（More on）Phase transitions in Tensor Models

Răzvan Gurău

Jena 2015

Introduction

Tensor models

Phase transition in the quartic model

Phase transitions in field theory

Phase transitions in field theory

$$
\text { Phase transition } \Leftrightarrow \text { symmetry breaking }
$$

Phase transitions in field theory

Phase transition \Leftrightarrow symmetry breaking

$$
Z=\int[d \bar{\phi} d \phi] e^{-\left[\int \partial \bar{\phi} \partial \phi+m^{2} \int \bar{\phi} \phi+\frac{\lambda}{2} \int(\bar{\phi} \phi)^{2}\right]}
$$

invariant under complex rotations

$$
\phi=e^{2 \alpha} \phi, \bar{\phi}=e^{-\imath \alpha} \bar{\phi}
$$

Phase transitions in field theory

Phase transition \Leftrightarrow symmetry breaking

Phase transitions in field theory

Phase transition \Leftrightarrow symmetry breaking
$Z=\int[d \bar{\phi} d \phi] e^{-\left[\int \partial \bar{\phi} \partial \phi+m^{2} \int \bar{\phi} \phi+\frac{\lambda}{2} \int(\bar{\phi} \phi)^{2}\right]} \quad \begin{aligned} & \text { invariant under complex } \\ & \phi=e^{\imath \alpha} \phi, \bar{\phi}=e^{-\imath \alpha} \bar{\phi}\end{aligned}$

Broken phase \rightarrow VEV: $\langle\bar{\phi} \phi\rangle=\frac{-m^{2}}{\lambda} \equiv v^{2}$.

Phase transitions in field theory

Phase transition \Leftrightarrow symmetry breaking

Broken phase \rightarrow VEV: $\langle\bar{\phi} \phi\rangle=\frac{-m^{2}}{\lambda} \equiv v^{2}$. Expand around the VEV $\phi=(v+\rho) e^{2 \frac{\theta}{v}}$

$$
S_{\text {broken }} \sim\left(1+\frac{\rho}{v}\right)^{2} \partial \theta \partial \theta+\partial \rho \partial \rho+2\left|m^{2}\right| \rho^{2}+2\left|m^{2}\right| \rho^{3}+\frac{\lambda}{2} \rho^{4}
$$

Phase transitions in field theory

Phase transition \Leftrightarrow symmetry breaking

$$
Z=\int[d \bar{\phi} d \phi] e^{-\left[\int \partial \bar{\phi} \partial \phi+m^{2} \int \bar{\phi} \phi+\frac{\lambda}{2} \int(\bar{\phi} \phi)^{2}\right]} \begin{aligned}
& \text { invariant under complex rotat } \\
& \phi=e^{\imath \alpha} \phi, \bar{\phi}=e^{-\imath \alpha} \bar{\phi}
\end{aligned}
$$

Broken phase \rightarrow VEV: $\langle\bar{\phi} \phi\rangle=\frac{-m^{2}}{\lambda} \equiv v^{2}$. Expand around the VEV $\phi=(v+\rho) e^{2 \frac{\theta}{v}}$

$$
S_{\text {broken }} \sim\left(1+\frac{\rho}{v}\right)^{2} \partial \theta \partial \theta+\partial \rho \partial \rho+2\left|m^{2}\right| \rho^{2}+2\left|m^{2}\right| \rho^{3}+\frac{\lambda}{2} \rho^{4}
$$

Phase transition: zero eigenvalue of the "mass matrix"

$$
\left.\frac{\delta^{2} S^{\text {notkinetic }}}{\delta \bar{\phi} \delta \phi}\right|_{\bar{\phi}=\phi=0}=m^{2}=0
$$

Continuum limit of Dynamical Triangulations

Continuum limit of Dynamical Triangulations

"continuum limit" \Leftrightarrow criticality

Continuum limit of Dynamical Triangulations

"continuum limit" \Leftrightarrow criticality

DTs sum over random spaces:

$$
f(g)=\sum_{\text {connected planar rooted quadrangulations }}\left(g^{2}\right)^{\# \text { quadrangles }}=\frac{\left(1-12 g^{2}\right)^{\frac{3}{2}}-1+18 g^{2}}{54 g^{4}}
$$

Continuum limit of Dynamical Triangulations

"continuum limit" \Leftrightarrow criticality

DTs sum over random spaces:

$$
f(g)=\sum_{\text {connected planar rooted quadrangulations }}\left(g^{2}\right)^{\# \text { quadrangles }}=\frac{\left(1-12 g^{2}\right)^{\frac{3}{2}}-1+18 g^{2}}{54 g^{4}}
$$

Universality: triangulations, tessellations $f \sim\left(g_{\text {critical }}-g\right)^{\frac{3}{2}}$

Continuum limit of Dynamical Triangulations

$$
\text { "continuum limit" } \Leftrightarrow \text { criticality }
$$

DTs sum over random spaces:
$f(g)=\sum_{\text {connected planar rooted quadrangulations }}\left(g^{2}\right)^{\# q u a d r a n g l e s}=\frac{\left(1-12 g^{2}\right)^{\frac{3}{2}}-1+18 g^{2}}{54 g^{4}}$
Universality: triangulations, tessellations $f \sim\left(g_{\text {critical }}-g\right)^{\frac{3}{2}}$
Physical volume: consider equilateral quadrangles of area σ^{2}

$$
\langle V\rangle=\sigma^{2}\langle(\# \text { quadrangles })\rangle \sim \sigma^{2} g \partial_{g} \ln f \sim \frac{\sigma^{2}}{g_{\text {critical }}-g}
$$

Continuum limit of Dynamical Triangulations

$$
\text { "continuum limit" } \Leftrightarrow \text { criticality }
$$

DTs sum over random spaces:
$f(g)=\sum_{\text {connected planar rooted quadrangulations }}\left(g^{2}\right)^{\# q u a d r a n g l e s}=\frac{\left(1-12 g^{2}\right)^{\frac{3}{2}}-1+18 g^{2}}{54 g^{4}}$
Universality: triangulations, tessellations $f \sim\left(g_{\text {critical }}-g\right)^{\frac{3}{2}}$
Physical volume: consider equilateral quadrangles of area σ^{2}

$$
\begin{gathered}
\langle V\rangle=\sigma^{2}\langle(\# \text { quadrangles })\rangle \sim \sigma^{2} g \partial_{g} \ln f \sim \frac{\sigma^{2}}{g_{\text {critical }}-g} \\
g \nearrow g_{\text {critical }} \Rightarrow\langle(\# \text { quadrangles })\rangle \rightarrow \infty
\end{gathered}
$$

Continuum limit of Dynamical Triangulations

$$
\text { "continuum limit" } \Leftrightarrow \text { criticality }
$$

DTs sum over random spaces:

$$
f(g)=\sum_{\text {connected planar rooted quadrangulations }}\left(g^{2}\right)^{\# \text { quadrangles }}=\frac{\left(1-12 g^{2}\right)^{\frac{3}{2}}-1+18 g^{2}}{54 g^{4}}
$$

Universality: triangulations, tessellations $f \sim\left(g_{\text {critical }}-g\right)^{\frac{3}{2}}$
Physical volume: consider equilateral quadrangles of area σ^{2}

$$
\begin{gathered}
\langle V\rangle=\sigma^{2}\langle(\# \text { quadrangles })\rangle \sim \sigma^{2} g \partial_{g} \ln f \sim \frac{\sigma^{2}}{g_{\text {critical }}-g} \\
g \nearrow g_{\text {critical }} \Rightarrow\langle(\# \text { quadrangles })\rangle \rightarrow \infty
\end{gathered}
$$

Continuum limit: send $g \nearrow g_{\text {critical }}, \sigma \searrow 0$ keeping the physical volume fixed.

DT continuum limit v.s. Field Theory phase transition

DT continuum limit v.s. Field Theory phase transition

Dynamical Triangulations are generated by matrix and tensor models:

$$
\int[d \bar{T} d T] e^{-\bar{T} \cdot T-V_{\text {int }}(\bar{T}, T)}
$$

with $V_{\text {int }}(\bar{T}, T)$ invariant under conjugation by the unitary group

DT continuum limit v.s. Field Theory phase transition

Dynamical Triangulations are generated by matrix and tensor models:

$$
\int[d \bar{T} d T] e^{-\bar{T} \cdot T-V_{\text {int }}(\bar{T}, T)}
$$

with $V_{\text {int }}(\bar{T}, T)$ invariant under conjugation by the unitary group

Partition functions for field theories with no kinetic term

DT continuum limit v.s. Field Theory phase transition

Dynamical Triangulations are generated by matrix and tensor models:

$$
\int[d \bar{T} d T] e^{-\bar{T} \cdot T-V_{\text {int }}(\bar{T}, T)}
$$

with $V_{\text {int }}(\bar{T}, T)$ invariant under conjugation by the unitary group

Partition functions for field theories with no kinetic term

Tensor models:

- the continuum limit of the DT = phase transition
- breaking of the unitary invariance

Introduction

Tensor models

Phase transition in the quartic model

Tensor invariants as Edge Colored Graphs

Tensor invariants as Edge Colored Graphs

Building blocks: tensors with no symmetry transforming as

$$
T_{b^{1} \ldots b^{D}}^{\prime}=\sum U_{b^{1} a^{1}}^{(1)} \ldots U_{b^{D} a^{D}}^{(D)} T_{a^{1} \ldots a^{D}}, \quad \bar{T}_{p^{1} \ldots p^{D}}^{\prime}=\sum \bar{U}_{p^{1} q^{1}}^{(1)} \ldots \bar{U}_{p^{D} q^{D}}^{(D)} \bar{T}_{q^{1} \ldots q^{D}}
$$

Tensor invariants as Edge Colored Graphs

Building blocks: tensors with no symmetry transforming as

$$
T_{b^{1} \ldots b^{D}}^{\prime}=\sum U_{b^{1} a^{1}}^{(1)} \ldots U_{b^{D} a^{D}}^{(D)} T_{a^{1} \ldots a^{D}}, \quad \bar{T}_{p^{1} \ldots p^{D}}^{\prime}=\sum \bar{U}_{p^{1} q^{1}}^{(1)} \ldots \bar{U}_{p^{D} q^{D}}^{(D)} \bar{T}_{q^{1} \ldots q^{D}}
$$

Invariants: colored graphs
$\operatorname{Tr}_{\mathcal{B}}(T, \bar{T})=\sum \prod_{v} T_{a_{v}^{1} \ldots a_{v}^{D}} \prod_{\bar{v}} \bar{T}_{q_{\bar{v}}^{1} \ldots q_{\bar{v}}^{D}} \prod_{c=1}^{D} \prod_{\kappa=(w, \bar{w})} \delta_{a_{w}^{c} q_{\bar{w}}^{c}}$

- White (black) vertices for $T(\bar{T})$.
- Edges for $\delta_{a^{c} q^{c}}$ colored by c, the position of the index.

Invariant Actions for Tensor Models

Invariant Actions for Tensor Models

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{0}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}-\sum_{\mathcal{B}} t_{\mathcal{B}} T_{r_{\mathcal{B}}}(\bar{T}, T) \\
& Z\left(t_{\mathcal{B}}\right)=\int[d \bar{T} d T] e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

Invariant Actions for Tensor Models

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{o}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{\mathbb{a}^{c^{c}}}-\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& Z\left(t_{\mathcal{B}}\right)=\int[d \bar{T} d T] e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

Feynman graphs: "effective vertices" \mathcal{B}.

$$
\begin{aligned}
\int_{\bar{T}, T} & \left.e^{-N^{D-1}\left(\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}\right.}\right) \\
& \operatorname{Tr}_{\mathcal{B}_{1}}(\bar{T}, T) \operatorname{Tr}_{\mathcal{B}_{2}}(\bar{T}, T) \ldots
\end{aligned}
$$

Invariant Actions for Tensor Models

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{\circ}} \bar{T}_{q^{1} \ldots q^{0}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}-\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& Z\left(t_{\mathcal{B}}\right)=\int[d \bar{T} d T] e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

Feynman graphs: "effective vertices" \mathcal{B}.

$$
\left.e^{-N^{D-1}\left(\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a} c_{q} c\right.}\right)
$$

$$
\sum\left(\prod \delta \ldots\right) T_{a^{1} a^{2} a^{3}} \bar{T}_{p^{1} p^{2} p^{3}} \ldots
$$

Invariant Actions for Tensor Models

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{0}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c_{q}}}-\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& Z\left(t_{\mathcal{B}}\right)=\int[d \bar{T} d T] e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

Feynman graphs: "effective vertices" \mathcal{B}. Gaussian integral: Wick contractions of T and \bar{T} ("propagators") \rightarrow dashed edges to which we assign the fictitious color 0.

$$
\begin{aligned}
\int_{\bar{T}, T} & e^{-N^{D-1}\left(\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}\right)} \\
& \sum\left(\prod \delta \ldots\right) \underbrace{\frac{1}{N^{D-1}} \delta_{a^{1} p^{1}} \delta_{a^{2} p^{2}} \delta_{a^{3} p^{3}}}_{\sim}
\end{aligned}
$$

Invariant Actions for Tensor Models

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}-\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& Z\left(t_{\mathcal{B}}\right)=\int[d \bar{T} d T] e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

Feynman graphs: "effective vertices" \mathcal{B}. Gaussian integral: Wick contractions of T and \bar{T} ("propagators") \rightarrow dashed edges to which we assign the fictitious color 0.

Graphs \mathcal{G} with $D+1$ colors.

Invariant Actions for Tensor Models

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}-\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& Z\left(t_{\mathcal{B}}\right)=\int[d \bar{T} d T] e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

Feynman graphs: "effective vertices" \mathcal{B}. Gaussian integral: Wick contractions of T and \bar{T} ("propagators") \rightarrow dashed edges to which we assign the fictitious color 0.

Graphs \mathcal{G} with $D+1$ colors.
Represent triangulated D dimensional spaces.

Colored Graphs as gluings of colored simplices

Colored Graphs as gluings of colored simplices

White and black $D+1$ valent vertices connected by edges with colors $0,1 \ldots D$ ．

Colored Graphs as gluings of colored simplices

White and black $D+1$ valent vertices connected by edges with colors $0,1 \ldots D$.

Vertex \leftrightarrow colored D simplex .

Edges \leftrightarrow gluings along
$D-1$ simplices respecting
all the colorings

The quartic tensor model

The quartic tensor model

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}-\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& Z\left(t_{\mathcal{B}}\right)=\int[d \bar{T} d T] e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

The quartic tensor model

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c_{q}}}-\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& Z\left(t_{\mathcal{B}}\right)=\int[d \bar{T} d T] e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

The simplest quartic invariants correspond to "melonic" graphs with four vertices $\mathcal{B}^{(4), c}$

The quartic tensor model

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots \Delta} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c_{q}}}-\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& Z\left(t_{\mathcal{B}}\right)=\int[d \bar{T} d T] e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

The simplest quartic invariants correspond to "melonic" graphs with four vertices $\mathcal{B}^{(4), c}$

$$
\sum\left(T_{a^{1} \ldots a,} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c^{\prime} \neq c} \delta_{a^{\prime} c^{\prime} q^{c^{\prime}}}\right) \delta_{a^{2} c^{c} c} \delta_{b c^{c} q^{c}}\left(T_{b^{1} \ldots b} \bar{T}_{p^{1} \ldots \rho^{1}} \prod_{c^{\prime} \neq c} \delta_{b^{\prime} c^{\prime} c^{\prime}}\right)
$$

The simplest interacting theory: coupling constants $t_{\mathcal{B}}=\frac{g^{2}}{2}$ for some of the "melonic interactions" $\mathcal{B}^{(4), c}, c \in \mathcal{Q}=\{1, \ldots Q\}$

Amplitudes and Dynamical Triangulations

Amplitudes and Dynamical Triangulations

Expand in g (Feynman graphs):

$$
\ln Z=\sum_{\text {(subclass of connected } D+1 \text { colored graphs } G} A^{G}(N)
$$

Amplitudes and Dynamical Triangulations

Expand in g (Feynman graphs):

$$
\ln Z=\sum_{\text {(subcasss of connected } D+1 \text { colored graphs } G} A^{G}(N)
$$

Graphs dual to triangulations

Amplitudes and Dynamical Triangulations

Expand in g (Feynman graphs):

$$
\ln Z=\sum_{\text {(subclass of connected } D+1 \text { colored graphs } G} A^{G}(N)
$$

Graphs dual to triangulations

$$
A^{G}(N)=g^{2 \# V_{\text {ertices }}} N^{D-\cdots}=e^{\kappa_{D-2}(g, N) Q_{D-2}-\kappa_{D}(g, N) Q_{D}}
$$

Discretized Einstein Hilbert action on the (dual) triangulation with Q_{D} equilateral D-simplices and $Q_{D-2}(D-2)$-simplices.

Amplitudes and Dynamical Triangulations

Expand in g (Feynman graphs):

$$
\ln Z=\sum_{\text {(subclass of connected } D+1 \text { colored graphs } G} A^{G}(N)
$$

Graphs dual to triangulations

$$
A^{G}(N)=g^{2 \# V_{\text {ertices }}} N^{D-\cdots}=e^{\kappa_{D-2}(g, N) Q_{D-2}-\kappa_{D}(g, N) Q_{D}}
$$

Discretized Einstein Hilbert action on the (dual) triangulation with Q_{D} equilateral D-simplices and $Q_{D-2}(D-2)$-simplices.
$\ln Z=\sum_{q \geq 0} N^{(D-q)}\left(g_{c}-g\right)^{\nu_{q}}$, DT continuum limit: $g \nearrow g_{c}$

Introduction

Tensor models

Phase transition in the quartic model

What follows

What follows

Q melonic interactions in D dimensions (tensors with D indices), g_{c} critical constant (continuum limit of DT)

- $Q \geq 2$
- $g<g_{c}$ color and unitary symmetric vacuum
- $g=g_{c}$ one mass eigenvalue becomes 0
- $g>g_{c}$ vacuum state in the broken phase not yet found
- $Q=1$
- $g<g_{c}$ unitary symmetric vacuum
- $g=g_{c}$ all mass eigenvalues become 0
- $g>g_{c}$ vacuum states break the unitary symmetry

The intermediate field representation

The intermediate field representation

Hubbard Stratanovich transformation

$$
\int d \bar{\phi} d \phi e^{-\bar{\phi} \phi+\frac{\xi^{2}}{2}(\bar{\phi} \phi)^{2}}=\int d \bar{\phi} d \phi e^{-\bar{\phi} \phi} \int d h e^{-\frac{1}{2} h^{2}+g \bar{\phi} h \phi}
$$

The intermediate field representation

Hubbard Stratanovich transformation

$$
\int d \bar{\phi} d \phi e^{-\bar{\phi} \phi+\frac{g^{2}}{2}(\bar{\phi} \phi)^{2}}=\int d \bar{\phi} d \phi e^{-\bar{\phi} \phi} \int d h e^{-\frac{1}{2} h^{2}+g \bar{\phi} h \phi}
$$

integrate out $\bar{\phi}, \phi$ (Gaussian) to get an effective theory for h

$$
\int d \bar{\phi} d \phi d h e^{-\bar{\phi} \phi-\frac{1}{2} h^{2}+g \bar{\phi} h \phi}=\int d h e^{-\frac{1}{2} h^{2}+\ln \left(\frac{1}{1-g h}\right)}
$$

The intermediate field representation

Hubbard Stratanovich transformation

$$
\int d \bar{\phi} d \phi e^{-\bar{\phi} \phi+\frac{g^{2}}{2}(\bar{\phi} \phi)^{2}}=\int d \bar{\phi} d \phi e^{-\bar{\phi} \phi} \int d h e^{-\frac{1}{2} h^{2}+g \bar{\phi} h \phi}
$$

integrate out $\bar{\phi}, \phi$ (Gaussian) to get an effective theory for h

$$
\int d \bar{\phi} d \phi d h e^{-\bar{\phi} \phi-\frac{1}{2} h^{2}+g \bar{\phi} h \phi}=\int d h e^{-\frac{1}{2} h^{2}+\ln \left(\frac{1}{1-g h}\right)}
$$

The intermediate field representation

Hubbard Stratanovich transformation

$$
\int d \bar{\phi} d \phi e^{-\bar{\phi} \phi+\frac{g^{2}}{2}(\bar{\phi} \phi)^{2}}=\int d \bar{\phi} d \phi e^{-\bar{\phi} \phi} \int d h e^{-\frac{1}{2} h^{2}+g \bar{\phi} h \phi}
$$

integrate out $\bar{\phi}, \phi$ (Gaussian) to get an effective theory for h

$$
\int d \bar{\phi} d \phi d h e^{-\bar{\phi} \phi-\frac{1}{2} h^{2}+g \bar{\phi} h \phi}=\int d h e^{-\frac{1}{2} h^{2}+\ln \left(\frac{1}{1-g h}\right)}
$$

 need a matrix intermediate field H^{c} for the indices of color $c \in \mathcal{Q} \ldots$

The intermediate field representation

Hubbard Stratanovich transformation

$$
\int d \bar{\phi} d \phi e^{-\bar{\phi} \phi+\frac{g^{2}}{2}(\bar{\phi} \phi)^{2}}=\int d \bar{\phi} d \phi e^{-\bar{\phi} \phi} \int d h e^{-\frac{1}{2} h^{2}+g \bar{\phi} h \phi}
$$

integrate out $\bar{\phi}, \phi$ (Gaussian) to get an effective theory for h

$$
\int d \bar{\phi} d \phi d h e^{-\bar{\phi} \phi-\frac{1}{2} h^{2}+g \bar{\phi} h \phi}=\int d h e^{-\frac{1}{2} h^{2}+\ln \left(\frac{1}{1-g h}\right)}
$$

 need a matrix intermediate field H^{c} for the indices of color $c \in \mathcal{Q} \ldots$ several pages later...

$$
\begin{aligned}
& Z(g)=\int\left(\prod_{c \in \mathcal{Q}}\left[d H^{c}\right]\right) e^{-\frac{1}{2} \sum_{c \in \mathcal{Q}} N^{D-1} \operatorname{Tr}_{c}\left[H^{c} H^{c}\right]+\operatorname{Tr} \operatorname{Tr}[\ln R(H)]}, \\
& R(H)=\frac{1}{\mathbf{1}^{\otimes \mathcal{D}}-g \sum_{c \in \mathcal{Q}} H^{c} \otimes \mathbf{1}^{\otimes(\mathcal{D} \backslash c)}}
\end{aligned}
$$

The vacuum

The vacuum

Field theory for the matrix fields $H^{c}, c \in \mathcal{Q}$ with action:

$$
\frac{1}{2} \sum_{c \in \mathcal{Q}} N^{D-1} \operatorname{Tr}_{c}\left[H^{c} H^{c}\right]+\operatorname{Tr}_{\mathcal{D}}\left[\ln \left(\mathbf{1}^{\otimes \mathcal{D}}-g \sum_{c \in \mathcal{Q}} H^{c} \otimes \mathbf{1}^{\otimes(\mathcal{D} \backslash c)}\right)\right]
$$

The vacuum

Field theory for the matrix fields $H^{c}, c \in \mathcal{Q}$ with action:

$$
\frac{1}{2} \sum_{c \in \mathcal{Q}} N^{D-1} \operatorname{Tr}_{c}\left[H^{c} H^{c}\right]+\operatorname{Tr}_{\mathcal{D}}\left[\ln \left(\mathbf{1}^{\otimes \mathcal{D}}-g \sum_{c \in \mathcal{Q}} H^{c} \otimes \mathbf{1}^{\otimes(\mathcal{D} \backslash c)}\right)\right]
$$

classical equations of motion:

$$
H^{c}-g \frac{1}{N^{D-1}} \operatorname{Tr}_{\mathcal{D} \backslash c}\left[\frac{1}{\mathbf{1}^{\otimes \mathcal{D}}-g \sum_{c^{\prime} \in \mathcal{Q}} H^{c^{\prime}} \otimes \mathbf{1}^{\otimes(\mathcal{D} \backslash c)}}\right]=0
$$

The vacuum

Field theory for the matrix fields $H^{c}, c \in \mathcal{Q}$ with action:

$$
\frac{1}{2} \sum_{c \in \mathcal{Q}} N^{D-1} \operatorname{Tr}_{c}\left[H^{c} H^{c}\right]+\operatorname{Tr}_{\mathcal{D}}\left[\ln \left(\mathbf{1}^{\otimes \mathcal{D}}-g \sum_{c \in \mathcal{Q}} H^{c} \otimes \mathbf{1}^{\otimes(\mathcal{D} \backslash c)}\right)\right]
$$

classical equations of motion:

$$
H^{c}-g \frac{1}{N^{D-1}} \operatorname{Tr}_{\mathcal{D} \backslash c}\left[\frac{1}{\mathbf{1}^{\otimes \mathcal{D}}-g \sum_{c^{\prime} \in \mathcal{Q}} H^{c^{\prime}} \otimes \mathbf{1}^{\otimes(\mathcal{D} \backslash c)}}\right]=0
$$

$H^{c}=0$ is not a solution!

The vacuum

Field theory for the matrix fields $H^{c}, c \in \mathcal{Q}$ with action:

$$
\frac{1}{2} \sum_{c \in \mathcal{Q}} N^{D-1} \operatorname{Tr}_{c}\left[H^{c} H^{c}\right]+\operatorname{Tr}_{\mathcal{D}}\left[\ln \left(\mathbf{1}^{\otimes \mathcal{D}}-g \sum_{c \in \mathcal{Q}} H^{c} \otimes \mathbf{1}^{\otimes(\mathcal{D} \backslash c)}\right)\right]
$$

classical equations of motion:

$$
H^{c}-g \frac{1}{N^{D-1}} \operatorname{Tr}_{\mathcal{D} \backslash c}\left[\frac{1}{\mathbf{1}^{\otimes \mathcal{D}}-g \sum_{c^{\prime} \in \mathcal{Q}} H^{c^{\prime}} \otimes \mathbf{1} \otimes(\mathcal{D} \backslash c)}\right]=0
$$

$H^{c}=0$ is not a solution!
Unitary invariant, color symmetric solution $H^{c}=a \mathbf{1}$ with

$$
a=\frac{g}{1-g Q a} \Rightarrow a_{\mp}=\frac{1 \mp \sqrt{1-4 Q g^{2}}}{2 Q g}
$$

Translating to the vacuum

Translating to the vacuum

Translate to the invariant vacuum $H^{c}=a_{+} \mathbf{1}+M^{c}$ or $H^{c}=a_{-} \mathbf{1}+M^{c}$

Translating to the vacuum

Translate to the invariant vacuum $H^{c}=a_{+} \mathbf{1}+M^{c}$ or $H^{c}=a_{-} \mathbf{1}+M^{c}$ (not a phase transition, as the vacuum is invariant!)...

Translating to the vacuum

Translate to the invariant vacuum $H^{c}=a_{+} \mathbf{1}+M^{c}$ or $H^{c}=a_{-} \mathbf{1}+M^{c}$ (not a phase transition, as the vacuum is invariant!)... many pages later...

$$
\begin{aligned}
Z= & e^{-N^{D}\left(\frac{Q_{a}^{2}}{2}+\ln \left(1-g Q_{a \mp}\right)\right)} \\
& \times \int\left[d M^{c}\right] e^{-\frac{1}{2} N^{D-1}\left(1-a_{\mp}^{2}\right) \sum_{c \in \mathcal{Q}} \operatorname{Tr}_{c}\left[M^{c} M^{c}\right]+\frac{1}{2} N^{D-2} \frac{Q-1}{Q} a_{\mp}^{2}\left(\sum_{c \in \mathcal{Q}} \operatorname{Tr}_{c}\left[M^{c}\right]\right)^{2}+Q(M)}
\end{aligned}
$$

Translating to the vacuum

Translate to the invariant vacuum $H^{c}=a_{+} \mathbf{1}+M^{c}$ or $H^{c}=a_{-} \mathbf{1}+M^{c}$ (not a phase transition, as the vacuum is invariant!)... many pages later...

$$
\begin{aligned}
Z= & e^{-N^{D}\left(\frac{Q a_{\mp}^{2}}{2}+\ln \left(1-g Q a_{\mp}\right)\right)} \\
& \times \int\left[d M^{c}\right] e^{-\frac{1}{2} N^{D-1}\left(1-a_{\mp}^{2}\right) \sum_{c \in \mathcal{Q}} \operatorname{Tr}_{c}\left[M^{c} M^{c}\right]+\frac{1}{2} N^{D-2} \frac{Q-1}{Q} a_{\mp}^{2}\left(\sum_{c \in \mathcal{Q}} \operatorname{Tr}_{c}\left[M^{c}\right]\right)^{2}+Q(M)}
\end{aligned}
$$

- $Q(M) \sim M^{3}(M=0$ is the invariant vacuum $)$ and the integral over M is subleading in $1 / N$ hence:

$$
W_{\infty}=\lim _{N \rightarrow \infty}\left[-\frac{1}{N^{D}} \ln Z\right]=\frac{Q a_{\mp}^{2}}{2}+\ln \left(1-g Q a_{\mp}\right)
$$

Translating to the vacuum

Translate to the invariant vacuum $H^{c}=a_{+} \mathbf{1}+M^{c}$ or $H^{c}=a_{-} \mathbf{1}+M^{c}$ (not a phase transition, as the vacuum is invariant!)... many pages later...

$$
\begin{aligned}
Z= & e^{-N^{D}\left(\frac{Q a_{\mp}^{2}}{2}+\ln \left(1-g Q a_{\mp}\right)\right)} \\
& \times \int\left[d M^{c}\right] e^{-\frac{1}{2} N^{D-1}\left(1-a_{\mp}^{2}\right) \sum_{c \in \mathcal{Q}} \operatorname{Tr}_{c}\left[M^{c} M^{c}\right]+\frac{1}{2} N^{D-2} \frac{Q-1}{Q} a_{\mp}^{2}\left(\sum_{c \in \mathcal{Q}} \operatorname{Tr}_{c}\left[M^{c}\right]\right)^{2}+Q(M)}
\end{aligned}
$$

- $Q(M) \sim M^{3}(M=0$ is the invariant vacuum $)$ and the integral over M is subleading in $1 / N$ hence:

$$
W_{\infty}=\lim _{N \rightarrow \infty}\left[-\frac{1}{N^{D}} \ln Z\right]=\frac{Q a_{\mp}^{2}}{2}+\ln \left(1-g Q a_{\mp}\right)
$$

- the (diagonalized) mass matrix:

$$
\begin{aligned}
& \left.\frac{\delta^{2} S}{\delta M_{\alpha \beta}^{c} \delta M_{\gamma \delta}^{c^{\prime}}}\right|_{M=0}=N^{D-1}\left(1-a_{\mp}^{2}\right)\left(\delta^{c c^{\prime}} \delta_{\alpha \delta} \delta_{\beta \gamma}-\frac{1}{Q N} \delta_{\alpha \beta} \delta_{\gamma \delta}\right)+N^{D-1}\left(1-Q a_{\mp}^{2}\right)\left(\frac{1}{Q N} \delta_{\alpha \beta} \delta_{\gamma \delta}\right) \\
& \text { small } g \Rightarrow a_{+} \nearrow \infty, a_{-} \searrow 0 \text { hence only } H^{c}=a_{-} 1 \text { is stable }
\end{aligned}
$$

Let us recapitulate

Let us recapitulate

- quartic tensor model + intermediate field $=$ coupled matrix model with logarithmic interaction

Let us recapitulate

- quartic tensor model + intermediate field $=$ coupled matrix model with logarithmic interaction
- Invariant vacuum (g small) $H^{c}=a_{-} 1$ with $a_{-}=\frac{1-\sqrt{1-4 Q g^{2}}}{2 Q g}$

Let us recapitulate

- quartic tensor model + intermediate field $=$ coupled matrix model with logarithmic interaction
- Invariant vacuum (g small) $H^{c}=a_{-} 1$ with $a_{-}=\frac{1-\sqrt{1-4 Q g^{2}}}{2 Q g}$
- Large N free energy $W_{\infty}=\frac{Q a_{-}^{2}}{2}+\ln \left(1-g Q a_{-}\right)$

Let us recapitulate

- quartic tensor model + intermediate field $=$ coupled matrix model with logarithmic interaction
- Invariant vacuum (g small) $H^{c}=a_{-} 1$ with $a_{-}=\frac{1-\sqrt{1-4 Q g^{2}}}{2 Q g}$
- Large N free energy $W_{\infty}=\frac{Q a_{-}^{2}}{2}+\ln \left(1-g Q a_{-}\right)$
- Mass eigenvalues of the fluctuation field M^{c} :
- $N^{D-1}\left(1-a_{-}^{2}\right)$ with multiplicity $Q N^{2}-1$
- and $N^{D-1}\left(1-Q a_{-}^{2}\right)$ with multiplicity 1

Let us recapitulate

- quartic tensor model + intermediate field $=$ coupled matrix model with logarithmic interaction
- Invariant vacuum (g small) $H^{c}=a_{-} 1$ with $a_{-}=\frac{1-\sqrt{1-4 Q g^{2}}}{2 Q g}$
- Large N free energy $W_{\infty}=\frac{Q a_{-}^{2}}{2}+\ln \left(1-g Q a_{-}\right)$
- Mass eigenvalues of the fluctuation field M^{c} :
- $N^{D-1}\left(1-a_{-}^{2}\right)$ with multiplicity $Q N^{2}-1$
- and $N^{D-1}\left(1-Q a_{-}^{2}\right)$ with multiplicity 1

DT continuum limit: W_{∞} critical $\Leftrightarrow a_{-}$critical $\Leftrightarrow g \nearrow g_{c}=\frac{1}{2 \sqrt{Q}}$.

Let us recapitulate

- quartic tensor model + intermediate field = coupled matrix model with logarithmic interaction
- Invariant vacuum (g small) $H^{c}=a_{-} 1$ with $a_{-}=\frac{1-\sqrt{1-4 Q g^{2}}}{2 Q g}$
- Large N free energy $W_{\infty}=\frac{Q a_{-}^{2}}{2}+\ln \left(1-g Q a_{-}\right)$
- Mass eigenvalues of the fluctuation field M^{c} :
- $N^{D-1}\left(1-a_{-}^{2}\right)$ with multiplicity $Q N^{2}-1$
- and $N^{D-1}\left(1-Q a_{-}^{2}\right)$ with multiplicity 1

DT continuum limit: W_{∞} critical $\Leftrightarrow a_{-}$critical $\Leftrightarrow g \nearrow g_{c}=\frac{1}{2 \sqrt{Q}}$. In the critical regime $a_{-}=\frac{1}{\sqrt{Q}}-O\left(\left(g_{c}-g\right)^{1 / 2}\right)$

Let us recapitulate

- quartic tensor model + intermediate field = coupled matrix model with logarithmic interaction
- Invariant vacuum (g small) $H^{c}=a_{-} 1$ with $a_{-}=\frac{1-\sqrt{1-4 Q g^{2}}}{2 Q g}$
- Large N free energy $W_{\infty}=\frac{Q a_{-}^{2}}{2}+\ln \left(1-g Q a_{-}\right)$
- Mass eigenvalues of the fluctuation field M^{c} :
- $N^{D-1}\left(1-a_{-}^{2}\right)$ with multiplicity $Q N^{2}-1$
- and $N^{D-1}\left(1-Q a_{-}^{2}\right)$ with multiplicity 1

DT continuum limit: W_{∞} critical $\Leftrightarrow a_{-}$critical $\Leftrightarrow g \nearrow g_{c}=\frac{1}{2 \sqrt{Q}}$. In the critical regime $a_{-}=\frac{1}{\sqrt{Q}}-O\left(\left(g_{c}-g\right)^{1 / 2}\right)$

Field theory phase transition: zero eigenvalue (with multiplicity 1) of the mass matrix $a_{-}^{2}=\frac{1}{Q}$

Let us recapitulate

- quartic tensor model + intermediate field = coupled matrix model with logarithmic interaction
- Invariant vacuum (g small) $H^{c}=a_{-} 1$ with $a_{-}=\frac{1-\sqrt{1-4 Q g^{2}}}{2 Q g}$
- Large N free energy $W_{\infty}=\frac{Q a_{-}^{2}}{2}+\ln \left(1-g Q a_{-}\right)$
- Mass eigenvalues of the fluctuation field M^{c} :
- $N^{D-1}\left(1-a_{-}^{2}\right)$ with multiplicity $Q N^{2}-1$
- and $N^{D-1}\left(1-Q a_{-}^{2}\right)$ with multiplicity 1

DT continuum limit: W_{∞} critical $\Leftrightarrow a_{-}$critical $\Leftrightarrow g \nearrow g_{c}=\frac{1}{2 \sqrt{Q}}$. In the critical regime $a_{-}=\frac{1}{\sqrt{Q}}-O\left(\left(g_{c}-g\right)^{1 / 2}\right)$

Field theory phase transition: zero eigenvalue (with multiplicity 1) of the mass matrix $a_{-}^{2}=\frac{1}{Q}$
$Q=1$: all mass eigenvalues are equal and become zero at criticality!

The $Q=1$ case

The $Q=1$ case

Only one matrix H, Eq. of motion:

$$
H-\frac{g}{1-g H}=0
$$

The $Q=1$ case

Only one matrix H , Eq. of motion:

$$
H-\frac{g}{1-g H}=0
$$

Any solution is of the form $H=\operatorname{diag}(\underbrace{a_{-}, \ldots a_{-}}_{N_{-}}, \underbrace{a_{+}, \ldots a_{+}}_{N_{+}}), a_{\mp}=\frac{1 \mp \sqrt{1-4 g^{2}}}{2 g}$

The $Q=1$ case

Only one matrix H , Eq. of motion:

$$
H-\frac{g}{1-g H}=0
$$

Any solution is of the form $H=\operatorname{diag}(\underbrace{a_{-}, \ldots a_{-}}_{N_{-}}, \underbrace{a_{+}, \ldots a_{+}}_{N_{+}}), a_{\mp}=\frac{1 \mp \sqrt{1-4 g^{2}}}{2 g}$
Mass eigenvalues:

- $N^{D-1}\left(1-a_{-}^{2}\right)$, degeneracy N_{-}^{2}
- $N^{D-1}\left(1-a_{+}^{2}\right)$, degeneracy N_{+}^{2}
- 0 with degeneracy $2 N_{+} N_{-}$(Goldstone modes, can be integrated out)

The $Q=1$ case

Only one matrix H , Eq. of motion:

$$
H-\frac{g}{1-g H}=0
$$

Any solution is of the form $H=\operatorname{diag}(\underbrace{a_{-}, \ldots a_{-}}_{N_{-}}, \underbrace{a_{+}, \ldots a_{+}}_{N_{+}}), a_{\mp}=\frac{1 \mp \sqrt{1-4 g^{2}}}{2 g}$
Mass eigenvalues:

- $N^{D-1}\left(1-a_{-}^{2}\right)$, degeneracy N_{-}^{2}
- $N^{D-1}\left(1-a_{+}^{2}\right)$, degeneracy N_{+}^{2}
- 0 with degeneracy $2 N_{+} N_{-}$(Goldstone modes, can be integrated out)
- at $g<g_{c}$ only $a_{-} \mathbf{1}$ is stable
- at $g=g_{c}=\frac{1}{2}$ all mass eigenvalues are zero
- at $g>g_{c}$ all the vacua have broken unitary symmetry and are stable

Conclusion

Q melonic interactions in D dimensions (tensors with D indices), g_{c} critical constant (continuum limit of DT)

- $Q \geq 2$
- $g<g_{c}$ color and unitary symmetric vacuum
- $g=g_{c}$ one mass eigenvalue becomes 0
- $g>g_{c}$ how does the color and unitary symmetry gets broken? one can show that it can not be that only the color symmetry gets broken
- $Q=1$
- $g<g_{c}$ unitary symmetric vacuum
- $g=g_{c}$ all mass eigenvalue become 0
- $g>g_{c}$ explicit vacua with broken unitary symmetry

