Operator Product Expansion

S. Hollands

UNIVERSITÄT LEIPZIG

based on joint work with J. Holland and Ch. Kopper

SIFT Jena 05 November 2015

European Research Council
Established by the European Commission

Commun.Math.Phys.313 (2012) 257-290, J.Math.Phys.54 (2013) 072302, arXiv:1401.3144, arXiv:1411.1785

Introduction

Operator Product Expansion [Wilson '69]

Products of composite fields can be expanded as

$$\langle \mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) \underbrace{\cdots}_{\text{Spectators}} \rangle \sim \sum_B \underbrace{\mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N)}_{\text{OPE coefficients}} \langle \mathcal{O}_B(x_N) \dots \rangle$$

Introduction

Operator Product Expansion [Wilson '69]

Products of composite fields can be expanded as

$$\langle \mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) \underbrace{\cdots}_{\mathsf{Spectators}} \rangle \sim \sum_B \underbrace{\mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N)}_{\mathsf{OPE \ coefficients}} \langle \mathcal{O}_B(x_N) \dots \rangle$$

▶ Asymptotic short distance expansion: Difference vanishes in the limit $x_i \to x_N$ for all $i \le N$

Introduction

Operator Product Expansion [Wilson '69]

Products of composite fields can be expanded as

$$\langle \mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) \underbrace{\dots}_{\text{Spectators}} \rangle \sim \sum_{B} \underbrace{\mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N)}_{\text{OPE coefficients}} \langle \mathcal{O}_B(x_N) \dots \rangle$$

- Asymptotic short distance expansion: Difference vanishes in the limit $x_i \to x_N$ for all $i \le N$
- ▶ Practical application e.g. in deep-inelastic scattering
- ► Plays fundamental role in conformal field theory (Conformal bootstrap, "Vertex operator algebras", ...)
- Plays fundamental role in QFTCST (State-independent definition of QFT!)

Topics of today's talk:

- I. In what sense does the OPE converge? N-point functions \leftrightarrow 1-point functions & OPE coefficients
- 2. What are algebraic relations between OPE coefficients? Vertex algebras in *d*-dims.
- 3. A novel recursion scheme for OPE coefficients
 New self-consistent construction method

Topics of today's talk:

- I. In what sense does the OPE converge? N-point functions \leftrightarrow 1-point functions & OPE coefficients
- 2. What are algebraic relations between OPE coefficients? Vertex algebras in *d*-dims.
- 3. A novel recursion scheme for OPE coefficients
 New self-consistent construction method

Model: Perturbative, Euclidean φ_4^4 -theory

Correlation functions are defined via the path integral

$$\langle \mathcal{O}_{A_1}(x_1) \dots \mathcal{O}_{A_N}(x_N) \rangle := \mathcal{N} \int \mathcal{D}\varphi \exp \left[-S \right] \mathcal{O}_{A_1}(x_1) \dots \mathcal{O}_{A_N}(x_N),$$

where the action is given by

$$S(\varphi) := \int d^4x \left(\frac{1}{2} (\partial_\mu \varphi)^2(x) + \frac{m^2}{2} \varphi^2(x) + g\varphi(x)^4 - \text{counterterms} \right)$$

Correlation functions are defined via the path integral

$$\langle \mathcal{O}_{A_1}(x_1) \dots \mathcal{O}_{A_N}(x_N) \rangle := \mathcal{N} \int \mathcal{D}\varphi \, \exp\left[-S\right] \, \mathcal{O}_{A_1}(x_1) \dots \mathcal{O}_{A_N}(x_N) \,,$$

where the action is given by

$$S(\varphi) := \int \mathrm{d}^4x \left(\frac{1}{2} (\partial_\mu \varphi)^2(x) + \frac{m^2}{2} \varphi^2(x) + g \varphi(x)^4 - \mathsf{counterterms} \right)$$

▶ Composite operator insertions $\mathcal{O}_A(x)=(\partial^{v_1}\varphi\dots\partial^{v_n}\varphi)(x)$ (renormalized)

Correlation functions are defined via the path integral

$$\langle \mathcal{O}_{A_1}(x_1) \dots \mathcal{O}_{A_N}(x_N) \rangle := \mathcal{N} \int \mathcal{D}\varphi \exp \left[-S \right] \mathcal{O}_{A_1}(x_1) \dots \mathcal{O}_{A_N}(x_N),$$

where the action is given by

$$S(\varphi) := \int \mathrm{d}^4x \left(\frac{1}{2} (\partial_\mu \varphi)^2(x) + \frac{m^2}{2} \varphi^2(x) + g \varphi(x)^4 - \mathsf{counterterms} \right)$$

- ▶ Composite operator insertions $\mathcal{O}_A(x) = (\partial^{v_1} \varphi \dots \partial^{v_n} \varphi)(x)$ (renormalized)
- ▶ OPE coefficients can be defined a la Zimmermann or a la Keller-Kopper

Correlation functions are defined via the path integral

$$\langle \mathcal{O}_{A_1}(x_1) \dots \mathcal{O}_{A_N}(x_N) \rangle := \mathcal{N} \int \mathcal{D}\varphi \, \exp\left[-S\right] \, \mathcal{O}_{A_1}(x_1) \dots \mathcal{O}_{A_N}(x_N) \,,$$

where the action is given by

$$S(\varphi) := \int d^4x \left(\frac{1}{2} (\partial_\mu \varphi)^2(x) + \frac{m^2}{2} \varphi^2(x) + g\varphi(x)^4 - \text{counterterms} \right)$$

- ▶ Composite operator insertions $\mathcal{O}_A(x) = (\partial^{v_1} \varphi \dots \partial^{v_n} \varphi)(x)$ (renormalized)
- ▶ OPE coefficients can be defined a la Zimmermann or a la Keller-Kopper
- ► We use a "renormalization group flow equation" approach [Wilson, Polchinski, Kopper-Keller-Salmhofer, Wetterich]

Outline

■ OPE factorisation

2 OPE convergence

3 Recursive construction of OPE

Outline

■ OPE factorisation

OPE convergence

3 Recursive construction of OPE

The OPE factorises

Theorem (Holland-SH)

At any arbitrary but fixed loop order:

$$C_{A_1...A_N}^B(x_1,...,x_N) = \sum_{C} C_{A_1...A_M}^C(x_1,...,x_M) C_{CA_{M+1}...A_N}^B(x_M,...,x_N)$$

holds on the domain $\frac{\max\limits_{1\leq i\leq M}|x_i-x_M|}{\min\limits_{M>i< N}|x_j-x_M|}<1.$ (Sum over C absolutely convergent !)

The OPE factorises

Theorem (Holland-SH)

At any arbitrary but fixed loop order:

$$C_{A_1...A_N}^B(x_1,...,x_N) = \sum_{C} C_{A_1...A_M}^C(x_1,...,x_M) C_{CA_{M+1}...A_N}^B(x_M,...,x_N)$$

holds on the domain $\frac{\max\limits_{1\leq i\leq M}|x_i-x_M|}{\min\limits_{M< j\leq N}|x_j-x_M|}<1.$ (Sum over C absolutely convergent !)

For
$$N=3$$
: $\xi=\frac{|x_1-x_2|}{|x_2-x_3|}<1$

$$x_1$$
 x_2 for $\xi \ll 1$

$$x_1$$
 x_2 for $\xi \approx 1$

The OPE factorises

Theorem (Holland-SH)

At any arbitrary but fixed loop order:

$$C_{A_1...A_N}^B(x_1,...,x_N) = \sum_{C} C_{A_1...A_M}^C(x_1,...,x_M) C_{CA_{M+1}...A_N}^B(x_M,...,x_N)$$

holds on the domain $\frac{\max\limits_{1\leq i\leq M}|x_i-x_M|}{\min\limits_{M< j< N}|x_j-x_M|}<1.$ (Sum over C absolutely convergent !)

For
$$N=3$$
: $\xi=\frac{|x_1-x_2|}{|x_2-x_3|}<1$
$$x_1\int_{x_2}^{x_3}x_2$$
 for $\xi\ll 1$ for $\xi\approx 1$

This shows associativity really holds!

- ▶ Vertex Algebras (Borcherds property) also in 4d.
- ullet $\mathcal{C}^B_{A_1...A_N}$ uniquely determined in terms of $\mathcal{C}^B_{A_1A_2}$
- ▶ "Bootstrap construction" of OPE coefficients possible

Quantitative bound

Theorem

Up to any perturbation order $r \in \mathbb{N}$ the bound

Remainder in associativity

$$\leq K \left(\frac{D}{\varepsilon}\right)^{8^{r+1}(\sum_{i=1}^{N}[A_i]+[B])} [(1+\varepsilon)^{8^{r+1}}\xi]^{D} \frac{\max_{1\leq i\leq N} \left(\frac{1}{m}, |x_i - x_N|\right)^{[B]+1}}{\min_{1\leq i< j\leq N} |x_i - x_j|^{\sum_{j}[A_j]+1}}$$

holds for any sufficiently small ε , where

$$\xi := \frac{\max_{1 \le i \le M} |x_i - x_M|}{\min_{M < j \le N} |x_j - x_M|}$$

and where K is a constant which does not depend on D.

Outline

OPE factorisation

2 OPE convergence

3 Recursive construction of OPE

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$,

$$\overbrace{\left|\left\langle \left(\mathcal{O}_{A_1}(x_1)\cdots\mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \leq D} \mathcal{C}^B_{A_1...A_N}(x_1,\ldots,x_N)\,\mathcal{O}_B(x_N)\right)\underline{\hat{\varphi}(p_1)\cdots\hat{\varphi}(p_n)}\right\rangle\right|}^{OPE-Remainder}$$

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D\in\mathbb{N}$, there exists a K>0 such that

$$\begin{split} & \underbrace{\left|\left\langle \left(\mathcal{O}_{A_1}(x_1)\cdots\mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \leq D} \mathcal{C}^B_{A_1...A_N}(x_1,\ldots,x_N)\,\mathcal{O}_B(x_N)\right)\underbrace{\hat{\varphi}(p_1)\cdots\hat{\varphi}(p_n)}_{\text{Spectator fields}}\right\rangle\right|} \\ & \leq \underbrace{\frac{M^{n-1}}{\sqrt{D!}} \, \frac{\left(KM\max\limits_{1\leq i\leq N}|x_i-x_N|\right)^{D+1}}{\min\limits_{1\leq i< j\leq N}|x_i-x_j|\sum_{i\dim[A_i]+1}\cdot\sup\left(1,\frac{|P|}{\sup(m,\kappa)}\right)^{(D+2)(r+5)}} \end{split}$$

$$M = \begin{cases} m & \text{for } m > 0 \\ \mu & \text{for } m = 0 \end{cases}$$
 mass or renormalization scale

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D\in\mathbb{N}$, there exists a K>0 such that

$$\begin{split} & \boxed{ \left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \leq D} \mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N) \, \mathcal{O}_B(x_N) \right) \underbrace{\hat{\varphi}(p_1) \cdots \hat{\varphi}(p_n)}_{\text{Spectator fields}} \right\rangle \right|} \\ & \leq \frac{M^{n-1}}{\sqrt{D!}} \, \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N| \right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_{i \dim[A_i] + 1} \cdot \sup \left(1, \frac{|P|}{\sup(m, \kappa)} \right)^{(D+2)(r+5)} \end{split}$$

- $M = \begin{cases} m & \text{for } m > 0 \\ \mu & \text{for } m = 0 \end{cases}$ mass or renormalization scale
- $ightharpoonup |P| = \sup_i |p_i|$: maximal momentum of spectators

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a K>0 such that

$$\begin{split} & \underbrace{ \left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \leq D} \mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N) \, \mathcal{O}_B(x_N) \right) \underbrace{\hat{\varphi}(p_1) \cdots \hat{\varphi}(p_n)}_{\text{Spectator fields}} \right\rangle \right|} \\ & \leq \underbrace{ \frac{M^{n-1}}{\sqrt{D!}} \, \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N| \right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_{i \dim[A_i] + 1} \cdot \sup \left(1, \frac{|P|}{\sup(m, \kappa)} \right)^{(D+2)(r+5)}}_{\text{Sup}(m, \kappa)} \end{split}$$

- $M = \begin{cases} m & \text{for } m > 0 \\ \mu & \text{for } m = 0 \end{cases}$ mass or renormalization scale
- $ightharpoonup |P| = \sup_i |p_i|$: maximal momentum of spectators
- ▶ $\kappa := \inf(\mu, \varepsilon)$, where $\varepsilon = \min_{I \subset \{1, ..., n\}} |\sum_{I} p_{i}|$ ε : distance of $(p_{1}, ..., p_{n})$ to "exceptional" configurations

$$\text{"OPE remainder"} \leq \frac{M^{n-1}}{\sqrt{D!}} \ \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_{i \text{ dim}[A_i] + 1}} \cdot \ \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)} = \frac{1}{2} \left(1 + \frac{$$

$$\text{"OPE remainder"} \leq \frac{M^{n-1}}{\sqrt{D!}} \ \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min\limits_{1 \leq i < j \leq N} |x_i - x_j| \sum_{i \text{ } \dim[A_i] + 1} \cdot \ \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}}$$

I. Massive fields (m > 0): Bound is finite for arbitrary p_1, \ldots, p_n

$$\text{"OPE remainder"} \leq \frac{M^{n-1}}{\sqrt{D!}} \ \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min\limits_{1 \leq i < j \leq N} |x_i - x_j| \sum_{i \text{ } \dim[A_i] + 1} \cdot \ \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}}$$

- I. Massive fields (m > 0): Bound is finite for arbitrary p_1, \ldots, p_n
- 2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n

"OPE remainder"
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \; \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min\limits_{1 \leq i < j \leq N} |x_i - x_j| \sum_{i \text{ dim}[A_i] + 1} \cdot \; \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

- I. Massive fields (m > 0): Bound is finite for arbitrary p_1, \ldots, p_n
- 2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n
- 3. Bound vanishes as $D \to \infty$

"OPE remainder"
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \; \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min\limits_{1 \leq i < j \leq N} |x_i - x_j| \sum_{i \text{ dim}[A_i] + 1} \cdot \; \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

- I. Massive fields (m > 0): Bound is finite for arbitrary p_1, \ldots, p_n
- 2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n
- 3. Bound vanishes as $D \to \infty \Rightarrow$ OPE converges at any finite distances!

$$\text{``OPE remainder''} \leq \frac{M^{n-1}}{\sqrt{D!}} \ \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min\limits_{1 \leq i < j \leq N} |x_i - x_j| \sum_{i \text{ } \dim[A_i]+1}} \cdot \ \sup\left(1, \frac{|\textbf{\textit{P}}|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

- I. Massive fields (m > 0): Bound is finite for arbitrary p_1, \ldots, p_n
- 2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n
- 3. Bound vanishes as $D \to \infty \Rightarrow$ OPE converges at any finite distances!
- 4. Convergence is slow if...
 - ightharpoonup |P| is large ("energy scale" of spectators)

$$\text{``OPE remainder''} \leq \frac{M^{n-1}}{\sqrt{D!}} \ \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min\limits_{1 \leq i < j \leq N} |x_i - x_j| \sum_{i \text{ } \dim[A_i]+1}} \cdot \ \sup\left(1, \frac{|P|}{\sup(m,\kappa)}\right)^{(D+2)(r+5)}$$

- I. Massive fields (m > 0): Bound is finite for arbitrary p_1, \ldots, p_n
- 2. Massless fields: Bound is finite only for non-exceptional p_1,\ldots,p_n
- 3. Bound vanishes as $D \to \infty \Rightarrow$ OPE converges at any finite distances!
- 4. Convergence is slow if...
 - ightharpoonup |P| is large ("energy scale" of spectators)
 - lacktriangleright maximal distance of points x_i from reference point x_N is large

$$\text{"OPE remainder"} \leq \frac{M^{n-1}}{\sqrt{D!}} \ \frac{\left(KM \max\limits_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min\limits_{1 \leq i < j \leq N} |x_i - x_j| \sum_{i \text{ } \dim[A_i]+1}} \cdot \ \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{|P|}{\sup(m, \kappa)}\right)^{D+1} + \frac{1}{2} \left(\frac{1}{2} \left(\frac{|P|$$

- 1. Massive fields (m > 0): Bound is finite for arbitrary p_1, \ldots, p_n
- 2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n
- 3. Bound vanishes as $D \to \infty \Rightarrow$ OPE converges at any finite distances!
- 4. Convergence is slow if...
 - ▶ |P| is large ("energy scale" of spectators)
 - ightharpoonup maximal distance of points x_i from reference point x_N is large
 - lacktriangleright ratio of max. and min. distances is large, e.g. for N=3

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$,

$$\left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) \right. - \sum_{\dim[B] \leq D} \mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N) \, \mathcal{O}_B(x_N) \right) \varphi(f_1) \cdots \varphi(f_n) \right\rangle \right|$$

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a K > 0 such that

$$\left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \leq D} \mathcal{C}_{A_1 \dots A_N}^B(x_1, \dots, x_N) \mathcal{O}_B(x_N) \right) \varphi(f_1) \cdots \varphi(f_n) \right\rangle \right|$$

$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N| \right)^{D+1}}{\min_{1 \leq i \leq N} |x_i - x_j| \sum_{i \dim[A_i] + 1}} \sum_{s_1 + \dots + s_N = 0}^{(D+2)(r+5)} \prod_{i=1}^n \frac{\|\hat{f}_i\|_{\frac{s_i}{2}}}{M^{s_i}}$$

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a K > 0 such that

$$\left| \left\langle \left(\mathcal{O}_{A_{1}}(x_{1}) \cdots \mathcal{O}_{A_{N}}(x_{N}) - \sum_{\dim[B] \leq D} \mathcal{C}_{A_{1} \dots A_{N}}^{B}(x_{1}, \dots, x_{N}) \, \mathcal{O}_{B}(x_{N}) \right) \varphi(f_{1}) \cdots \varphi(f_{n}) \right\rangle \right| \\
\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_{i} - x_{N}| \right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_{i} - x_{j}| \sum_{i \text{ dim}[A_{i}]+1} \sum_{s_{1} + \dots + s_{N} = 0}^{(D+2)(r+5)} \prod_{i=1}^{n} \frac{\|\hat{f}_{i}\|_{\frac{s_{i}}{2}}}{M^{s_{i}}}$$

M: mass for m>0 or renormalization scale μ for massless fields $\|\hat{f}\|_s:=\sup_{p\in\mathbb{R}^4}|(p^2+M^2)^s\hat{f}(p)|$ (Schwartz norm)

I. Bound is finite for any $f_i \in \mathcal{S}(\mathbb{R}^4)$ (Schwartz space) OPE remainder is a tempered distribution

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a K > 0 such that

$$\left| \left\langle \left(\mathcal{O}_{A_{1}}(x_{1}) \cdots \mathcal{O}_{A_{N}}(x_{N}) - \sum_{\dim[B] \leq D} \mathcal{C}_{A_{1} \dots A_{N}}^{B}(x_{1}, \dots, x_{N}) \, \mathcal{O}_{B}(x_{N}) \right) \varphi(f_{1}) \cdots \varphi(f_{n}) \right\rangle \right| \\
\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_{i} - x_{N}| \right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_{i} - x_{j}| \sum_{i \dim[A_{i}]+1} \sum_{s_{1} + \dots + s_{N} = 0}^{(D+2)(r+5)} \prod_{i=1}^{n} \frac{\|\hat{f}_{i}\|_{\frac{s_{i}}{2}}}{M^{s_{i}}}$$

- I. Bound is finite for any $f_i \in \mathcal{S}(\mathbb{R}^4)$ (Schwartz space) OPE remainder is a tempered distribution
- 2. Let $\hat{f}_i(p) = 0$ for |p| > |P|:

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a K > 0 such that

$$\left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \leq D} \mathcal{C}_{A_1 \dots A_N}^B(x_1, \dots, x_N) \, \mathcal{O}_B(x_N) \right) \varphi(f_1) \cdots \varphi(f_n) \right\rangle \right| \\
\leq \frac{M^{n-1}}{\sqrt{D!}} \, \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N| \right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_{i \dim[A_i] + 1} \, \sup \left(1, \frac{|P|}{M} \right)^{(D+2)(r+5)}$$

- I. Bound is finite for any $f_i \in \mathcal{S}(\mathbb{R}^4)$ (Schwartz space) OPE remainder is a tempered distribution
- 2. Let $\hat{f}_i(p) = 0$ for |p| > |P|:

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D\in\mathbb{N}$, there exists a K>0 such that

$$\left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \leq D} \mathcal{C}_{A_1 \dots A_N}^B(x_1, \dots, x_N) \, \mathcal{O}_B(x_N) \right) \varphi(f_1) \cdots \varphi(f_n) \right\rangle \right|$$

$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N| \right)^{D+1}}{\min_{1 \leq i \leq N} |x_i - x_j| \sum_{i \dim[A_i] + 1} \sup \left(1, \frac{|P|}{M} \right)^{(D+2)(r+5)}$$

- I. Bound is finite for any $f_i \in \mathcal{S}(\mathbb{R}^4)$ (Schwartz space) OPE remainder is a tempered distribution
- 2. Let $\hat{f}_i(p) = 0$ for |p| > |P|: Bound vanishes as $D \to \infty$ \Rightarrow OPE converges at any finite distances!

Outline

OPE factorisation

OPE convergence

3 Recursive construction of OPE

Motivation for a new construction method

Textbook method (roughly):

- Write down correlation function with operator insertions
- ► Perform short distance/large momentum expansion (in some clever way)
- Argue that the coefficients obtained this way are state independent

Motivation for a new construction method

Textbook method (roughly):

- Write down correlation function with operator insertions
- ▶ Perform short distance/large momentum expansion (in some clever way)
- Argue that the coefficients obtained this way are state independent

Not entirely satisfying:

- ▶ Relies on correlation functions ⇒ OPE not 'fundamental'
- State independence not obvious
- Hard to study general properties of OPE

Theorem (Hollands-JH)

Coupling constant derivatives of OPE coefficients in $g \varphi^4$ -theory can be expressed as

$$\partial_{g} C_{A_{1}...A_{N}}^{B}(x_{1},...,x_{N}) = -\int d^{4}y \left[C_{\varphi^{4}A_{1}...A_{N}}^{B}(y,x_{1},...,x_{N}) - \sum_{i=1}^{N} \sum_{[C] \leq [A_{i}]} C_{\varphi^{4}A_{i}}^{C}(y,x_{i}) C_{A_{1}...\widehat{A_{i}}}^{B} C_{...A_{N}}(x_{1},...,x_{N}) - \sum_{[C] < [B]} C_{A_{1}...A_{N}}^{C}(x_{1},...,x_{N}) C_{\varphi^{4}C}^{B}(y,x_{N}) \right].$$

Theorem (Hollands-JH)

Coupling constant derivatives of OPE coefficients in $g \varphi^4$ -theory can be expressed as

$$\partial_{g} C_{A_{1}...A_{N}}^{B}(x_{1},...,x_{N}) = -\int d^{4}y \left[C_{\varphi^{4}A_{1}...A_{N}}^{B}(y,x_{1},...,x_{N}) - \sum_{i=1}^{N} \sum_{[C] \leq [A_{i}]} C_{\varphi^{4}A_{i}}^{C}(y,x_{i}) C_{A_{1}...\widehat{A_{i}}C...A_{N}}^{B}(x_{1},...,x_{N}) - \sum_{[C] < [B]} C_{A_{1}...A_{N}}^{C}(x_{1},...,x_{N}) C_{\varphi^{4}C}^{B}(y,x_{N}) \right].$$

Compute OPE coefficients to any perturbation order by iteration.
 Initial data: Coefficients of free theory.

Theorem (Hollands-JH)

OPE coefficients at perturbation order (r+1) can be expressed as

$$(\mathcal{C}_{r+1})_{A_1...A_N}^B(x_1, \dots, x_N) = -\int d^4y \left[(\mathcal{C}_r)_{\varphi^4 A_1...A_N}^B(y, x_1, \dots, x_N) \right.$$

$$- \sum_{s=0}^r \sum_{i=1}^N \sum_{[C] \le [A_i]} (\mathcal{C}_s)_{\varphi^4 A_i}^C(y, x_i) (\mathcal{C}_{r-s})_{A_1...\widehat{A}_i}^B \mathcal{C}_{...A_N}(x_1, \dots, x_N) \right.$$

$$- \sum_{s=0}^r \sum_{[C] < [B]} (\mathcal{C}_s)_{A_1...A_N}^C(x_1, \dots, x_N) (\mathcal{C}_{r-s})_{\varphi^4 C}^B(y, x_N) \left. \right] .$$

Compute OPE coefficients to any perturbation order by iteration. Initial data: Coefficients of free theory.

Theorem (Hollands-JH)

Coupling constant derivatives of OPE coefficients in $g\varphi^4$ -theory can be expressed as

$$\partial_{g} C_{A_{1}...A_{N}}^{B}(x_{1},...,x_{N}) = -\int d^{4}y \left[C_{\varphi^{4}A_{1}...A_{N}}^{B}(y,x_{1},...,x_{N}) - \sum_{i=1}^{N} \sum_{[C] \leq [A_{i}]} C_{\varphi^{4}A_{i}}^{C}(y,x_{i}) C_{A_{1}...\widehat{A_{i}}}^{B} C_{...A_{N}}(x_{1},...,x_{N}) - \sum_{[C] < [B]} C_{A_{1}...A_{N}}^{C}(x_{1},...,x_{N}) C_{\varphi^{4}C}^{B}(y,x_{N}) \right].$$

- ► Compute OPE coefficients to any perturbation order by iteration. Initial data: Coefficients of free theory.
- State independence obvious.
 No other objects enter the construction.
- ► The formula depends on the renormalisation conditions. (Here BPHZ)

$$\int d^4y \Big[\mathcal{C}^B_{\varphi^4 A_1 A_2}(y, x_1, x_2) - \sum_{[C] \le [A_1]} \mathcal{C}^C_{\varphi^4 A_1}(y, x_1) \, \mathcal{C}^B_{CA_2}(x_1, x_2) \\ - \sum_{[C] \le [A_2]} \mathcal{C}^C_{\varphi^4 A_2}(y, x_2) \, \mathcal{C}^B_{A_1 C}(x_1, x_2) - \sum_{[C] \le [B]} \mathcal{C}^C_{A_1 A_2}(x_1, x_2) \, \mathcal{C}^B_{\varphi^4 C}(y, x_2) \Big]$$

$$\begin{split} & \int \mathrm{d}^4 y \Big[\mathcal{C}^B_{\varphi^4 A_1 A_2}(y, x_1, x_2) - \sum_{[C] \leq [A_1]} \mathcal{C}^C_{\varphi^4 A_1}(y, x_1) \, \mathcal{C}^B_{CA_2}(x_1, x_2) \\ & - \sum_{[C] \leq [A_2]} \mathcal{C}^C_{\varphi^4 A_2}(y, x_2) \, \mathcal{C}^B_{A_1 C}(x_1, x_2) - \sum_{[C] < [B]} \mathcal{C}^C_{A_1 A_2}(x_1, x_2) \, \mathcal{C}^B_{\varphi^4 C}(y, x_2) \Big] \end{split}$$

UV-region I ($y \approx x_1$): $\mathcal{C}^B_{\varphi^4 A_1 A_2}$ factorises

$$\int d^4y \Big[\sum_{[C]=0}^{\infty} \mathcal{C}_{\varphi^4 A_1}^C(y, x_1) \, \mathcal{C}_{CA_2}^B(x_1, x_2) - \sum_{[C] \le [A_1]} \mathcal{C}_{\varphi^4 A_1}^C(y, x_1) \, \mathcal{C}_{CA_2}^B(x_1, x_2) - \sum_{[C] \le [A_2]} \mathcal{C}_{\varphi^4 A_2}^C(y, x_2) \, \mathcal{C}_{A_1 C}^B(x_1, x_2) - \sum_{[C] < [B]} \mathcal{C}_{A_1 A_2}^C(x_1, x_2) \, \mathcal{C}_{\varphi^4 C}^B(y, x_2) \Big]$$

UV-region I $(y \approx x_1)$: $C_{\varphi^4 A_1 A_2}^B$ factorises

$$\int d^4y \left[\sum_{[C]>[A_2]} \mathcal{C}^C_{\varphi^4 A_2}(y, x_2) \, \mathcal{C}^B_{A_1 C}(x_1, x_2) \right. \\ \left. - \sum_{[C]\leq [A_2]} \mathcal{C}^C_{\varphi^4 A_2}(y, x_2) \, \mathcal{C}^B_{A_1 C}(x_1, x_2) - \sum_{[C]<[B]} \mathcal{C}^C_{A_1 A_2}(x_1, x_2) \, \mathcal{C}^B_{\varphi^4 C}(y, x_2) \right]$$

UV-region I ($y \approx x_1$): $C^B_{\varphi^4 A_1 A_2}$ factorises \Rightarrow divergences cancel

$$\int d^4y \left[\mathcal{C}^B_{\varphi^4 A_1 A_2}(y, x_1, x_2) - \sum_{[C] \le [A_2]} \mathcal{C}^C_{\varphi^4 A_2}(y, x_2) \, \mathcal{C}^B_{A_1 C}(x_1, x_2) \right] \\ - \sum_{[C] < [A_1]} \mathcal{C}^C_{\varphi^4 A_1}(y, x_1) \, \mathcal{C}^B_{C A_2}(x_1, x_2) - \sum_{[C] < [B]} \mathcal{C}^C_{A_1 A_2}(x_1, x_2) \, \mathcal{C}^B_{\varphi^4 C}(y, x_2) \right]$$

UV-region II $(y \approx x_2)$: $\mathcal{C}^B_{\varphi^4 A_1 A_2}$ factorises

$$\int d^4y \left[\sum_{[C]>[A_1]} \mathcal{C}^{C}_{\varphi^4 A_1}(y, x_1) \, \mathcal{C}^{B}_{CA_2}(x_1, x_2) \right. \\
\left. - \sum_{[C]\leq[A_1]} \mathcal{C}^{C}_{\varphi^4 A_1}(y, x_1) \, \mathcal{C}^{B}_{CA_2}(x_1, x_2) - \sum_{[C]<[B]} \mathcal{C}^{C}_{A_1 A_2}(x_1, x_2) \, \mathcal{C}^{B}_{\varphi^4 C}(y, x_2) \right]$$

UV-region II $(y \approx x_2)$: $\mathcal{C}^B_{\varphi^4 A_1 A_2}$ factorises \Rightarrow divergences cancel

$$\int d^4y \left[\sum_{[C] \ge [B]} \mathcal{C}_{A_1 A_2}^C(x_1, x_2) \, \mathcal{C}_{\varphi^4 C}^B(y, x_2) \right. \\ \left. - \sum_{[C] \le [A_1]} \mathcal{C}_{\varphi^4 A_1}^C(y, x_1) \, \mathcal{C}_{C A_2}^B(x_1, x_2) - \sum_{[C] \le [A_2]} \mathcal{C}_{\varphi^4 A_2}^C(y, x_2) \, \mathcal{C}_{A_1 C}^B(x_1, x_2) \right]$$

IR-region (
$$|y-x_2|\gg |x_1-x_2|$$
): $\mathcal{C}^B_{\varphi^4A_1A_2}$ factorises

$$\int d^4y \left[\sum_{[C] \geq [B]} \mathcal{C}_{A_1 A_2}^C(x_1, x_2) \, \mathcal{C}_{\varphi^4 C}^B(y, x_2) \right. \\
\left. - \sum_{[C] \leq [A_1]} \mathcal{C}_{\varphi^4 A_1}^C(y, x_1) \, \mathcal{C}_{C A_2}^B(x_1, x_2) - \sum_{[C] \leq [A_2]} \mathcal{C}_{\varphi^4 A_2}^C(y, x_2) \, \mathcal{C}_{A_1 C}^B(x_1, x_2) \right]$$

IR-region ($|y-x_2|\gg |x_1-x_2|$): $\mathcal{C}^B_{\varphi^4A_1A_2}$ factorises \Rightarrow divergences cancel

$$\int d^4y \Big[\mathcal{C}^B_{\varphi^4 A_1 A_2}(y, x_1, x_2) - \sum_{[C] \le [A_1]} \mathcal{C}^C_{\varphi^4 A_1}(y, x_1) \, \mathcal{C}^B_{C A_2}(x_1, x_2) \\ - \sum_{[C] \le [A_2]} \mathcal{C}^C_{\varphi^4 A_2}(y, x_2) \, \mathcal{C}^B_{A_1 C}(x_1, x_2) - \sum_{[C] < [B]} \mathcal{C}^C_{A_1 A_2}(x_1, x_2) \, \mathcal{C}^B_{\varphi^4 C}(y, x_2) \Big]$$

The integral is absolutely convergent due to the factorisation property.

Conclusions & Outlook

In Euclidean perturbation theory, we found that:

- 1. The OPE converges at finite distances.
- 2. The OPE factorises (associativity).
- 3. The OPE satisfies a recursion formula.

Conclusions & Outlook

In Euclidean perturbation theory, we found that:

- 1. The OPE converges at finite distances.
- 2. The OPE factorises (associativity).
- 3. The OPE satisfies a recursion formula.

Possible Generalisations

- Gauge theories (in progress)
- Curved manifolds

- ► Minkowski space
- **...**

Applications of the Recursion Formula

- Does the algorithm facilitate computations?
- Does the perturbation series for OPE coefficients converge?