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What is Causal Dynamical Triangulation?
Causal Dynamical Triangulation (CDT) is a background independent

approach to quantum gravity.

∫
D[g ]e iS

EH [g ] →
∑
T

e−S
R [T ]

CDT provides a lattice regularization of the formal gravitational path
integral via a sum over causal triangulations.
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Path integral formulation of quantum mechanics
A classical particle follows a unique trajectory.

Quantum mechanics can be described by Path Integrals: All possible
trajectories contribute to the transition amplitude.
To define the functional integral, we discretize the time coordinate and
approximate any path by linear pieces.
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Path integral formulation of quantum gravity

General Relativity: gravity is encoded in space-time geometry.

The role of a trajectory plays now the geometry of four-dimensional
space-time.
All space-time histories contribute to the transition amplitude.

1+1D Example: State of system: one-dimensional spatial geometry
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Path integral formulation of quantum gravity

General Relativity: gravity is encoded in space-time geometry.
The role of a trajectory plays now the geometry of four-dimensional
space-time.

All space-time histories contribute to the transition amplitude.

1+1D Example: Evolution of one-dimensional closed universe
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Path integral formulation of quantum gravity

General Relativity: gravity is encoded in space-time geometry.
The role of a trajectory plays now the geometry of four-dimensional
space-time.
All space-time histories contribute to the transition amplitude.

Sum over all two-dimensional surfaces joining the in- and out-state
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Transition amplitude

Our aim is to calculate the amplitude of a transition between two
geometric states:

G (gi , gf , t) ≡
∫

gi→gf

D[g ]eiS
EH [g ]

To define this path integral we have to specify the measure D[g ] and the
domain of integration - a class of admissible space-time geometries
joining the in- and out- geometries.
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Regularization by triangulation. Example in 2D
Dynamical Triangulations uses one of the standard regularizations in QFT:
discretization.

1 One-dimensional state with a topology S1 is built from links with
length a.

2 2D space-time surface is built from equilateral triangles.
3 Curvature (angle defcit) is localized at vertices.

Andrzej Görlich (NBI) Causal Dynamical Triangulations Jena, November 5th, 2015 7 / 27



Regularization by triangulation. Example in 2D
Dynamical Triangulations uses one of the standard regularizations in QFT:
discretization.

1 One-dimensional state with a topology S1 is built from links with
length a.

2 2D space-time surface is built from equilateral triangles.

3 Curvature (angle defcit) is localized at vertices.

Andrzej Görlich (NBI) Causal Dynamical Triangulations Jena, November 5th, 2015 7 / 27



Regularization by triangulation. Example in 2D
Dynamical Triangulations uses one of the standard regularizations in QFT:
discretization.

1 One-dimensional state with a topology S1 is built from links with
length a.

2 2D space-time surface is built from equilateral triangles.
3 Curvature (angle defcit) is localized at vertices.

Andrzej Görlich (NBI) Causal Dynamical Triangulations Jena, November 5th, 2015 7 / 27



Causality
Causal Dynamical Triangulations assume global proper-time foliation.
Spatial slices (leaves) have fixed topology and are not allowed to split
in time.
Foliation distinguishes between time-like and spatial-like links.
Such setup does not introduce causal singularities, which lead to
creation of baby universes.
CDT defines the class of admissible space-time geometries which
contribute to the transition amplitude.

ti
m

e

S
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Fundamental building blocks of CDT

d-dimensional simplicial manifold can be obtained by gluing pairs of
d-simplices along their (d − 1)-faces.
Lengths of the time and space links are constant. Simplices have a
fixed geometry.
The metric is flat inside each d-simplex.
The angle deficit (curvature) is localized at (d − 2)-dimensional
sub-simplices.

0D simplex - point
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fixed geometry.
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Fundamental building blocks of CDT

d-dimensional simplicial manifold can be obtained by gluing pairs of
d-simplices along their (d − 1)-faces.
Lengths of the time and space links are constant. Simplices have a
fixed geometry.
The metric is flat inside each d-simplex.
The angle deficit (curvature) is localized at (d − 2)-dimensional
sub-simplices.

3D simplex - tetrahedron
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Fundamental building blocks of CDT

d-dimensional simplicial manifold can be obtained by gluing pairs of
d-simplices along their (d − 1)-faces.
Lengths of the time and space links are constant. Simplices have a
fixed geometry.
The metric is flat inside each d-simplex.
The angle deficit (curvature) is localized at (d − 2)-dimensional
sub-simplices.

4D simplex - 4-simplex

Andrzej Görlich (NBI) Causal Dynamical Triangulations Jena, November 5th, 2015 9 / 27



Regularization by triangulation
4D simplicial manifold is obtained by gluing pairs of 4-simplices along
their 3-faces.

Spatial states are 3D geometries with a topology S3. Discretized
states are build from equilateral tetrahedra.
The metric is flat inside each 4-simplex.
Length of time links at and space links as is constant.
Curvature is localized at triangles.

4D space-time with topology S3 × S1
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Regularization by triangulation
4D simplicial manifold is obtained by gluing pairs of 4-simplices along
their 3-faces.
Spatial states are 3D geometries with a topology S3. Discretized
states are build from equilateral tetrahedra.
The metric is flat inside each 4-simplex.
Length of time links at and space links as is constant.
Curvature is localized at triangles.

Fundamental building blocks of 4D CDT - two types
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Regge action
The Einstein-Hilbert action has a natural realization on piecewise linear
geometries called Regge action

SE [g ] = − 1
G

∫
dt
∫

dDx
√
g(R − 2Λ)

N0 number of vertices
N4 number of simplices
N14 number of simplices of type {1, 4}

K0 K4 ∆ bare coupling constants (G ,Λ, at/as )

The partition function∫
D[g ]e iS

EH [g ] →
∑
T

e−S
R [T ]
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geometries called Regge action

SR [T ] = −K0N0 + K4N4 + ∆(N14 − 6N0)

N0 number of vertices
N4 number of simplices
N14 number of simplices of type {1, 4}

K0 K4 ∆ bare coupling constants (G ,Λ, at/as )
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Causal Dynamical Triangulations

The partition function of quantum gravity is defined as a formal
integral over all geometries weighted by the Einstein-Hilbert action.

Z =

∫
D[g ]e iS

EH [g ]

To make sense of the gravitational path integral one uses
the standard method of regularization - discretization.
The path integral is written as a nonperturbative sum over all causal
triangulations T .
Wick rotation is well defined due to global proper-time foliation.
(at → iat)
Using Monte Carlo techniques we can approximate expectation
values of observables.
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Numerical setup
Monte Carlo algorithm performs a random walk in the space of
triangulations, it generates configurations with the probability
P[T ] = 1

Z e
−S[T ].

The walk consists of a series of 7 Pachner moves, which preserve
topology and causality, are ergodic and fulfill the detailed balance
condition. It is enough to know the probability functional P(T ) up to
the normalization.
To calculate the expectation value of an observable, we
approximate the path integral by a sum over a finite set of Monte
Carlo configurations

〈O[g ]〉 =
1
Z

∫
D[g ]O[g ]e−S[g ]

↓

〈O[T ]〉 =
1
Z

∑
T
O[T ]e−S[T ] ≈ 1

K

K∑
i=1

O[T (i)]
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Spatial slices

The simplest observable giving information about the geometry, is the
spatial volume N(i) defined as a number of tetrahedra building a
three-dimensional slice i = 1 . . .T .
Restricting our considerations to the spatial volume N(i) we reduce
the problem to one-dimensional quantum mechanics.

3D spatial slices with topology S3
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Phase diagram

S [T ] = −K0N0 + K4N4 + ∆(N14 − 6N0)
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Phase A
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Phase A

Triangulations disintegrate into uncorrelated and irregular sequences of
small "universes".
This phase is related to the branched polymers phase which is present
in Euclidean DT.
The "geometry" oscillates in the time direction - analogy to the
helicoidal phase of Lifshitz scalar model (|∂t [g ]| > 0).
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Phase B
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Phase B

Time dependence (of configurations) is reduced to a single time slice.
The universe has neither time extension nor spatial extension.
Hausdorff dimension dh =∞.
Related to the crumpled phase in Euclidean DT.
No geometry in classical sense - analogy to the paramagnetic phase of
Lifshitz scalar model ([g ] = 0).
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De Sitter phase (C)
In phase C the time translation symmetry is spontaneously broken and
the three-volume profile N(i) is bell-shaped.

The average volume 〈N(i)〉 is with high accuracy given by formula

〈N(i)〉 = H cos3
(

i

W

)
a classical vacuum solution.
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Hausdorff dimension
The time coordinate i and spatial volume 〈N(i)〉 scale with total volume
N4 as a genuine four-dimensional Universe,

t = N
−1/4
4 i ,

v̄(t) = N
−3/4
4 〈N(i)〉 =

3
4ω

cos3
( t
ω

)
.
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Effective action
The average volume profile

v(t) =
3
4ω

cos3
( t
ω

)
corresponds to an Euclidean de Sitter space. It is a classical
(maximally symmetric) solution of the minisuperspace action

S [v ] =
1
G

∫
v̇2

v
+ v1/3−λv dt,

which is obtained from the Einstein-Hilbert action by „freezing” all
degrees of freedom except the scale factor.
Simulations inside phase C show that its discrete form

S [N] =
1
Γ

∑
i

(
(N(i + 1)− N(i))2

N(i + 1) + N(i)
+ µN(i)1/3−λN(i)

)
also properly describes quantum fluctuations of the three-volume N(i).
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Γ

∑
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(
(N(i + 1)− N(i))2

N(i + 1) + N(i)
+ µN(i)1/3−λN(i)

)
also properly describes quantum fluctuations of the three-volume N(i).

Background space-time geometry

Couples only adjacent slices
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Effective transfer matrix
The effective action suggests the existence of an effective transfer
matrix M labeled by the scale factor

P({N(i)}) =
1
Z
〈N(1)|M|N(2)〉〈N(2)|M|N(3)〉 · · · 〈N(T )|M|N(1)〉︸ ︷︷ ︸

e−S[N]

〈n|M|m〉 = N e
− 1

Γ

[
(n−m)2

n+m
+µ( n+m

2 )
1/3−λ n+m

2

]
Product of
matrix elements

Directly measured

Potential term
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New bifurcation phase (D)
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The spatial volume profile 〈N(i)〉 is similar as in phase C.

However, the transfer matrix bifurcates into two branches. At some
volume the kinetic term splits into a sum of two shifted Gausses.
In every second slice, there emerges a vertices of very high order.
Periodic clusters of volume around singular vertices form a tube
structure.
Not captured by global properties of the triangulation.
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Phase transistion lines
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D/C transition
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Peak of the susceptibility χ(OP2) gives a clear signal of the phase
transition.
The details of the microscopic geometry play important role in the
bifurcation transition.
Preliminary measurements of the position of critical point ∆crit for
different total volumes N4, suggest a second or higher-order transition.
(estimate of the cricial exponent ν ≈ 2.6± 0.6)

∆crit(N4) = ∆crit(∞)− α · N−1/ν
4
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Summary

The model of Causal Dynamical Triangulations is a lattice approach
to quantum gravity.
In phase C a four-dimensional background geometry emerges
dynamically. It corresponds to the Euclidean de Sitter space, i.e.
classical solution of the minisuperspace model.
The superimposed quantum fluctuations of the scale factor are
described by the minisuperspace model.
We have presented an up-to-date phase diagram. It includes a recently
discovered bifurcation phase.
The new phase is characterized by a bifurcation in the transfer matrix,
vertices of high order and a propagating structure of clusters.
Importance of the microscopic details of the geometry explaining why
the transition went unnoticed.
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Thank You!
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Comparison of Lifshitz scalar and CDT phases
Landau free-energy-density:

F [φ(x)] = a2φ
2 + a4φ

4 + c2(∂αφ)2 + d2(∂βφ)2 + e2(∂2
βφ)2

A
Helicoidal

m = 0 a2 > 0 φ = 0

B
Para m > 0 d2 < 0 |∂tφ| > 0

C
Ferro m = 0 a2 < 0 |φ| > 0

Andrzej Görlich (NBI) Causal Dynamical Triangulations Jena, November 5th, 2015 27 / 27


	Introduction to CDT
	Phase diagram
	De Sitter phase
	New bifurcation phase
	Phase transitions

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	anm0: 


