From groups and knots to BH entropy

Hanno Sahlmann

Department of Physics
University of Erlangen-Nürnberg

0. Introduction

Loop Quantum gravity

Quantum theory of gravity.

Some of the assumptions:

- space-time 3+1 dimensional
- Einstein gravity
- quantization of geometry (not topology, not diff manifold,...)
- general covariance ($->$ use background structures as little as possible)

Some of the consequences:

- QFT of geometry
- discrete, combinatorial picture: "Atoms" of space(-time)
- not easy to interpret operationally

1. Quantized space

Spin networks

Penrose (1971):

Spin network:

- directed graph (may be embedded in 3-dim manifold)
- $\operatorname{SU(2)}$ irrep ($\mathrm{spin} \mathrm{j}_{\mathrm{e}}$) associated to each edge e
- invariant tensor at each vertex

$$
I_{v} \in \operatorname{Inv}\left(\bigotimes_{e \text { at } v} j_{e}\right)
$$

Quantum (spatial) geometry <--> QM of spin:

Trivial example: existence of invariant tensor, quantum triangle

Chromatic evaluation:
Penrose invents way to associate number to spin network via graphical calculus Example:

Uses it to give inner product on spin networks, beginning of quantum theory of geometry

Note for later:

Virtual edges can be used to always go to trivalent case:

c_{k} can be interpreted in terms of geometry.

Beautiful thing:

In loop quantum gravity:
spin networks = states of non-commutative spatial geometry
is result of quantization of gravity.

Geometric operators: [Rovelli+Smolin, Ashtekar+Lewandowski]

Area

$$
\left.\widehat{A}_{\square}\left|\bigcirc_{\mathrm{j}}\right\rangle=\left.8 \pi \beta l_{p}^{2} \sqrt{j(j+1)}\right|_{\mathrm{j}}\right\rangle
$$

more generally:

$$
\begin{aligned}
& \Delta_{v}=\left(\sum_{e \text { above } S} \vec{J}_{e}-\sum_{e \text { below } S} \vec{J}_{e}\right)^{2} \\
& \left.\widehat{A}\right|_{v}=4 \pi \beta \ell_{P}^{2} \sqrt{\Delta_{v}}
\end{aligned}
$$

Spectrum is purely discrete

Area is non-commutative

$$
[\widehat{A} \square \quad, \widehat{A} \quad] \neq 0
$$

Volume: Action on intertwiner spaces

Picture: Vertices as atoms of space
More quantitatively [Baez, ... , Bianchi, Dona,Speziale]
n valent vertex <--> quantized flat polyhedron

Some examples for monochromatic 4-vertex (from Bachelors thesis of K.Eder)

Derivations (sketch!)

Ashtekar's discovery:

GR can be formulated such that (non-reduced) phase space is that of $\operatorname{SU}(2)$ Yang-Mills

$$
\begin{aligned}
S[e, \omega] & \sim \int *(e \wedge e) \wedge F(\omega)+\frac{1}{\gamma} e \wedge e \wedge F(\omega) \\
& e_{a}^{I}: \text { Tetrad } \quad \cdot \omega_{a}^{I J}: \mathrm{SO}(3,1) \text { connection } \\
& *: \text { "internal Hodge" } \\
& \sim \int d t \int_{\Sigma_{t}} E_{i}^{a} \dot{A}_{a}^{i}-\omega_{0}^{i 0} G_{i}+e_{0}^{i} C_{a}+e_{0}^{0} C
\end{aligned}
$$

- space-time split
- covering group $\mathrm{SO}(3,1)->\mathrm{SL}(2, \mathrm{C})$

- partial gauge fixing (time gauge) $\mathrm{SL}(2, \mathrm{C}) \rightarrow>\mathrm{SU}(2)$

phase space formulation

- (A,E) phase space coordinates
- (first class) constraints G, $\mathrm{C}_{\mathrm{i}}, \mathrm{C}$

$$
\begin{array}{rll}
A & \longmapsto & h_{e}=\operatorname{Pexp} \int_{e}-A \\
E & \longmapsto & E_{S, f}=\int_{S} E^{i} f_{i}
\end{array}
$$

Quantum algebra

$$
\begin{gathered}
{\left[h_{\alpha}, h_{\alpha^{\prime}}\right]=0} \\
{\left[E_{\square, f} \bigcirc\right]=8 \pi \beta l_{\mathrm{P}}^{2} f(p)^{I} \bigcirc,} \\
{\left[\left[E_{\square, f}, E_{\square}\right], \bigcirc\right]=\left(8 \pi \beta l_{\mathrm{P}}^{2}\right)^{2} f(p)^{I} g(p)^{J}}
\end{gathered}
$$

Representation：［Rovelli＋Smolin，Ashtekar＋Lewandowski］
Combinatorial description

$$
\begin{aligned}
& \rho\rangle=| \rho\rangle \\
& k|\nabla\rangle=\left|\rho_{\mathrm{k}}\right\rangle \\
& 饣_{1 / 2}\left|\nabla_{1 / 2}\right\rangle=\left|饣_{1}\right\rangle+| \rangle \\
& \langle\varphi \mid \boldsymbol{\nu}\rangle=2 j+1 \\
& \langle Q \mid R\rangle=0 \\
& \widehat{E}_{\square}|O\rangle=f^{\prime}(\mathrm{p})\left|\widehat{i}_{i}\right\rangle
\end{aligned}
$$

No background geometry used anywhere．Spatial diffeomorphisms unitarily represented．

Uniqueness：［HS，LOST，Fleischhack］
This is the only cyclic rep with spatial diffeo invariant vacuum．

Analytic description:

Spin nets are associated to gauge invariant functionals.

$$
\Psi[A]=\pi_{j_{1}}\left(h_{e_{1}}[A]\right)^{m_{1}}{ }_{n_{1}} \pi_{j_{2}}\left(h_{e_{2}}[A]\right)^{m_{2}}{ }_{n_{2}} \pi_{j_{3}}\left(h_{e_{3}}[A]\right)^{m_{3}}{ }_{n_{3}} \iota_{m_{1} m_{2} m_{3}} \iota^{n_{1} n_{2} n_{3}}
$$

Inner product: [Ashtekar+Lewandowski]

$$
\left\langle\Psi_{\gamma} \mid \Psi_{\gamma}^{\prime}\right\rangle=\int_{\mathrm{SU}(2)^{|\gamma|}} \prod_{i} \mathrm{~d} h_{i} \overline{\Psi\left(h_{1}, h_{2}, \ldots\right)} \Psi^{\prime}\left(h_{1}, h_{2}, \ldots\right)
$$

Spin nets are orthogonal (compare Peter-Weyl).
Hilbert space

$$
\mathcal{H}_{\mathrm{AL}}=\lim _{\gamma \rightarrow \infty} \mathcal{H}_{\gamma}=L^{2}\left(\overline{\mathcal{A}} / \overline{\mathcal{G}}, \mathrm{d} \mu_{\mathrm{AL}}\right)
$$

projective/inductive limits

Note: Higher dimensions

Can embed gravity in $\mathrm{D}+1$ in $\mathrm{SO}(\mathrm{D}+1)$-Yang Mills phase space.
[Bodendorfer, Thiemann, Thurn 2013]

Canonical pair:

- A: SO(D+1) connection
- π : tensor density corresponding momentum
with:
- simplicity constraints $\Rightarrow \pi$ encodes d-bein
- Gauss, diffeo, Hamilton constraints

2. Quantized space-time

(see also D. Oriti's talk later this afternoon!)

Spin foam [Ponzano-Regge, Baez, Rovelli+Reisenberger,...]
For group G:

- oriented 2-complex (with boundary) C
- labeling of faces with irreps of G
- labeling of edges with interwiners between face-reps

Amplitude:

$$
Z:\{\mathrm{C}, \text { boundary data }\} \longrightarrow \mathbb{C}
$$

Interpretation: Transition amplitude.
Typically:

$$
Z=\sum_{\{f\} \rightarrow \text { Irrep } G} \sum_{\iota} \prod_{f} A_{f}(\pi) \prod_{v} A_{v}\left(\pi_{e}, \iota_{n}\right)
$$

EPRL-FK vertex amplitude:

$$
A_{v}\left(j_{e}, \iota_{n}\right)=\left(Y T_{\left\{j_{e}, \iota_{n}\right\}}\right)\left(\mathbb{I}_{\mathrm{SL}(2, \mathbb{C})}\right)
$$

- T: vertex spin network
- Y: map $S U(2)$ spin nets $->S L(2, C)$ spin nets For choice of SU(2) subgroup

$$
\mathcal{H}_{p, k}=\bigoplus_{j=k}^{\infty} \mathcal{H}_{p, k}^{j} \quad Y: \quad \pi^{j}(\cdot)^{m}{ }_{m^{\prime}} \longmapsto \pi_{\beta j, j}^{j}(\cdot)^{m}{ }_{m^{\prime}}
$$

Asymptotics

Vertex amplitude asymptotes to Regge-action when evaluated on boundary coherent state

$$
\sum_{j_{e}} \sum_{\iota_{n}} A_{v}^{\mathrm{EPRL}}\left(j_{e}, \iota_{n}\right) \Psi^{t}\left(j_{e}, \iota_{n}\right) \simeq e^{i S_{\text {Regge }}}+e^{-i S_{\text {Regge }}}
$$

where Ψ is peaked on boundary geometry of 4-simplex, and $S_{\text {Regge }}$ is Regge action.

Vertex: Atom of space-time?

Derivations (sketch!)

1) Canonical

- Diff constraint: Roughly speaking

- Hamilton constraint

using formal expansion

$$
\delta(\vec{x})=\int \exp (i \vec{k} \cdot \vec{x}) \mathrm{d} \vec{k}=\int\left(1+i \vec{k} \cdot \vec{x}+\frac{1}{2}(i \vec{k} \cdot \vec{x})^{2}+\ldots\right) \mathrm{d} \vec{k}
$$

Projector on kernel

$$
\begin{aligned}
P_{\mathrm{phys}}= & \prod_{x} \delta(\widehat{C}(x))=\int D N \exp \left(i \int d x N(x) \widehat{C}(x)\right) \\
= & \mathbf{1}+i \int D N \int d x N(x) \widehat{C}(x) \\
& -\frac{1}{2} \int D N D N^{\prime} \int d x d x^{\prime} N(x) \widehat{C}(x) N^{\prime}\left(x^{\prime}\right) \widehat{C}\left(x^{\prime}\right)+\ldots
\end{aligned}
$$

Has expansion of matrix elements labeled by 2-complexes

2) covariant

- $S[B, \omega, \phi]=\int B \wedge F(\omega)+\phi B \wedge B$
with phi enforcing simplicity

$$
B=*(e \wedge e)+\frac{1}{\beta} e \wedge e
$$

- BF theory topological, Z can give exact path integral

$$
\begin{equation*}
Z=\sum_{\left\{\pi_{f}\right\}} \sum_{\left\{I_{e}\right\}} \prod_{f} A_{f}\left(\pi_{f}\right) \prod_{v} \tag{II}
\end{equation*}
$$

- Y constructed in such a way that simplicity holds in a sense for the $\operatorname{SL}(2, \mathrm{C})$ representations

$$
\mathcal{H}_{p, k}=\bigoplus_{j=k}^{\infty} \mathcal{H}_{p, k}^{j} \quad Y: \quad \pi^{j}(\cdot)^{m}{ }_{m^{\prime}} \longmapsto \pi_{\beta j, j}^{j}(\cdot)^{m}{ }_{m^{\prime}}
$$

But:

- divergencies in the Lorentzian case
- summing over spin-foams
- renormalization?

Ongoing work:

Course graining, renormalization [Dittrich, Oriti, Bahr, Ben Geloun, Steinhaus, ...], Tensor models [Gurau, Benedetti,...]

3. Why could LQG be right?

Classical limit:

- covariant formulation ---> Regge gravity
- canonical formulation ---> coherent states describing approx. classical metrics

Cosmology:

- resolution of singularities
- consistent picture of inflationary phase of universe

3d gravity:

- canonical and covariant picture equivalent
- standard picture obtained

Black holes:

- Entropy for large class of black holes

4. Black holes in LQG

Isolated horizons: [Ashtekar et al, Engle+Noui+Perez]
Quasilocal notion of BH horizon, strong enough for BH thermodynamics.
Boundary condition at horizon

$$
\underset{\Leftarrow}{F^{I}}\left(A^{\beta}\right)=\frac{\left(1-\beta^{2}\right) \pi}{a_{H}} \sum_{\Leftarrow}^{I}
$$

Symplectic structure aquires CS boundary term.
 horizon and endow it with area.

Punctures = CS particles.

$$
\mathcal{H}_{\left(j_{1}, j_{2} \ldots\right)}=\mathcal{H}_{C S}\left(j_{1}, j_{2} \ldots\right) \otimes \mathcal{H}_{\text {bulk }}
$$

Entropy:

For given puncture structure

$$
\mathcal{H}_{a_{H}}=\bigoplus_{4 \pi \beta \sum_{i} \sqrt{j_{i}\left(j_{i}+1\right)} \approx a_{H}} \mathcal{H}_{\left(j_{1}, j_{2} \ldots\right)}
$$

Infinite dimensional. For entropy ignore bulk part.
Count: All sequences j_{1}, j_{2}, \ldots such that

$$
4 \pi \beta \sum_{i} \sqrt{j_{i}\left(j_{i}+1\right)} \leq a_{H}
$$

with multiplicity approx $\operatorname{dim} \operatorname{Inv}\left(j_{1} \otimes j_{2} \otimes \ldots\right)$

Result:

$$
\ln N_{\leq}(a)=\frac{\widetilde{\beta}}{2 \pi \beta} \frac{a_{H}}{4 l_{P}^{2}}-\frac{3}{2} \ln \left(a_{H} / l_{P}^{2}\right)+O\left(a_{H}^{0}\right)
$$

reproduces Bekenstein-Hawking for correct choice of β.
Similar results for more general types of BH with same choice of β.

Intrinsic description?

Quantum boundary condition: Want

But F not well defined in LQG. Thus exponentiate, using non-abelian Stokes' theorem:

$$
\begin{array}{rlrl}
h_{\partial S}[A] & =\mathcal{P} \exp \oiint_{S} \mathcal{F}[A] \mathrm{d}^{2} s & \boldsymbol{W}_{S} & :=\mathcal{P} \exp \oiint_{S} \mathcal{E}[A] \mathrm{d}^{2} s \\
\mathcal{F} & =h F h^{-1}[A] & \mathcal{E}=c h(* E) h^{-1}
\end{array}
$$

Then demand quantum boundary condition:

$$
\operatorname{tr}\left(h_{\partial S}\right) \Psi=\operatorname{tr}\left(W_{S}\right) \Psi
$$

Can W_{s} be defined? Does the equation have solutions?

Non-Abelian Stokes theorem (I. Ya. Aref'eva 1980):

$$
h_{\partial S}[A]=\mathcal{P} \exp \oiint_{S} \mathcal{F}[A] \mathrm{d}^{2} p
$$

$$
\begin{aligned}
\mathcal{P} \exp \oiint_{S} \mathcal{F}[A] \mathrm{d}^{2} p & :=\mathcal{P} \exp \oiint_{S} h_{e_{p}}^{-1} F(p) h_{e_{p}} \mathrm{~d}^{2} p \\
& =\mathbb{I}+\int_{S} h_{e_{p}}^{-1} F(p) h_{e_{p}} \mathrm{~d}^{2} p+\int_{p, p^{\prime} \in S^{2}: p \leq p^{\prime}} \int_{e_{p}}^{-1} F(p) h_{e_{p}} h_{e_{p}^{\prime}}^{-1} F(p) h_{e_{p}^{\prime}} \mathrm{d}^{2} p \mathrm{~d}^{2} p^{\prime}+\ldots
\end{aligned}
$$

Key object: [HS+Thiemann]

$$
\begin{aligned}
& \boldsymbol{W}_{S}:= \mathcal{P} \\
& \exp \oiint_{S} \mathcal{E}[A, E](s) \mathrm{d}^{2} s \\
&=\mathbb{I}_{2}+8 \pi i c \int_{S} \operatorname{Ad}_{h_{s}}(* \widehat{E}(s)) \\
&+8 \pi i c \int_{S^{2}} K_{s, s^{\prime}} \operatorname{Ad}_{h_{s}}(* \widehat{E}(s)) \operatorname{Ad}_{h_{s^{\prime}}}\left(* \widehat{E}\left(s^{\prime}\right)\right) \\
&+\ldots
\end{aligned}
$$

Can we make it well defined?

First step: LQG E is operator (matrix) valued distribution, factorizes:

$$
\begin{aligned}
\widehat{E}_{I}^{a}(s)=\widehat{E}^{a}(s) \widehat{E}_{I}(s): & {\left[\widehat{E}_{I}(s), \widehat{E}_{J}(s)\right]=\epsilon_{I J}{ }^{K} \widehat{E}_{K}(s) } \\
& \widehat{E}^{a}(s) h_{e}[A]=e^{a}(s) h_{e}[A], \quad e^{a}(s)=\int \mathrm{d} t \dot{e}^{a}(t) \delta^{3}(s, e(t)),
\end{aligned}
$$

Two problems:

1) Delta functions at integration boundaries.

Solution: Standard procedure gives factor $1 / n$!
2) Ordering problem: How to order the E_{I} ?

Solution: Harish-Chandra/Duflo isomorphism

earlier suggested in somewhat different context [Alekseev et al, Freidel]

Harish-Chandra/Duflo map

Given semisimple Lie algebra \mathfrak{g}.
Kirillov-Kostant brackets
Quantization map

$$
\left[T_{I}, T_{J}\right]=0, \quad\left\{T_{I}, T_{J}\right\}=f_{I J}^{K} T_{K}
$$

$$
\begin{aligned}
& \Upsilon: \operatorname{Sym}(\mathfrak{g}) \longrightarrow \mathrm{U}(\mathfrak{g}) \\
& \operatorname{Sym}^{G}(\mathfrak{g}) \longleftrightarrow \mathrm{Z}(\mathrm{U}(\mathfrak{g}))
\end{aligned}
$$

$$
\left[T_{I}, T_{J}\right]=f_{I J}^{K} T_{K}
$$

which is an Isomorphism
It's a refinement of symmetric quantization (PBW) χ

$$
\Upsilon=\chi \circ j^{\frac{1}{2}}(\partial)
$$

where

$$
j^{\frac{1}{2}}(x)=\operatorname{det}^{\frac{1}{2}}\left(\frac{\sinh \frac{1}{2} \mathrm{ad} x}{\frac{1}{2} \mathrm{ad} x}\right)=1+\frac{1}{48}\|x\|^{2}+\ldots \quad \quad \partial^{I} T_{J}=\delta_{J}^{I}
$$

Example: For SU(2)

$$
\Upsilon\left(\|E\|^{2}\right)=\Delta_{\mathrm{SU}(2)}+\frac{1}{8} \mathbb{I}
$$

This makes W_{S} well defined (albeit hard to determine explicitly)

General properties:

For suitably chosen path systems

$$
W_{S_{1}+S_{2}}=W_{S_{1}} W_{S_{2}}, \quad W_{S}^{\dagger}=W_{-S}
$$

Under gauge transformations

$$
U_{g} W_{S} U_{g}^{-1}=g(b) W_{S} g(b)^{-1}
$$

For SU(2):

$$
\begin{aligned}
\operatorname{tr}_{j}\left(W_{S}\right)\left|j^{\prime}, m\right\rangle & =\underbrace{\frac{\sin \left[\pi c(2 j+1)\left(2 j^{\prime}+1\right)\right]}{\sin \left[\pi c\left(2 j^{\prime}+1\right)\right]}}_{=: \lambda_{j j^{\prime}}}\left|j^{\prime}, m\right\rangle \quad j, j^{\prime} \neq 0 \\
W_{S}|0,0\rangle & =\mathbb{I}|0,0\rangle
\end{aligned}
$$

Note: Eigenvalues can be written in terms of quantum integers

$$
\lambda_{j, j^{\prime}}=\frac{\left[(2 j+1)\left(2 j^{\prime}+1\right)\right]_{q}}{\left[2 j^{\prime}+1\right]_{q}} \quad[x]_{q}:=\frac{q^{x}-q^{-x}}{q-q^{-1}} \quad q=e^{\pi i c}
$$

They are related to

- Verlinde coefficients of $\operatorname{SU}(2)_{k}$ rational CFT ($k=1 / c$)
- Trace of the square of the R-matrix of $U_{q}(s u(2))$ on $j \otimes j$ '
and are precisely what to expect for holonomy around particle in SU(2) CS [Witten]

Back to black holes

Quantum boundary condition: For any \mathbf{S} in H and $c=1 / k=-\pi \beta\left(1-\beta^{2}\right) \ell_{\mathrm{P}}^{2} / 2 a_{H}$

$$
\operatorname{tr}\left(h_{\partial S}\right) \Psi=\operatorname{tr}\left(W_{S}\right) \Psi
$$

If we had a solution Ψ

- formula for simple loops:

$$
W_{\alpha}^{(j)} \Psi= \begin{cases}\lambda_{j j_{i}} \Psi & \alpha \text { around } p_{i} \\ \Psi & \alpha \text { trivial }\end{cases}
$$

- inv under small diffeos fixing punctures:
- reps on H only different mod k

$$
W_{\gamma} \Psi=W_{\phi(\gamma)} \Psi
$$

- nontrivial monodromy of punctures
- some fluxes transversal to surface well defined
- must be in new rep of HF algebra

Question: Do we have a representation? (WIP)

Have a good representation for the bulk and simple loops in H .
Extension to non- simple loops? Difficult to answer due to

1) Action of W_{S} Complicated: $\left.\quad W_{S}{ }^{\circ} \geq=\sum_{k} c_{k} I_{k}^{\circ}\right\rangle$

2)There are ∞ many Mandelstam identities to be satisfied. Checked some things, ex.

$$
\operatorname{tr}_{\frac{1}{2}}\left(W_{S_{1}}\right) \operatorname{tr}_{\frac{1}{2}}\left(W_{S_{2}}\right)\left|j_{1} j_{2}\right\rangle=\operatorname{tr}_{\frac{1}{2}}\left(W_{S_{1}+S_{2}}\right) \operatorname{tr}_{\frac{1}{2}}\left(W_{S_{1}} W_{-S_{2}}\right)\left|j_{1} j_{2}\right\rangle
$$

but not all.

Further question: Do we have SU(2) CS? (WIP)

- DOF remaining on horizon point to ISU(2) with particles
- would be nice: 3d Euclidean quantum gravity with particles on horizon
- Boundary conditions do not seem to fit constraints of ISU(2)-CS 100\%

Jones polynomial

Invariant of oriented knots. Usually defined via skein relations:

Examples:

$$
\begin{aligned}
J(\bigcirc) & =\frac{q-q^{-1}}{q^{1 / 2}-q^{-1 / 2}}=q^{1 / 2}+q^{-1 / 2} \\
J\left(H_{+}\right) & =1+q^{-1}+q^{-2}+q^{-3}
\end{aligned}
$$

Jones polynomial and SU(2)

Witten: Jones polynomial
is expectation value of $\mathrm{j}=1 / 2$ trace of holonomies in $\mathrm{SU}(2) \mathrm{CS}$

$$
\begin{aligned}
J(\alpha) & =\left\langle\operatorname{tr}\left(h_{\alpha}\right)\right\rangle_{\mathrm{CS}}=\int_{\overline{\mathcal{A}}} \operatorname{tr}\left(h_{\partial_{S}}\right)[A] e^{i S_{\mathrm{CS}}[A]} \mathrm{d} \mu[A] \\
S_{\mathrm{CS}} & =\frac{k}{4 \pi} \int_{M} \operatorname{tr}\left(A \wedge \mathrm{~d} A+\frac{2}{3} A \wedge A \wedge A\right)
\end{aligned}
$$

To regularize the integral: Introduce framing. Standard framing --> Jones polynomial.

Elegant proof via CQFT.

from Witten 1989

Using

$$
-\frac{8 \pi i}{k} \epsilon_{a b c} \frac{\delta}{\delta A_{c}} e^{i S_{\mathrm{CS}}[A]}=F_{a b} e^{i S_{\mathrm{CS}}[A]}
$$

can replace holonomies under the CS path integral by W_{S}, obtaining relations among expectation values! ${ }^{[H S+T h i e m a n n]}$

$$
\begin{aligned}
\left\langle L \operatorname{tr}_{\rho}\left(h_{\partial_{S}}\right)\right\rangle & =\int_{\overline{\mathcal{A}}} L[A] \operatorname{tr}_{\rho}\left(h_{\partial_{S}}\right)[A] e^{i S_{\mathrm{CS}}[A]} \mathrm{d} \mu[A] \\
& =\int_{\overline{\mathcal{A}}} L[A] \operatorname{tr}_{\rho}\left(W_{S}\right) e^{i S_{\mathrm{CS}}[A]} \mathrm{d} \mu[A] \\
& =\int_{\overline{\mathcal{A}}}\left(\operatorname{tr}_{\rho}\left(W_{-S}\right) L\right)[A] e^{i S_{\mathrm{CS}}[A]} \mathrm{d} \mu[A] \\
& =\left\langle\left(\operatorname{tr}_{\rho}\left(W_{-S}\right) L\right)\right\rangle .
\end{aligned}
$$

Enough to define functional in some cases. Note: Choice of S introduces framing.

Using Seifert surfaces for the W_{S} one can calculate some expectation values. For example for the Hopf link:

$$
\left\langle H^{+}\left(j_{1}, j_{2}\right)\right\rangle_{\mathrm{CS}}=\lambda_{j_{1} j_{2}} \lambda_{j_{2} 0}=\frac{\sin \left[\frac{\pi}{k}\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)\right]}{\sin \left[\frac{\pi}{k}\right]}
$$

reproducing the known values for Kauffman bracket and Jones polynomial and their generalization.
As far as we know: First QFT calculation of such without using CFT

Nontrivial knots?

Seifert surfaces are not simply connected
Contraction discs: Simply connected but have self so Stokes does not work. intersections. Definition of W_{s} ?

Skein relations: Idea

Need: Quantization of the exponential map

$$
Q_{D}\left[\exp \left(-\frac{8 \pi i}{k} \kappa^{i j} E_{i}\left(T_{j}\right)_{D}^{A}\right)\right]_{B}^{C}
$$

Surprisingly hard to determine.
We have a result (Sahlmann+Zilker arXiv) but we do not like it.

To take home:

- Quantum field theory without background metric
- Canonical and covariant approach
- space-time geometry from combinatorics, representation theory

Understanding beginning to emerge about

- quantum geometry
- black holes, cosmology

Many open questions

- interpretation of transition amplitudes/solutions of constraints
- divergencies in the spinfoam sum
- : -

3d gravity

successfully approached with canonical and covariant LQG methods.
Euclidean works best but Lorentzian also possible. [Ponzano+Regge `68, many others later]

Spin foam picture:

$$
Z=\sum_{\{f\} \rightarrow j} \prod_{f}\left(2 j_{f}+1\right) \prod_{v}{\underset{j}{3}}_{\mathrm{j}_{3} / \mathrm{j}_{5} \mathrm{j}_{2}}^{\mathrm{j}_{6}}
$$

- Divergencies understood (twisted betty number)
[Smerlak+Bonzom '10]
- SU(2) --> SU $\mathrm{q}^{(2)}$ gives cosmological constant,
- Equivalence to CS treatment can be shown [Freidel+Louapre]
- Inclusion of particle "Feynman diagrams" gives effective NC field theory
$S_{\text {eff }}=\int \mathrm{d}^{3} x\left[(\partial \phi \star \partial \phi)(x)-\frac{1}{2} \frac{\sin ^{2} m \kappa}{\kappa^{2}}(\phi \star \phi)(x)+\frac{\lambda}{3!}(\phi \star \phi \star \phi)(x)\right] \quad$ [Freidel+Livine]

Canonical approach:

Hamilton constraint imposes flatness.

$$
C=\prod_{\alpha} \delta\left(W_{j}(\alpha)\right)
$$

from Perez 06
Can recover spin foam picture. In particular, for physical inner product
[Perez+Noui]

$$
\left\langle 1-<_{3}^{2}, \stackrel{1}{4}_{4}^{2} \int_{3}^{2}\right\rangle_{p h}=\sqrt{\Delta_{4} \Delta_{5} \Delta_{6}}\left\{\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right\} \times \text { rest }
$$

Connections to other canonical approaches can be made.

Loop quantum cosmology

Symmetric sector of gravity as testbed for LQG

- What happens at the big bang singularity?
- Can GR be reproduced far away from the singularity?

Some aspects derivable from full theory.

Example: FRW with massless scalar

$$
M=\mathbb{R} \times \mathbb{R}^{3}, \quad \mathrm{~d} s^{2}=\mathrm{d} t^{2}-a^{2}(t)\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)
$$

Canonical variables

$$
A_{a}^{I}=c \omega_{a}^{I}, \quad E_{I}^{a}=p{\sqrt{q_{0}}}^{0} e_{I}^{a}
$$

Quantization in terms of

- holonomies $\widehat{=} \exp (i l c)$
- Fluxes $\quad \widehat{=} p$

Gravity Hilbert space spanned by $|l\rangle, \quad l \in \mathbb{R}$:

$$
\left\langle l \mid l^{\prime}\right\rangle=\delta_{l, l^{\prime}}= \begin{cases}1 & \text { if } l=l^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Representation

$$
p|l\rangle=\frac{8 \pi \beta l_{\mathrm{P}}^{2}}{3}, \quad \quad \exp \left(i l^{\prime} c\right)|l\rangle=\left|l+l^{\prime}\right\rangle
$$

Scalar field rep for ϕ, π_{ϕ} is standard.
Gravity part of constraint with LQG methods:

$$
\widehat{C}|l\rangle=f_{0}(l)|l\rangle+f_{+}(l)\left|l+\delta_{+}(l)\right\rangle+f_{-}(l)\left|l-\delta_{-}(l)\right\rangle
$$

Constraint equation becomes

$$
\partial_{\phi}^{2} \Psi(\phi, l)=\widehat{C} \Psi(\phi, l)
$$

scalar $=$ time, physical Hilbert space $=$ positive frequency space

Ashtekar, Pawlowski and Singh, Phys. Rev. Lett. 96 (2006)

