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Quantum gravity from random geometries

Quantum gravity from “lattice/discrete” models
(causal dynamical triangulations, Regge calculus, spin foams/group field theories ...)
⇒ problem of continuum limit

Important aspects:

Phase diagram

Order of phase transitions

Small vs large scale properties

⇒ it sounds like a big call for the Renormalization Group

This talk:
an FRG perspective on TGFT

Disclaimer:
not much to say about QG in this talk ⇒ a field theory divertissement
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Overview

Introduction: a different perspective on the O(N) model

FRG approach to critical behavior in tensorial group field theories
[with J. Ben Geloun and D. Oriti, arXiv:1411.3180; and with V. Lahoche, arXiv:1508.06384]
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Non-locality in QFT

Locality is a fundamental postulate of quantum field theory.

What happens if we abandon it?

It depends ...

Many ways to get away from locality, of course leading to different situations:

Strings, holography...

Non-locality in the effective action (IR physics)

Non-locality in the propagator as an UV regulator (to be removed or to be viewed
as fundamental, e.g. non-local gravity or non-commutative field theory)

The GFT way
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The O(N) model in d dimensions

Fields:
φa(x) : Rd → R, a = 1 . . . N

Vector-like transformation:
φa(x)→∑

bRabφb(x), Rab ∈ O(N)

Invariants:
φ2(x) ≡ 1

2

∑
a φa(x)φa(x), and similar but with derivatives

Effective action:
Γ[φ] =

∫
ddx

[
V (φ2) + 1

2
Z(φ2)∂µφa∂

µφa +O(∂4)
]

FRG equation, e.g. in the Local Potential Approximation:

k∂kṼk(φ̃2)+d Ṽk(φ̃2)−(d−2)φ̃2Ṽ ′k(φ̃2) =
(N − 1)cd

1 + Ṽ ′k(φ̃2)
+

cd

1 + Ṽ ′k(φ̃2) + 2φ̃2Ṽ ′′k (φ̃2)
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The O(N) model in d = 0

1 Mass-induced flow

Formal limit d→ 0 in the FRG equation
= flow of ordinary N -dim integral wrt k from “mass term” k2φ2

(physical interpretation: effective description of IR flow for the model on a
compact space, or in dS) [DB ’14; Guilleux,Serreau ’15]

eWk[J] =

∫ ( N∏
a=1

dφa

)
e−V (φ2)−k2φ2+

∑
a Jaφa
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The O(N) model in d = 0

1 Mass-induced flow

2 Wilsonian flow directly at d = 0

Start from d = 0 and perform the N integrals one at a time, in the spirit of
Wilsonian RG
[Higuchi,Itoi,Sakai ’93; Zinn-Justin ’14]

Same idea originally proposed for Matrix Models by Brezin and Zinn-Justin
[Brezin,Zinn-Justin ’92; Eichhorn,Koslowski ’13-’14]

e−SN′ =

∫ ( N∏
a=N′

dφa

)
e−V (φ2)
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A different perspective on the vector index

Complex case: φa ∈ C and
φa →

∑
b Uabφb, φ̄a →

∑
b Ūabφ̄b Uab ∈ U(N)

⇒ φ2 ≡∑a φ̄aφa

Start from d = 0, and map a = 1, . . . N → p = −N ′, . . . N ′.
⇒ Theory on S1 with UV cutoff N ′

Non-compact limit: S1 → R ⇒ φa → φp with continuous momentum p

⇒ φ2 =

∫
dp φ̄pφp =

∫
dx ϕ̄(x)ϕ(x)

where ϕ(x) = 1√
2π

∫
dpeipxφp is the Fourier transform

φ2 is the only possible local Fourier-invariant potential

Note: invariance under limN→∞ U(N) is larger than Fourier invariance, but the
latter is sufficient for restricting the action
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A Fourier-invariant field theory and its soft breaking

Give up locality: generic V (φ2) = V (
∫
dp φ̄pφp)

In order to introduce a dynamics and launch a perturbative RG flow,
break it with a kinetic term ∫

dp φ̄pp
2φp + V (φ2)

similar to soft breaking of (ultra-)locality by the kinetic term in standard scalar
field theory

Note: symmetry x↔ p can be restored by adding a term like∫
dp φ̄p

∂2

∂p2
φp =

∫
dx ϕ̄(x)x2ϕ(x)

(harmonic oscillator potential as in non-commutative scalar QFT [Grosse,Wulkenhaar ’03])

Apply your favorite machinery
(e.g. multiscale loop vertex expansion [Gurau,Rivasseau ’15])
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Higher dimensions

Fourier invariance ⇒ main constraint: pairwise identification of points

In one dimension it is quite boring: only one invariant, φ̄aφa

In two dimensions we have matrix model type of interactions,
Tr[(MM̄)n] = Ma1a2M̄a2a3Ma3a4 . . . M̄ana1

In higher dimensions we get many more possible interactions:
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In one dimension it is quite boring: only one invariant, φ̄aφa

In two dimensions we have matrix model type of interactions,
Tr[(MM̄)n] = Ma1a2M̄a2a3Ma3a4 . . . M̄ana1

In higher dimensions we get many more possible interactions:

∫
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Higher dimensions

Fourier invariance ⇒ main constraint: pairwise identification of points

In one dimension it is quite boring: only one invariant, φ̄aφa

In two dimensions we have matrix model type of interactions,
Tr[(MM̄)n] = Ma1a2M̄a2a3Ma3a4 . . . M̄ana1

In higher dimensions we get many more possible interactions:

Introduction

Tensor Theory Space

Gurau + followers: rank-D complex random tensors have U(N)⌦D invariance

Invariants = interactions = observables are d-regular edge-colored bipartite
graphs
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Number of connected (' single trace) invariants increases fast, eg at rank 3

Z c
3 (n) = 1, 3, 7, 26, 97, 624, 4163...

Vincent Rivasseau Tensor Models, from Random Trees to Brownian Spheres

⇒ Tensorial Group Field Theories (TGFTs)
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Tensorial Group Field Theories

GFT is a field theory on G⊗D, for some group G

TGFT is a GFT with same combinatorial structure as tensor models

Tensor models are TGFTs with G = U(1), a sharp UV cutoff N on momenta
(pi ∈ Z), and a trivial (ultralocal) propagator (just a mass term)

A first step towards richer TGFTs: nontrivial propagator, ∆ =
∑
i |pi|α

Propagator softly breaks the invariance of the action under U(N)⊗D.
Similar to how propagator breaks the ultralocal nature of interactions in typical
(scalar) field theories.

This breaking naturally induces a renormalization group flow of the theory

Non-compactness is in general problematic, it needs regularization
(e.g. go back from G = R to S1 ' U(1))
[Ben Geloun, Martini, Oriti ’15]
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TGFT - the typical actions

S[φ] = Z Tr2(φ̄ ·K · φ) +mTr2(φ̄φ) + Sint[φ]

Tr2(φ̄ ·K · φ) =
∑
P,P′

φ̄PK(P, P′)φP′ , Tr2(φ2) =
∑
P

φ̄PφP ,

Sint[φ] =
∑
nb

λnbTrnb (Vnb · φ
nb ) ,

e.g. rank-3 model [DB, Ben Geloun, Oriti ’14]

K(P, P′) = δP,P′ (
1

3

3∑
i=1

|pi|) , δP,P′ :=
3∏
i=1

δpi,p′i
, Tr2(φ2) =

∑
pi∈Z

φ2123 ,

Sint[φ] =
λ

4
Tr4(φ4) :=

λ

4

( ∑
pi,p

′
i∈Z

φ123 φ1′23 φ1′2′3′ φ12′3′ + Sym(1→ 2→ 3)
)

(proven to be renormalizable [Ben Geloun, Samary ’12])
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RG flow in tensorial group field theories

1 Perturbative approach [Ben Geloun; Carrozza; Lahoche; Oriti; Rivasseau; etc 2012-2015]

⇒ Existence of renormalizable models
(⇒ breaking of unitary invariance does not lead to disaster!)

⇒ Asymptotic freedom is quite a general feature of (renormalizable) TGFTs
(Note: wave function renormalization already at one loop, crucial to AF)

2 FRG [DB; Ben Geloun; Oriti; Lahoche; Martini; ’14-’15]

⇒ Wilson-Fisher-type fixed point is also rather common in TGFTs

Very interesting situation from a field theory point of view:

asymptotic freedom and IR fixed point!
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FRG for TGFT

Usual FRG approach (truncation ansatz for the Wetterich equation, expand the rhs,
identify operators, obtain beta functions)

After a lengthy calculation (using Litim’s cutoff; t = lnN):

η ≡ ∂t lnZN =
54λNN(2N + 1)

3(N +mN )2 − 2λN (27N2 + 18N + 5)

∂tmN =
−λNN

(N +mN )2

[
η (18N2 + 9N + 4) + (54N2 + 36N + 9)

]
− ηmN

∂tλN =
2λ2NN

(N +mN )3

(1

3
η (18N2 + 45N + 25) + 18(N + 1)2

)
− 2 η λN

Due to the polynomials in N in the beta functions, it is impossible to find a rescaling of
the couplings with N that would lead to an autonomous system

This is a consequence of hidden external scale: radius of S1

(N = kL, if L is the radius of S1 and k the usual FRG scale)

⇒ As in FRG at finite temperature, or on a sphere, we obtain a non-autonomous system
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β-equations at large N

At large N , polynomials reduce to leading monomials
⇒ it is possible to obtain an autonomous system
Define a rescaled mass via

mN = Nm̄N

(no rescaling for λN , which is therefore a “dimensionless” coupling)
⇒ obtain the following autonomous system:

η =
36λN

(1 + m̄N )2 − 18λN

∂tm̄N = −18
λN

(1 + m̄N )2
(η + 3)− (1 + η) m̄N

∂tλN = 12
λ2
N

(1 + m̄N )3
(η + 3)− 2 η λN
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Fixed points at large N

We find the usual Gaussian fixed point (GFP) at m̄N = λN = 0, plus two non-Gaussian
fixed points (NGFPs) at

m̄∗± = −14±
√

7

21
'
{
−0.7926

−0.5407
, λ∗± = −m̄

∗
±

189
' 10−3 ×

{
4.193

2.861

At quadratic order in the couplings near the GFP we have

∂tm̄N ' −m̄N − 54λN + 72m̄NλN − 648λ2
N ,

∂tλN ' −36λ2
N .

⇒ asymptotic freedom

For the NGFP at {m̄∗−, λ∗−} the critical exponents are

θ
(−)
± =

1

4

(
17
√

7− 47±
√

2776− 1038
√

7

)
'
{

0.8571

−1.868
,

⇒ one relevant and one irrelevant eigen-perturbation.
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Flow diagram at large N

0.000 0.002 0.004 0.006 0.008

-1.0

-0.8

-0.6
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-0.2

0.0

ΛN

m
N

(Arrows point towards the UV, i.e. growing N)
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β-equations at small N

Same rescaling for the mass, plus

λN = N2λ̄N

from which we obtain

∂tm̄N = −m̄N − 9
λ̄N

(1 + m̄N )2
,

∂tλ̄N = −2λ̄N + 36
λ̄2
N

(1 + m̄N )3
.

⇒ scaling dimensions of a zero-dimensional theory

(typical phenomenon on compact spaces)
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Flow diagram at small N
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Flow trajectories at general N

unrescaled coupling
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Flow trajectories for λN versus t, near the critical line. The three curves are for initial conditions

(black dot) at t0 = 20 with λN0 = 0.002 and (from left to right) m̄N0 = −0.22133,

m̄N0
= −0.221337043 and m̄N0

= −0.2214. The curve in the middle is at criticality (the

renormalised mass reaches zero with high accuracy). The flat plateau at λN = 0 in the last

curve is instead due to the mass hitting the singularity, and it is a manifestation of the bad

parametrization in the broken phase.
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Other results and outlook

Almost identical picture in very different models:

rank-6 model with closure constraint (imposing an additional gauge invariance)
[DB, Lahoche ’15]

non compact rank-3 model with different propagator
[Ben Geloun, Martini, Oriti ’15]

⇒ Quite general feature of TGFTs ?

But it is hard to systematically extend the truncation
⇒ can we bring the WF fixed point close to the GFP and study it in perturbation theory?

Idea: dimensional continuation, but with propagator ∼ p−n(d), in order to preserve
asymptotic freedom, and look for dc at which NGFP → GFP
β(λ) = −b1(d)λ2 + b2(d)λ3 ⇒ λ∗ = b1/b2,
if ∃dc s.t. b1(dc) = 0 and b2(dc) > 0, then expand in ε = d− dc
[DB, Lahoche -work in progress]
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Back to quantum gravity?

The non-trivial IR fixed point has one relevant perturbation, whose sign determines
whether we are in a symmetric (〈φ〉 = 0) or broken (〈φ〉 6= 0) phase

Geometrogenesis?

Symmetric phase = no extended geometry
Broken phase = extended (classical?) geometry

Relevant to Cosmology from GFT? [Gielen, Oriti, Sindoni - 2013]

Non-compact limit needed for true phase transition:
a motivation for Lorentz group in GFT?
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Conclusions

Main messages:

Tensor models are non-local field theories whose Feynman diagrams have the
interpretation of random simplicial manifolds

Phase transitions play a crucial role in the search of continuum random geometries
in tensor models and TGFT

They can be studied by functional RG methods

In TGFT we find asymptotic freedom, and an IR fixed point associated to a phase
transition between a symmetric and a broken phase

Outlook:

More in depth study of Wilson-Fisher fixed point in TGFT

Geometric interpretation of broken phase in TGFT?
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