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Phase transitions in field theory

Phase transition ⇔ symmetry breaking

Z =

∫
[d φ̄dφ] e−[

∫
∂φ̄∂φ+m2

∫
φ̄φ+λ

2

∫
(φ̄φ)2]

invariant under complex rotations
φ = eıαφ, φ̄ = e−ıαφ̄

m >0
2 m =02 m <0

2

Broken phase → VEV:
〈
φ̄φ
〉

= −m2

λ ≡ v2. Expand around the VEV φ = (v + ρ)eı
θ
v

Sbroken ∼
(

1 +
ρ

v

)2

∂θ∂θ + ∂ρ∂ρ+ 2|m2|ρ2 + 2|m2|ρ3 +
λ

2
ρ4

Phase transition: zero eigenvalue of the “mass matrix”

δ2Snotkinetic

δφ̄δφ

∣∣∣
φ̄=φ=0

= m2 = 0
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Introduction Tensor models Phase transition in the quartic model

Phase transitions in field theory
Phase transition ⇔ symmetry breaking

Z =

∫
[d φ̄dφ] e−[

∫
∂φ̄∂φ+m2

∫
φ̄φ+λ

2

∫
(φ̄φ)2]

invariant under complex rotations
φ = eıαφ, φ̄ = e−ıαφ̄

m >0
2 m =02 m <0

2

Broken phase → VEV:
〈
φ̄φ
〉

= −m2

λ ≡ v2.

Expand around the VEV φ = (v + ρ)eı
θ
v

Sbroken ∼
(

1 +
ρ

v

)2

∂θ∂θ + ∂ρ∂ρ+ 2|m2|ρ2 + 2|m2|ρ3 +
λ

2
ρ4

Phase transition: zero eigenvalue of the “mass matrix”

δ2Snotkinetic

δφ̄δφ

∣∣∣
φ̄=φ=0

= m2 = 0

3



(More on) Phase transitions in Tensor Models, Jena 2015 Răzvan Gurău,
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Continuum limit of Dynamical Triangulations

“continuum limit” ⇔ criticality

DTs sum over random spaces:

f (g) =
∑

connected planar rooted quadrangulations

(g2)#quadrangles =
(1− 12g2)

3
2 − 1 + 18g2

54g4

Universality: triangulations, tessellations f ∼ (gcritical − g)
3
2

Physical volume: consider equilateral quadrangles of area σ2

〈V 〉 = σ2 〈(#quadrangles)〉 ∼ σ2g∂g ln f ∼ σ2

gcritical − g

g ↗ gcritical ⇒ 〈(#quadrangles)〉 → ∞

Continuum limit: send g ↗ gcritical , σ ↘ 0 keeping the physical volume fixed.
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DT continuum limit v.s. Field Theory phase
transition

Dynamical Triangulations are generated by matrix and tensor models:∫
[dT̄dT ] e−T̄ ·T−Vint(T̄ ,T )

with Vint(T̄ ,T ) invariant under conjugation by the unitary group

Partition functions for field theories with no kinetic term

Tensor models:

I the continuum limit of the DT = phase transition

I breaking of the unitary invariance
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Tensor invariants as Edge Colored Graphs

Building blocks: tensors with no symmetry transforming as

T ′b1...bD =
∑

U
(1)
b1a1 . . .U

(D)
bDaD

Ta1...aD , T̄ ′p1...pD =
∑

Ū
(1)
p1q1 . . . Ū

(D)
pDqD T̄q1...qD

Invariants: colored graphs

TrB(T , T̄ ) =
∑∏

v

Ta1
v ...a

D
v

∏
v̄

T̄q1
v̄ ...q

D
v̄

D∏
c=1

∏
lc=(w ,w̄)

δacwqc
w̄

T

T

1

2

3

1

3
2

2

1
3

1

2

2

2

1

1

3

1

2

1

1

2

2

3 3

3

1

2

2

3 1

3
2

3

1

I White (black) vertices for T (T̄ ).

I Edges for δacqc colored by c , the position of the index.
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Invariant Actions for Tensor Models

S(T , T̄ ) =
∑

Ta1...aD T̄q1...qD

D∏
c=1

δacqc −
∑
B

tBTrB(T̄ ,T )

Z (tB) =

∫
[dT̄dT ] e−N

D−1S(T ,T̄ )

Feynman graphs: “effective vertices” B. Gaussian integral: Wick contractions of
T and T̄ (“propagators”) → dashed edges to which we assign the fictitious color
0.

T

T

1

2

3

1

3
2

2

1
3

1

2

2

2

1

1

3

1

2

1

1

2

2

3 3

3

1

2

2

3 1

3
2

3

1

0

Graphs G with D + 1 colors.

Represent triangulated D dimensional spaces.
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Invariant Actions for Tensor Models

S(T , T̄ ) =
∑

Ta1...aD T̄q1...qD

D∏
c=1

δacqc −
∑
B

tBTrB(T̄ ,T )

Z (tB) =

∫
[dT̄dT ] e−N

D−1S(T ,T̄ )

Feynman graphs: “effective vertices” B. Gaussian integral: Wick contractions of
T and T̄ (“propagators”) → dashed edges to which we assign the fictitious color
0.
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Colored Graphs as gluings of colored simplices

White and black D + 1 valent vertices connected by edges
with colors 0, 1 . . .D.

1
1

3

2 2

0 0

Vertex ↔ colored D
simplex .

3

1
2

0

Edges ↔ gluings along
D − 1 simplices respecting
all the colorings

3
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The quartic tensor model

S(T , T̄ ) =
∑

Ta1...aD T̄q1...qD

D∏
c=1

δacqc −
∑
B

tBTrB(T̄ ,T )

Z (tB) =

∫
[dT̄dT ] e−N

D−1S(T ,T̄ )

The simplest quartic invariants correspond to
“melonic” graphs with four vertices B(4),c

∑(
T

a1...aD
T̄

q1...qD

∏
c′ 6=c

δ
ac
′
qc
′
)
δac pc δbc qc

(
T

b1...bD
T̄

p1...pD

∏
c′ 6=c

δ
bc
′
pc
′
)

c c

The simplest interacting theory: coupling constants tB = g2

2 for some of the

“melonic interactions” B(4),c , c ∈ Q = {1, . . .Q}
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Amplitudes and Dynamical Triangulations

Expand in g (Feynman graphs):

ln Z =
∑

(subclass of) connected D+1 colored graphs G

AG (N)

Graphs dual to triangulations

AG (N) = g2#VerticesND−... = eκD−2(g,N)QD−2−κD (g,N)QD

Discretized Einstein Hilbert action on the (dual) triangulation with QD equilateral
D-simplices and QD−2 (D − 2)-simplices.

lnZ =
∑

q≥0 N
(D−q)(gc − g)νq , DT continuum limit: g ↗ gc
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Introduction

Tensor models

Phase transition in the quartic model
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What follows

Q melonic interactions in D dimensions (tensors with D indices), gc critical
constant (continuum limit of DT)

I Q ≥ 2
I g < gc color and unitary symmetric vacuum
I g = gc one mass eigenvalue becomes 0
I g > gc vacuum state in the broken phase not yet found

I Q = 1
I g < gc unitary symmetric vacuum
I g = gc all mass eigenvalues become 0
I g > gc vacuum states break the unitary symmetry
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The intermediate field representation

Hubbard Stratanovich transformation∫
d φ̄dφ e−φ̄φ+ g2

2 (φ̄φ)2

=

∫
d φ̄dφ e−φ̄φ

∫
dh e−

1
2 h

2+g φ̄hφ

integrate out φ̄, φ (Gaussian) to get an effective theory for h∫
d φ̄dφdh e−φ̄φ−

1
2 h

2+g φ̄hφ =

∫
dh e−

1
2 h

2+ln( 1
1−gh )

tensors: e
g2

2
ND−1 ∑(T

a1...aD
T̄
q1...qD

∏
c′ 6=c δac

′
qc
′

)
δac pc δbc qc

(
T
b1...bD

T̄
p1...pD

∏
c′ 6=c δbc

′
pc
′

)
we

need a matrix intermediate field Hc for the indices of color c ∈ Q... several pages
later...

Z (g) =

∫ (∏
c∈Q

[dHc ]

)
e−

1
2

∑
c∈Q ND−1Trc [HcHc ]+TrD [ln R(H)] ,

R(H) =
1

1⊗D − g
∑

c∈Q Hc ⊗ 1⊗(D\c)

14



(More on) Phase transitions in Tensor Models, Jena 2015 Răzvan Gurău,
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The vacuum

Field theory for the matrix fields Hc , c ∈ Q with action:

1

2

∑
c∈Q

ND−1Trc [HcHc ] + TrD

[
ln

(
1⊗D − g

∑
c∈Q

Hc ⊗ 1⊗(D\c)

)]

classical equations of motion:

Hc − g
1

ND−1
TrD\c

[
1

1⊗D − g
∑

c′∈Q Hc′ ⊗ 1⊗(D\c)

]
= 0

Hc = 0 is not a solution!

Unitary invariant, color symmetric solution Hc = a1 with

a =
g

1− gQa
⇒ a∓ =

1∓
√

1− 4Qg2

2Qg

15
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Translating to the vacuum

Translate to the invariant vacuum Hc = a+1 + Mc or Hc = a−1 + Mc (not a
phase transition, as the vacuum is invariant!)... many pages later...

Z =e
−ND

(
Qa2
∓

2 +ln(1−gQa∓)

)

×
∫

[dMc ]e−
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2 N
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2 N

D−2 Q−1
Q a2
∓(
∑

c∈Q Trc [Mc ])2
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N→∞

[
−

1

ND
ln Z

]
=

Qa2
∓

2
+ ln(1− gQa∓)
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Introduction Tensor models Phase transition in the quartic model

Translating to the vacuum

Translate to the invariant vacuum Hc = a+1 + Mc or Hc = a−1 + Mc (not a
phase transition, as the vacuum is invariant!)... many pages later...

Z =e
−ND

(
Qa2
∓

2 +ln(1−gQa∓)

)

×
∫

[dMc ]e−
1
2 N

D−1(1−a2
∓)
∑

c∈Q Trc [McMc ]+ 1
2 N

D−2 Q−1
Q a2
∓(
∑

c∈Q Trc [Mc ])2
+Q(M)

I Q(M) ∼ M3 (M = 0 is the invariant vacuum) and the integral over M is subleading in 1/N hence:

W∞ = lim
N→∞

[
−

1

ND
ln Z

]
=

Qa2
∓

2
+ ln(1− gQa∓)

I the (diagonalized) mass matrix:

δ2S

δMc
αβδM

c′
γδ

∣∣∣
M=0

= ND−1(1− a2
∓)

(
δ
cc′
δαδδβγ −

1

QN
δαβδγδ

)
+ ND−1(1− Qa2

∓)

(
1

QN
δαβδγδ

)

small g ⇒ a+ ↗∞, a− ↘ 0 hence only Hc = a−1 is stable

16



(More on) Phase transitions in Tensor Models, Jena 2015 Răzvan Gurău,
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Introduction Tensor models Phase transition in the quartic model

Let us recapitulate

I quartic tensor model + intermediate field = coupled matrix model with logarithmic
interaction

I Invariant vacuum (g small) Hc = a−1 with a− =
1−
√

1−4Qg2

2Qg

I Large N free energy W∞ =
Qa2
−

2
+ ln(1− gQa−)

I Mass eigenvalues of the fluctuation field Mc :

I ND−1(1− a2
−) with multiplicity QN2 − 1

I and ND−1(1− Qa2
−) with multiplicity 1

DT continuum limit: W∞ critical ⇔ a− critical ⇔ g ↗ gc = 1
2
√

Q
. In the critical regime

a− = 1√
Q
− O

(
(gc − g)1/2

)
Field theory phase transition: zero eigenvalue (with multiplicity 1) of the mass matrix a2

− = 1
Q

Q = 1: all mass eigenvalues are equal and become zero at criticality!

17
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Introduction Tensor models Phase transition in the quartic model

The Q = 1 case

Only one matrix H, Eq. of motion:

H − g

1− gH
= 0

Any solution is of the form H = diag(a−, . . . a−︸ ︷︷ ︸
N−

, a+, . . . a+︸ ︷︷ ︸
N+

), a∓ =
1∓
√

1−4g2

2g

Mass eigenvalues:

I ND−1(1− a2
−), degeneracy N2

−
I ND−1(1− a2

+), degeneracy N2
+

I 0 with degeneracy 2N+N− (Goldstone modes, can be integrated out)

I at g < gc only a−1 is stable

I at g = gc = 1
2 all mass eigenvalues are zero

I at g > gc all the vacua have broken unitary symmetry and are stable

18
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Conclusion

Q melonic interactions in D dimensions (tensors with D indices), gc critical
constant (continuum limit of DT)

I Q ≥ 2
I g < gc color and unitary symmetric vacuum
I g = gc one mass eigenvalue becomes 0
I g > gc how does the color and unitary symmetry gets broken? one can show that it

can not be that only the color symmetry gets broken

I Q = 1
I g < gc unitary symmetric vacuum
I g = gc all mass eigenvalue become 0
I g > gc explicit vacua with broken unitary symmetry
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