Phase Structure of Causal Dynamical Triangulations

Andrzej Görlich

Niels Bohr Institute, University of Copenhagen

Jena, November 5th, 2015
(1) Introduction to CDT
(2) Phase diagram
(3) De Sitter phase
(4) New bifurcation phase
(5) Phase transitions

What is Causal Dynamical Triangulation?

Causal Dynamical Triangulation (CDT) is a background independent approach to quantum gravity.

$$
\int \mathrm{D}[g] e^{i S^{E H}[g]} \rightarrow \sum_{\mathcal{T}} e^{-S^{R}[\mathcal{T}]}
$$

CDT provides a lattice regularization of the formal gravitational path integral via a sum over causal triangulations.

Path integral formulation of quantum mechanics

- A classical particle follows a unique trajectory.

Path integral formulation of quantum mechanics

- A classical particle follows a unique trajectory.
- Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude.

Path integral formulation of quantum mechanics

- A classical particle follows a unique trajectory.
- Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude.
- To define the functional integral, we discretize the time coordinate and approximate any path by linear pieces.

Path integral formulation of quantum gravity

- General Relativity: gravity is encoded in space-time geometry.

1+1D Example: State of system: one-dimensional spatial geometry

Path integral formulation of quantum gravity

- General Relativity: gravity is encoded in space-time geometry.
- The role of a trajectory plays now the geometry of four-dimensional space-time.

1+1D Example: Evolution of one-dimensional closed universe

Path integral formulation of quantum gravity

- General Relativity: gravity is encoded in space-time geometry.
- The role of a trajectory plays now the geometry of four-dimensional space-time.
- All space-time histories contribute to the transition amplitude.

Sum over all two-dimensional surfaces joining the in- and out-state

Transition amplitude

Our aim is to calculate the amplitude of a transition between two geometric states:

$$
G\left(\mathbf{g}_{i}, \mathbf{g}_{f}, t\right) \equiv \int_{\mathbf{g}_{i} \rightarrow \mathbf{g}_{f}} \mathrm{D}[g] \mathrm{e}^{i S^{E H}[g]}
$$

To define this path integral we have to specify the measure $\mathrm{D}[g]$ and the domain of integration - a class of admissible space-time geometries joining the in- and out- geometries.

Regularization by triangulation. Example in 2D

Dynamical Triangulations uses one of the standard regularizations in QFT: discretization.
(1) One-dimensional state with a topology S^{1} is built from links with length a.

Regularization by triangulation. Example in 2D

Dynamical Triangulations uses one of the standard regularizations in QFT: discretization.
(1) One-dimensional state with a topology S^{1} is built from links with length a.
(2) 2D space-time surface is built from equilateral triangles.

Regularization by triangulation. Example in 2D

Dynamical Triangulations uses one of the standard regularizations in QFT: discretization.
(1) One-dimensional state with a topology S^{1} is built from links with length a.
(2) 2D space-time surface is built from equilateral triangles.
(3) Curvature (angle defcit) is localized at vertices.

Causality

- Causal Dynamical Triangulations assume global proper-time foliation. Spatial slices (leaves) have fixed topology and are not allowed to split in time.
- Foliation distinguishes between time-like and spatial-like links.
- Such setup does not introduce causal singularities, which lead to creation of baby universes.
- CDT defines the class of admissible space-time geometries which contribute to the transition amplitude.

Fundamental building blocks of CDT

- d-dimensional simplicial manifold can be obtained by gluing pairs of d-simplices along their $(d-1)$-faces.
- Lengths of the time and space links are constant. Simplices have a fixed geometry.
- The metric is flat inside each d-simplex.
- The angle deficit (curvature) is localized at $(d-2)$-dimensional sub-simplices.

OD simplex - point

Fundamental building blocks of CDT

- d-dimensional simplicial manifold can be obtained by gluing pairs of d-simplices along their $(d-1)$-faces.
- Lengths of the time and space links are constant. Simplices have a fixed geometry.
- The metric is flat inside each d-simplex.
- The angle deficit (curvature) is localized at $(d-2)$-dimensional sub-simplices.

1D simplex - link

Fundamental building blocks of CDT

- d-dimensional simplicial manifold can be obtained by gluing pairs of d-simplices along their $(d-1)$-faces.
- Lengths of the time and space links are constant. Simplices have a fixed geometry.
- The metric is flat inside each d-simplex.
- The angle deficit (curvature) is localized at ($d-2$)-dimensional sub-simplices.

2D simplex - triangle

Fundamental building blocks of CDT

- d-dimensional simplicial manifold can be obtained by gluing pairs of d-simplices along their $(d-1)$-faces.
- Lengths of the time and space links are constant. Simplices have a fixed geometry.
- The metric is flat inside each d-simplex.
- The angle deficit (curvature) is localized at $(d-2)$-dimensional sub-simplices.

3D simplex - tetrahedron

Fundamental building blocks of CDT

- d-dimensional simplicial manifold can be obtained by gluing pairs of d-simplices along their $(d-1)$-faces.
- Lengths of the time and space links are constant. Simplices have a fixed geometry.
- The metric is flat inside each d-simplex.
- The angle deficit (curvature) is localized at $(d-2)$-dimensional sub-simplices.

4D simplex - 4-simplex

Regularization by triangulation

- 4D simplicial manifold is obtained by gluing pairs of 4-simplices along their 3-faces.

4D space-time with topology $S^{3} \times S^{1}$

Regularization by triangulation

- 4D simplicial manifold is obtained by gluing pairs of 4-simplices along their 3-faces.
- Spatial states are 3D geometries with a topology S^{3}. Discretized states are build from equilateral tetrahedra.

3D spatial slices with topology S^{3}

Regularization by triangulation

- 4D simplicial manifold is obtained by gluing pairs of 4-simplices along their 3-faces.
- Spatial states are 3D geometries with a topology S^{3}. Discretized states are build from equilateral tetrahedra.
- The metric is flat inside each 4-simplex.
- Length of time links a_{t} and space links a_{s} is constant.
- Curvature is localized at triangles.

Fundamental building blocks of 4D CDT - two types

Regge action

The Einstein-Hilbert action has a natural realization on piecewise linear geometries called Regge action

$$
S^{E}[g]=-\frac{1}{G} \int \mathrm{~d} t \int \mathrm{~d}^{D} \times \sqrt{g}(R-2 \Lambda)
$$

The partition function

$$
\int \mathrm{D}[g] e^{i S^{E H}[g]} \rightarrow \sum_{\mathcal{T}} e^{-S^{R}[\mathcal{T}]}
$$

Regge action

The Einstein-Hilbert action has a natural realization on piecewise linear geometries called Regge action

$$
S^{R}[\mathcal{T}]=-K_{0} N_{0}+K_{4} N_{4}+\Delta\left(N_{14}-6 N_{0}\right)
$$

N_{0} number of vertices
N_{4} number of simplices
N_{14} number of simplices of type $\{1,4\}$
$K_{0} K_{4} \Delta$ bare coupling constants $\left(G, \Lambda, a_{t} / a_{s}\right)$

Causal Dynamical Triangulations

- The partition function of quantum gravity is defined as a formal integral over all geometries weighted by the Einstein-Hilbert action.

$$
Z=\int \mathrm{D}[g] e^{i S^{E H}[g]}
$$

Causal Dynamical Triangulations

- The partition function of quantum gravity is defined as a formal integral over all geometries weighted by the Einstein-Hilbert action.

$$
Z=\sum_{\mathcal{T}} e^{i S^{R}[g[\mathcal{T}]]}
$$

- To make sense of the gravitational path integral one uses the standard method of regularization - discretization.
- The path integral is written as a nonperturbative sum over all causal triangulations \mathcal{T}.

Causal Dynamical Triangulations

- The partition function of quantum gravity is defined as a formal integral over all geometries weighted by the Einstein-Hilbert action.

$$
Z=\sum_{\mathcal{T}} e^{-S^{R}[\mathcal{T}]}
$$

- To make sense of the gravitational path integral one uses the standard method of regularization - discretization.
- The path integral is written as a nonperturbative sum over all causal triangulations \mathcal{T}.
- Wick rotation is well defined due to global proper-time foliation. $\left(a_{t} \rightarrow i a_{t}\right)$

Causal Dynamical Triangulations

- The partition function of quantum gravity is defined as a formal integral over all geometries weighted by the Einstein-Hilbert action.

$$
Z=\sum_{\mathcal{T}} e^{-S^{R}[\mathcal{T}]}
$$

- To make sense of the gravitational path integral one uses the standard method of regularization - discretization.
- The path integral is written as a nonperturbative sum over all causal triangulations \mathcal{T}.
- Wick rotation is well defined due to global proper-time foliation. $\left(a_{t} \rightarrow i a_{t}\right)$
- Using Monte Carlo techniques we can approximate expectation values of observables.

Numerical setup

- Monte Carlo algorithm performs a random walk in the space of triangulations, it generates configurations with the probability $P[\mathcal{T}]=\frac{1}{Z} e^{-S[\mathcal{T}]}$.
- The walk consists of a series of 7 Pachner moves, which preserve topology and causality, are ergodic and fulfill the detailed balance condition. It is enough to know the probability functional $P(\mathcal{T})$ up to the normalization.
- To calculate the expectation value of an observable, we approximate the path integral by a sum over a finite set of Monte Carlo configurations

$$
\begin{aligned}
\langle\mathcal{O}[g]\rangle & =\frac{1}{Z} \int \mathcal{D}[g] \mathcal{O}[g] e^{-S[g]} \\
& \downarrow \\
\langle\mathcal{O}[\mathcal{T}]\rangle & =\frac{1}{Z} \sum_{\mathcal{T}} \mathcal{O}[\mathcal{T}] e^{-S[\mathcal{T}]} \approx \frac{1}{K} \sum_{i=1}^{K} \mathcal{O}\left[\mathcal{T}^{(i)}\right]
\end{aligned}
$$

Spatial slices

- The simplest observable giving information about the geometry, is the spatial volume $N(i)$ defined as a number of tetrahedra building a three-dimensional slice $i=1 \ldots T$.
- Restricting our considerations to the spatial volume $N(i)$ we reduce the problem to one-dimensional quantum mechanics.

3D spatial slices with topology S^{3}

Phase diagram

Phase A

- Triangulations disintegrate into uncorrelated and irregular sequences of small "universes".
- This phase is related to the branched polymers phase which is present in Euclidean DT.
- The "geometry" oscillates in the time direction - analogy to the helicoidal phase of Lifshitz scalar model $\left(\left|\partial_{t}[g]\right|>0\right)$.

Phase B

- Time dependence (of configurations) is reduced to a single time slice.
- The universe has neither time extension nor spatial extension. Hausdorff dimension $d_{h}=\infty$.
- Related to the crumpled phase in Euclidean DT.
- No geometry in classical sense - analogy to the paramagnetic phase of Lifshitz scalar model $([g]=0)$.

De Sitter phase (C)

- In phase C the time translation symmetry is spontaneously broken and the three-volume profile $N(i)$ is bell-shaped.

De Sitter phase (C)

- In phase C the time translation symmetry is spontaneously broken and the three-volume profile $N(i)$ is bell-shaped.
- The average volume $\langle N(i)\rangle$ is with high accuracy given by formula

$$
\langle N(i)\rangle=H \cos ^{3}\left(\frac{i}{W}\right)
$$

a classical vacuum solution.

Hausdorff dimension

The time coordinate i and spatial volume $\langle N(i)\rangle$ scale with total volume N_{4} as a genuine four-dimensional Universe,

$$
\begin{aligned}
t & =N_{4}^{-1 / 4} i, \\
\bar{v}(t) & =N_{4}^{-3 / 4}\langle N(i)\rangle=\frac{3}{4 \omega} \cos ^{3}\left(\frac{t}{\omega}\right) .
\end{aligned}
$$

Effective action

- The average volume profile

$$
v(t)=\frac{3}{4 \omega} \cos ^{3}\left(\frac{t}{\omega}\right)
$$

corresponds to an Euclidean de Sitter space. It is a classical (maximally symmetric) solution of the minisuperspace action

$$
S[v]=\frac{1}{G} \int \frac{\dot{v}^{2}}{v}+v^{1 / 3}-\lambda v \mathrm{~d} t
$$

which is obtained from the Einstein-Hilbert action by "freezing" all degrees of freedom except the scale factor.

- Simulations inside phase C show that its discrete form

$$
S[N]=\frac{1}{\Gamma} \sum_{i}\left(\frac{(N(i+1)-N(i))^{2}}{N(i+1)+N(i)}+\mu N(i)^{1 / 3}-\lambda N(i)\right)
$$

also properly describes quantum fluctuations of the three-volume $N(i)$.

Effective action

- The average volume profile

$$
v(t)=\frac{3}{4 \omega} \cos ^{3}\left(\frac{t}{\omega}\right)
$$

corresponds to an Euclidean de Sitter space. It is a classical (maximally symmetric) solution of the minisuperspace action

$$
S[v]=\frac{1}{G} \int \frac{\dot{v}^{2}}{v}+v^{1 / 3}-\lambda v \mathrm{~d} t
$$

which is obtained

Couples only adjacent slices

 degrees of freedom except the scale factor.- Simulations inside phase C show that its discrete form

$$
S[N]=\frac{1}{\Gamma} \sum_{i}\left(\frac{(N(i+1)-N(i))^{2}}{N(i+1)+N(i)}+\mu N(i)^{1 / 3}-\lambda N(i)\right)
$$

also properly describes quantum fluctuations of the three-volume $N(i)$.

Effective transfer matrix

- The effective action suggests the existence of an effective transfer matrix M labeled by the scale factor

Directly measured

$$
P(\{N(i)\})=\frac{1}{Z} \underbrace{\langle N(1)| \overleftarrow{M|N(2)\rangle\langle N(2)| M|N(3)\rangle \cdots} \underbrace{\langle N(T)| M|N(1)\rangle}, ~}_{e^{-S[N]}}
$$

$$
\langle n| M|m\rangle=\mathcal{N} e^{-\frac{1}{\Gamma}\left[\frac{(n-m)^{2}}{n+m}\right.} \sqrt{\left(\frac{n+m}{2}\right)^{1 / 3}-\lambda \frac{n+m}{2}} \quad \begin{aligned}
& \text { Product of } \\
& \text { matrix elements }
\end{aligned}
$$

Effective transfer matrix

- The effective action suggests the existence of an effective transfer matrix M labeled by the scale factor Directly measured $P(\{N(i)\})=\frac{1}{Z} \underbrace{\langle N(1)| \overleftarrow{M|N(2)\rangle\langle N(2)| M|N(3)\rangle \cdots\langle N(T)| M|N(1)\rangle}}_{e^{-S[N]}}$

Kinetic term, gaussian

New bifurcation phase (D)

- The spatial volume profile $\langle N(i)\rangle$ is similar as in phase C .

New bifurcation phase (D)

- The spatial volume profile $\langle N(i)\rangle$ is similar as in phase C .
- However, the transfer matrix bifurcates into two branches. At some volume the kinetic term splits into a sum of two shifted Gausses.

New bifurcation phase (D)

- The spatial volume profile $\langle N(i)\rangle$ is similar as in phase C .
- However, the transfer matrix bifurcates into two branches. At some volume the kinetic term splits into a sum of two shifted Gausses.

New bifurcation phase (D)

- The spatial volume profile $\langle N(i)\rangle$ is similar as in phase C .
- However, the transfer matrix bifurcates into two branches. At some volume the kinetic term splits into a sum of two shifted Gausses.
- In every second slice, there emerges a vertices of very high order.

New bifurcation phase (D)

- The spatial volume profile $\langle N(i)\rangle$ is similar as in phase C.
- However, the transfer matrix bifurcates into two branches. At some volume the kinetic term splits into a sum of two shifted Gausses.
- In every second slice, there emerges a vertices of very high order.
- Periodic clusters of volume around singular vertices form a tube structure.
- Not captured by global properties of the triangulation.

Phase transistion lines

Order parameter: N_{0}

Phase transistion lines

Order parameter: N_{32}

Phase transistion lines

Order parameter: $\operatorname{Max} o(p)$

D/C transition

- Peak of the susceptibility $\chi\left(O P_{2}\right)$ gives a clear signal of the phase transition.
- The details of the microscopic geometry play important role in the bifurcation transition.
- Preliminary measurements of the position of critical point $\Delta^{c r i t}$ for different total volumes N_{4}, suggest a second or higher-order transition. (estimate of the cricial exponent $\nu \approx 2.6 \pm 0.6$)

$$
\Delta^{c r i t}\left(N_{4}\right)=\Delta^{c r i t}(\infty)-\alpha \cdot N_{4}^{-1 / \nu}
$$

Summary

- The model of Causal Dynamical Triangulations is a lattice approach to quantum gravity.
- In phase C a four-dimensional background geometry emerges dynamically. It corresponds to the Euclidean de Sitter space, i.e. classical solution of the minisuperspace model.
- The superimposed quantum fluctuations of the scale factor are described by the minisuperspace model.
- We have presented an up-to-date phase diagram. It includes a recently discovered bifurcation phase.
- The new phase is characterized by a bifurcation in the transfer matrix, vertices of high order and a propagating structure of clusters.
- Importance of the microscopic details of the geometry explaining why the transition went unnoticed.

Thank You!

Comparison of Lifshitz scalar and CDT phases
Landau free-energy-density:

$$
F[\phi(x)]=a_{2} \phi^{2}+a_{4} \phi^{4}+c_{2}\left(\partial_{\alpha} \phi\right)^{2}+d_{2}\left(\partial_{\beta} \phi\right)^{2}+e_{2}\left(\partial_{\beta}^{2} \phi\right)^{2}
$$

$w \sqrt{w}$		A Helicoidal	$m=0$	$a_{2}>0$	$\phi=0$
		$\begin{aligned} & \text { B } \\ & \text { Para } \end{aligned}$	$m>0$	$d_{2}<0$	$\left\|\partial_{t} \phi\right\|>0$
		C Ferro	$m=0$	$a_{2}<0$	$\|\phi\|>0$

