^3 \tilde{g}_{1*}$ | $10^{3}\tilde{g}_{2*}$ | θ    |
|---------------|-------------|--------------|-----------------------|-----------------------|------------------------|------|
| -97.8         | 38.9        | 319          | 4.31                  | -7.46                 | 2.85                   | 2.03 |
| -438          | -122        | -21.0        | 4.67                  | -10.4                 | 3.14                   | 3.2  |
| 134           | -2765       | 551          | 2.82                  | -7.70                 | 0.13                   | С    |
| 505           | -715        | 922          | 2.16                  | -2.65                 | 0.21                   | > 4  |
| -564          | -63.8       | -147         | 7.83                  | -6.80                 | 1.35                   | > 4  |

Various solutions have just two relavant directions (UV attractive) with real eigenvalues  $(-4, -\theta)$ 

Note that for these values there exists at least one r > 0 for which D=0. Thefore such solutions are defined everywhere apart from at least one isolated point!

The equation of motion 2f - Rf' = 0 is satisfied by R>0 and there is no redundancy of the eigenperturbations in the domain of existence.

## Global solutions: some parameter constraints

Are there non trivial and not simple global solutions? Analysis for the spectral sum flow.

We assume at the beginning the absence of moving singularities. Fixed singularities: look at coeff. of  $\varphi'''$ ,  $1/\varphi'$  and at the ghost term.

 $\varphi^{\prime\prime\prime}$   $1/\varphi^{\prime}$  Ghost term

zeros of  $rc_3$ 



Example:  $\alpha = -\frac{1}{6}, \beta = \frac{1}{3}, \gamma \ge \frac{1}{4}$ 

From  $\beta$  we get 2 fixed singularities at positive r=0, 2. From  $\alpha$  we allow the existence of an extremum at r=6/5, 3. From  $\gamma$  we ensure that no other fixed singularities arise from the ghost term.

## A global solution: numerical analysis

We consider the case:  $\alpha = -\frac{1}{6}$ ,  $\beta = \frac{1}{3}$ ,  $\gamma = \frac{1}{2}$ 

Polynomial analysis around the origin up to order 16 (black): it becomes very stable and suggests indeed a global solution with a minimum in 6/5.



2 relevant direction. Real Critical exponents: 4, 1.83

Regularity conditions at r=0 and r=2 together with the condition of minimum at r=6/5 fix completely the three parameters for the Cauchy problem.

#### **Strategy:**

1) Provide analytical polynomial expansions in terms of two parameters at the points 0, 6/5, 2.

| 0                    | 6/5                                    | 2                          |
|----------------------|----------------------------------------|----------------------------|
| arphi'(0),arphi''(0) | $arphi(6/5),arphi^{\prime\prime}(6/5)$ | $\varphi'(2),\varphi''(2)$ |

- 2) Evolve num. from 0+ to 6/5 imposing the condition of minimum  $\rightarrow$  curve in  $\varphi'(0), \varphi''(0)$ Evolve num. from 2- to 6/5 imposing the condition of minimum  $\rightarrow$  curve in  $\varphi'(2), \varphi''(2)$
- 3) Map the two curves into two curves in 6/5 in the plane  $\varphi(6/5), \varphi''(6/5)$
- 4) The intersection fixes completely the parameters of the solution.

## Numerical analysis 2

Evolution from 0+ to 6/5 (red point at polynomial solution)



Evolution from 2- to 6/5



Remark: the evolution between betweek 2- and 6/5 encounters also moving singularities in <u>other</u> regions of the parameter plane!

Intersecting the curves mapped to r=6/5



The intersecting solution is slightly deformed compared to the approximate polynomial solution.

## Numerical analysis 3

The solution (blue) is constructed from a numerical evolution in the intervals 6/5- to 0, 6/5+ to 2- and from 2+ to r>2 and using the analytic polynomial expansions around 6/5 and 2. Order 16 polynomial solution around the origin (red).

Possible to study at polynomial expansion around the minimum. It looks as a better approximation (green curve, order 16).



0.008 0.006 0.004 0.002 3.0 -0.002 -0.004

Zooming close to the origin:



Asymptotic expansion:



17

Comparison of asymptotic expansion (purple) with numerical solution at large r (blue) after tuning the parameter A.



## Some consideration on the domain of f(r).

The Heat Kernel expansion is reliable only for small  $r = R/k^2$  so that there is no access at fixed R to the IR limit.

For fhe spectral sum approach we considered the average of the sums for all the spins of modes with two different upper bounds, both starting from 2 because of the Killing symmetries.

 $2 \le l \le \bar{l}^{(s)}$  ,  $2 \le l \le \bar{l}^{(s)} - 1$ 

For large  $r = R/k^2$  depending on the endomorphisms there might be no room to some modes.

On the other end it is also not clear what means a coarse-graining at length scales larger that the dimension of the compact manifold. Therefore one might question if at fixed R one shoud look for a global scaling solution defined on the full positive semiaxes. The situation looks better for noncompact background manifolds.

## Conclusions

- We have revisited the f(R) truncation using a non linear parametrization of the exponential form in a single metric truncation.
- The choice of gauge invariant fluctuations and gauge fixing, based on a spin decomposition leads to simple structure of the Hessian.
- The flow equation are constructed with a spectrally adjusted coarse-graining scheme, using either and HK expansion or a spectral sum on the sphere.
- Pure quadratic solutions valid everywhere apart from finite points exist. Other global solutions can be constructed numerically. The latter have typically 2 relevant directions.
- The sphere, which is a compact manifold poses some limitations in the cosntruction of a flow in the IR limit. As already noted an upper bound in the curvature may appears even if the equation defines f(R) everywhere.

### Outlook

- Pure cutoff schemes lead to more complicated flow equations. Not yet analyzed.
- A similar analysis on non compact backgrounds has been started.
- An urgent issue is the one related to background independence.
- Inclusion of matter (e.g. scalar) at this level:  $F_k(\rho, R)$
- Inclusion of the anomalous dimension.
- More general truncations.

Thank you!