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Loop Quantum gravity
Quantum theory of gravity. 

Some of the assumptions:

• space-time 3+1 dimensional

• Einstein gravity

• quantization of geometry (not topology, not diff manifold,…)

• general covariance (—> use background structures as little as possible)
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Some of the consequences:

• QFT of geometry

• discrete, combinatorial picture: “Atoms” of space(-time) 

• not easy to interpret operationally



 1. Quantized space

4



Spin networks
Penrose (1971): 

Spin network: 

• directed graph (may be embedded in 3-dim manifold)

• SU(2) irrep (spin je) associated to each edge e

• invariant tensor at each vertex
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Quantum (spatial) geometry <--> QM of spin:
Trivial example: existence of invariant tensor, quantum triangle 

Chromatic evaluation: 
Penrose invents way to associate number to spin network via graphical calculus
Example:

Uses it to give inner product on spin networks, beginning of quantum theory of 
geometry
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Note for later:
Virtual edges can be used to always go to trivalent case:

ck  can be interpreted in terms of geometry.
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Beautiful thing:
In loop quantum gravity:

             spin networks  =  states of non-commutative spatial geometry    

is result of quantization of gravity. 
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Geometric operators: [Rovelli+Smolin, Ashtekar+Lewandowski]

Area

more generally:
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Spectrum is purely discrete

Area is non-commutative

9

[ bA , bA ] 6= 0



Volume: Action on intertwiner spaces

Picture: Vertices as atoms of space 

More quantitatively [Baez, … , Bianchi, Dona,Speziale] 

n valent vertex  <——> quantized flat polyhedron

Some examples for monochromatic 4-vertex (from Bachelors thesis of K.Eder)
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Derivations (sketch!)

• space-time split

• covering group SO(3,1) —> SL(2,C)

• partial gauge fixing (time gauge) SL(2,C) —> SU(2)
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Ashtekar’s discovery: 
GR can be formulated such that (non-reduced) phase space is that of SU(2) Yang-Mills 

S[e,!] ⇠
Z

⇤(e ^ e) ^ F (!) +
1

�
e ^ e ^ F (!)

· eIa : Tetrad · !IJ
a : SO(3,1) connection

· ⇤ : “internal Hodge”

⇠
Z

dt

Z

⌃t

Ea
i Ȧ
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phase space formulation

• (A,E) phase space coordinates

• (first class) constraints G,Ci, C

Quantum algebra
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Representation:

Combinatorial description

No background geometry used anywhere. Spatial diffeomorphisms unitarily 

represented. 

Uniqueness: [HS, LOST, Fleischhack]
This is the only cyclic rep with spatial diffeo invariant vacuum.
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Analytic description:

Spin nets are associated to gauge invariant functionals. 

Inner product: 

Spin nets are orthogonal (compare Peter-Weyl).

Hilbert space
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Note: Higher dimensions

Can embed gravity in D+1 in SO(D+1) -Yang Mills phase space. 

Canonical pair: 
– A:  SO(D+1) connection 
– π: tensor density corresponding momentum

with:
– simplicity constraints ⇒ π encodes d-bein
– Gauss, diffeo, Hamilton constraints 
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[Bodendorfer, Thiemann, Thurn 2013]



 2. Quantized space-time
          (see also D. Oriti’s talk later this afternoon!)
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Spin foam [Ponzano-Regge, Baez, Rovelli+Reisenberger,…]

For group G:

• oriented 2-complex (with boundary) C

• labeling of faces with irreps of G

• labeling of edges with interwiners between face-reps

Amplitude:

Interpretation: Transition amplitude. 

Typically:
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EPRL-FK vertex amplitude:

• T: vertex spin network

• Y: map  SU(2) spin nets —> SL(2,C) spin nets 
For choice of SU(2) subgroup
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Asymptotics

Vertex amplitude asymptotes to Regge-action when evaluated on boundary coherent 
state

where Ψ is peaked on boundary geometry of 4-simplex, and SRegge is Regge action. 

Vertex: Atom of space-time?
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Derivations (sketch!)

1) Canonical

• Diff constraint: Roughly speaking 

• Hamilton constraint
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using formal expansion

Projector on kernel

Has expansion of matrix elements labeled by 2-complexes
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2) covariant
•   
 
with phi enforcing simplicity

• BF theory topological, Z can give exact path integral

• Y constructed in such a way that simplicity holds in a sense for the SL(2,C) 
representations
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But: 

• divergencies in the Lorentzian case
• summing over spin-foams
• renormalization? 

Ongoing work:

Course graining, renormalization [Dittrich, Oriti, Bahr, Ben Geloun, Steinhaus,…],  
Tensor models [Gurau, Benedetti,…]
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3. Why could LQG be right? 
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Classical limit: 
– covariant formulation ---> Regge gravity
– canonical formulation ---> coherent states describing approx. classical metrics 

Cosmology:
– resolution of singularities
– consistent picture of inflationary phase of universe  

3d gravity:
- canonical and covariant picture equivalent
- standard picture obtained 

Black holes: 
– Entropy for large class of black holes
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4. Black holes in LQG
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Isolated horizons: 

Quasilocal notion of BH horizon, strong enough for BH thermodynamics. 

Boundary condition at horizon

Symplectic structure aquires CS boundary term.

Quantum theory:

LQG in bulk, SU(2) CS on boundary. Spin nets can puncture 

horizon and endow it with area. 

Punctures = CS particles. 
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Entropy:

For given puncture structure

Infinite dimensional. For entropy ignore bulk part.  

Count: All sequences  j1, j2, … such that

with multiplicity approx

Result:

reproduces Bekenstein-Hawking  for correct choice of β.
Similar results for more general types of BH with same choice of β. 
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Intrinsic description?

Quantum boundary condition: Want

But F not well defined in LQG. Thus exponentiate, using non-abelian Stokes’ theorem: 

Then demand quantum boundary condition: 

Can WS be defined? Does the equation have solutions?
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Non-Abelian Stokes theorem (I. Ya. Aref'eva 1980):
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Key object:

 

Can we make it well defined?

First step: LQG E is operator (matrix) valued distribution, factorizes:

S

[HS+Thiemann]
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Two problems: 

1) Delta functions at integration boundaries.  
         Solution: Standard procedure gives factor 1/n!

2) Ordering problem: How to order the EI ? 
         Solution:  Harish-Chandra/Duflo isomorphism

earlier suggested in somewhat  
different context [Alekseev et al, Freidel]
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Harish-Chandra/Duflo map
Given semisimple Lie algebra   .

Quantization map

which is an Isomorphism

g

⌥ : Sym(g) �! U(g)

SymG(g) ! Z(U(g))

⌥ = � � j 1
2 (@)

j

1
2 (x) = det

1
2

✓
sinh 1

2adx
1
2adx

◆
= 1 +

1

48
kxk2 + . . .

⌥(kEk2) = �SU(2) +
1

8
I
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It’s a refinement of symmetric quantization (PBW)

where 

Example: For SU(2) 

Kirillov-Kostant brackets

[TI , TJ ] = 0, {TI , TJ} = fK
IJTK

[TI , TJ ] = fK
IJTK

@ITJ = �IJ

�



This makes WS well defined (albeit hard to determine explicitly)

General properties:
For suitably chosen path systems

Under gauge transformations 

For SU(2):

S

b

WS1+S2 = WS1WS2 , W †
S = W�S

Ug WS U�1
g = g(b)WSg(b)

�1
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This is subject to quantization ambiguity



Note: Eigenvalues can be written in terms of quantum integers

They are related to

–  Verlinde coefficients of SU(2)k rational CFT (k=1/c)

– Trace of the square of the R-matrix of Uq(su(2)) on j O j’

and are precisely what to expect for  holonomy around particle in SU(2) CS [Witten]
 

x

38

�

j,j

0 =
[(2j + 1)(2j0 + 1)]

q

[2j0 + 1]
q

[x]
q

:=
q

x � q

�x

q � q

�1
q = e

⇡ic



Back to black holes

Quantum boundary condition: For any S in H and 

If we had a solution  

• formula for simple loops:

• inv under small diffeos fixing punctures: 
• reps on H only different mod k
• nontrivial monodromy of punctures
• some fluxes transversal to surface well defined
• must be in new rep of HF algebra

S

j

H

tr(h@S) = tr(WS) 

 

W (j)
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�jji ↵ around pi
 ↵ trivial

W� = W�(�) 
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Question: Do we have a representation? (WIP)

Have a good representation for the bulk and simple loops in H. 
Extension to non- simple loops? Difficult to answer due to

1) Action of WS Complicated:

2)There are     many Mandelstam identities to be satisfied. Checked some things, ex.

but not all. 

Further question: Do we have SU(2) CS? (WIP)

– DOF remaining on horizon point to ISU(2) with particles
– would be nice: 3d Euclidean quantum gravity with particles on horizon
– Boundary conditions do not seem to fit constraints of ISU(2)-CS 100%

S

j1

j2
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X
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ck
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Jones polynomial

Invariant of oriented knots. Usually defined via skein relations:

Examples:

\ 41
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Jones polynomial and SU(2)

Witten: Jones polynomial 

is expectation value of j=1/2 trace of holonomies in SU(2) CS

To regularize the integral: Introduce framing. 
Standard framing --> Jones polynomial.

Elegant proof via CQFT.  

\ 42

J(↵) = htr(h↵)iCS =

Z

A
tr(h@S )[A]eiSCS[A] dµ[A]

SCS =
k

4⇡

Z

M
tr

✓
A ^ dA+

2

3
A ^A ^A

◆
Quantum Field Theory and the Jones Polynomial 377 

~ M 

b M L M R 

ML 

@ MR 

@x 
Fig. 7a-c. A link C on a general three manifold M is sketched in a. A small sphere S has been 
drawn about an inconvenient crossing; it cuts M into a simple piece (the interior of S) and a 
complicated piece. In b, the picture is rearranged to exhibit the cutting of M more explicitly; the 
two pieces now appear on the left and right as ML (the complicated piece whose details are not 
drawn) and MR (the interior of S). The key to the skein relation is to consider replacing M R with 
some substitutes, as shown in c 

last section, the physical Hilbert  spaces Nd~L and NgR associated with the 
boundaries of  ML and MR are two dimensional. 

The strategy is now the same as the strategy which led to the multiplicativity 
relation (4.1). The Feynman path  integral on ML determines a vector X in YgL" The 
Feynman path integral on MR determines a vector ~, in ~'~R. The vector spaces ~ z  
and ;/gR (which are associated with the same Riemann surface S 2 with opposite 
orientation) are canonically dual, and the partition function or Feynman  path 
integral Z (L) is equal to the natural  pairing 

Z(L) = (Z, ~ ) .  (4.8) 

We cannot  evaluate (4.8), since we know neither;( nor  ~u. The one thing that  we do 
know, at present, is that (for the groups and representations we are considering) 
this pairing is occurring in a two dimensional vector space. A two dimensional 
vector space has the marvelous property that  any three vectors obey a relation of 

from Witten 1989



   Jones polynomial from WS

Using

can replace holonomies under the CS path integral by  WS, obtaining relations among 
expectation values:

Enough to define functional in some cases. Note: Choice of S introduces framing.
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Using Seifert surfaces for the WS one can calculate some expectation values. For example 
for the Hopf link:

reproducing the known values for Kauffman bracket and Jones polynomial and their 
generalization. 

As far as we know: First QFT calculation of such without using CFT 

Nontrivial knots?

hH+(j1, j2)iCS = �j1j2�j20 =
sin

⇥
⇡
k (2j1 + 1)(2j2 + 1)

⇤

sin
⇥
⇡
k

⇤

44

α1 α2
j2

Seifert surfaces are not simply connected  
so Stokes does not work. 

Contraction discs: Simply connected but have self 
intersections. Definition of WS?



Skein relations: Idea

Need: Quantization of the exponential map

Surprisingly hard to determine.  
We have a result (Sahlmann+Zilker arXiv) but we do not like it.
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5 Application to quantum Chern Simons theory and black holes

In [4, 5], the Duflo map was used to calculate certain expectation values in CS theory. In
that application, the expectation values were calculated in a piecemeal fashion, turning
one loop ˆS into an operator WS at a time, and calculating its action under the path
integral. Now that we have extensions of the Duflo map at our disposal, we can aim for
skein relations among the expectation values. The argument goes as follows.

We consider the path integral expectation value of the traces of holonomies along the
components of a link L:

ÈF
L

ÍCS =
ˆ

A
exp(iS

CS

[A]) F

L

[A] dµ

AL

[A]. (31)

Consider two holonomy strands passing each other as in figure 1(i). As the expectation
value does not depend on smooth deformations of L, we can deform the one strand in
the manner shown in fig. 1(ii).1 By applying the non-abelian Stokes theorem (for details
see [4]), we can replace the curved section of the deformed strand by a certain ordered
exponential integral I

S

of the curvature of A over a surface S bounded by the curved
section,

(i) (ii) (iii) (iv)

S

Figure 1: Manipulation of a crossing of two holonomy strands, using the operators W
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see also (iii). ( Â
F

L

)I

J

is obtained from the original functional by removing the holonomy
along ˆS. In the next step, I

S

can be replaced by a functional di�erential operator acting
on the action term. For the action

1
Strictly speaking, the deformation depicted in (ii) is smooth only so long as the circle around the

other holonomy strand does not get closed completely. If it is not completely closed, however, the

replacement in step (iii) (see below) is only an approximation. This approximation can be made

arbitrarily good, classically, and we will assume in the following that this is also true in the quantum

theory.
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We will now consider the application of the di�erent quantisation maps and for further
comparison we also express the results in the basis used in [7].
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To take home:
• Quantum field theory without background metric
• Canonical and covariant approach
• space-time geometry from combinatorics, representation theory

Understanding beginning to emerge about 

• quantum geometry
• black holes, cosmology

Many open questions

• interpretation of transition amplitudes/solutions of constraints
• divergencies in the spinfoam sum
• …
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3d gravity
successfully approached with canonical and covariant LQG methods. 

Euclidean works best but Lorentzian also possible.  

Spin foam picture:

– Divergencies understood (twisted betty number)
– SU(2) --> SUq(2) gives cosmological constant, 

– Equivalence to CS treatment can be shown 
– Inclusion of particle “Feynman diagrams” gives effective NC field theory 
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Canonical approach:

Hamilton constraint imposes flatness. 

Can recover spin foam picture. In particular, for physical inner product

Connections to other canonical approaches can be made.  
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from Perez 06

[Perez+Noui]
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Loop quantum cosmology
Symmetric sector of gravity as testbed for LQG

– What happens at the big bang singularity?
– Can GR be reproduced far away from the singularity?

Some aspects derivable from full theory. 

Example: FRW with massless scalar 

Canonical variables

Quantization in terms of 
– holonomies
– Fluxes 
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[Bojowald,…]

[Ashtekar+Pawlowski+Singh]

M = R⇥ R3
, ds2 = dt2 � a

2(t)(dx2 + dy2 + dz2)

AI
a = c !I

a, Ea
I = p

p
q0

0eaI

b=exp(ilc)

b= p



Gravity Hilbert space spanned by                      :

Representation 

Scalar field rep for             is standard. 

Gravity part of constraint  with LQG methods:

Constraint equation becomes

scalar = time,  physical Hilbert space = positive frequency space
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|li, l 2 R
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