Gauge fields far from equilibrium

Jürgen Berges Heidelberg University

Institute for Theoretical Physics

Content

- I. Real-time lattice gauge theory
- II. Real-time dynamics of string breaking in QED_{1+1}
- III. Nonthermal fixed points & Turbulence in QCD₃₊₁

Special thanks to

Florian Hebenstreit

Sören Schlichting

Kirill Boguslavski

Daniil Gelfand

Valentin Kasper

Lattice simulations of quantum fields

 \rightarrow preempts the use of standard importance sampling techniques

Nonequilibrium mapping

Quantum field dynamics is accurately described by classical-statistical evolution with MC sampling of quantum initial conditions in the large field/occupancy limit

for bosonic fields, initial density matrix ϱ_{0} , $\langle \{\Phi(x), \Phi(y)\} \rangle := \text{Tr} (\varrho_0 \{\Phi(x), \Phi(y)\})$. In this limit, observables are obtained as ensemble averages of classical solutions:

 $O_{\rm cl}[\phi_0,\pi_0] = \int \mathcal{D}\phi O[\phi] \,\delta(\phi - \phi_{\rm cl}[\phi_0,\pi_0]),$ initial canonical field variables $\phi_0 = \langle \Phi|_{t=0} \rangle, \pi_0$

Real-time simulations with fermions

Consider general class of models including lattice gauge theories

$$\mathcal{L} = \frac{1}{2} \partial \Phi^* \partial \Phi - V(\Phi) + \sum_{k}^{N_f} \left[i \bar{\Psi}_k \gamma^{\mu} \partial_{\mu} \Psi_k - \bar{\Psi}_k (MP_L + M^* P_R) \Psi_k \right] \\ \frac{\gamma}{12} (1 - \gamma^5) \qquad \sum_{k}^{N_f} \frac{1}{2} (1 + \gamma^5) \\ \int \prod_k D \Psi_k^+ D \Psi_k e^{i \int \mathcal{L}(\Phi, \Psi^+, \Psi)} \implies \qquad \partial_x^2 \Phi(x) + V'(\Phi(x)) + N_f J(x) = 0 \\ J(x) = J^{\mathrm{S}}(x) + J^{\mathrm{PS}}(x) \qquad J^{\mathrm{S}}(x) = -g \left\langle \bar{\Psi}(x) \Psi(x) \right\rangle = g \mathrm{Tr} \, D(x, x) \,, \\ J^{\mathrm{PS}}(x) = -g \left\langle \bar{\Psi}(x) \gamma^5 \Psi(x) \right\rangle = g \mathrm{Tr} \, D(x, x) \gamma^5$$

For classical $\Phi(x)$ the exact equation for the fermion D(x,y) reads:

$$(i\gamma^{\mu}\partial_{x,\mu} - m + g\operatorname{Re}\Phi(x) - ig\operatorname{Im}\Phi(x)\gamma^{5})D(x,y) = 0$$

Aarts, Smit, Nucl. Phys. B 555 (1999) 355; Borsanyi, Hindmarsh, Phys. Rev. D 79 (2009) 065010; Berges, Gelfand, Pruschke, Phys. Rev. Lett. 107 (2011) 061301; ...

Example: Real-time lattice QED

- Dirac field:
 - $\psi(\mathbf{I}, t)$ live on lattice sites
- gauge field \rightarrow compact U(1):
 - $U_i(\mathbf{I},t)$ live on the lattice links

 $U_{-i}(\mathbf{I},t) = U_i^*(\mathbf{I} - \hat{i},t)$

- $U_i(\mathbf{I},t) = \exp[-iea_{\mathcal{S}}\mathbf{A}_i(\mathbf{I},t)]$
- $U_0(\mathbf{I},t) = 1$ (temporal gauge)
- gauge action:

$$S_G \sim \frac{a_s}{\Delta t} \sum_{i} \operatorname{Re}[U_{0i}(\mathbf{I},t) - 1] - \frac{\Delta t}{a_s} \sum_{i < j} \operatorname{Re}[U_{ij}(\mathbf{I},t) - 1]$$

- temporal plaquette: $U_{0i}(\mathbf{I},t) = U_i(\mathbf{I},t + \Delta t)U_i^*(\mathbf{I},t)$
- spatial plaquette: $U_{ij}(\mathbf{I},t) = U_i(\mathbf{I},t)U_j(\mathbf{I}+\hat{i},t)U_j^*(\mathbf{I}+\hat{j},t)U_j^*(\mathbf{I})$

•
$$\mathbf{E}_i(\mathbf{I},t) \sim \operatorname{Im}[U_{0i}(\mathbf{I},t)]$$

 $\mathbf{B}_i(\mathbf{I},t) \sim \epsilon_{ijk} \operatorname{Im}[U_{jk}(\mathbf{I},t)]$

Real-time dynamics of string breaking

with Florian Hebenstreit, Daniil Gelfand Phys. Rev. D87 (2013) 105006, Phys. Rev. Lett. 111 (2013)

Pair production in QED

Motivation: Schwinger effect

- QED vacuum is unstable in presence of external fields
- analytic solution for vacuum decay rate in static electric field:

$$\mathscr{P}[vac] = \frac{[eE_0]^2}{4\pi^3} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-\frac{n\pi m^2}{eE_0}\right)$$

- exponential suppression \rightarrow tunneling effect \rightarrow non-perturbative
- critical field strength: $E_{cr} = \frac{m^2}{e} \sim 10^{18} V/m$

Schwinger, Phys. Rev. 82 (1951) 664

- create required field strength with colliding laser pulses?!
 - X-ray laser: European X-Ray Free Electron Laser
 - optical laser: Extreme Light Infrastructure

Check

Accurate reproduction of Schwinger formula from lattice simulations for constant E₀

Real-time pair production

• spatial distribution n(x,t) from initial electric pulse $E(x,t) = E_0 \operatorname{sech}^2(\omega t) \exp\left(-\frac{x^2}{2\lambda^2}\right)$

Hebenstreit, Berges, Gelfand, Phys. Rev. D87 (2013) 105006

1d capacitor

- self-consistent electric field
 - fermion bunches act as a capacitor
 - homogeneous field between bunches (charge: $\pm Q$): $E_{str} = -Q$
 - linear rising potential between bunches

$$\mathscr{E}_{\rm str}(d) = \frac{1}{2} \int E_{\rm str}^2 dx = \frac{Q^2 d}{2}$$

secondary particle creation? → 'string breaking'

Hebenstreit, Berges, Gelfand, Phys. Rev. D87 (2013) 105006

Real-time dynamics of string breaking

• static configuration: external sources with charge ±e

- string breaking: screening of sources → electric field → 0
- two time scales: creation (short) and separation (long)
- energy condition: $\mathscr{E}_{str} \simeq 2m + \mathcal{W}$

 \rightarrow most energy (80%) needed for charge separation!

Hebenstreit, Berges, Gelfand, Phys. Rev. Lett. 111 (2013), arXiv:1307.4619

Multiple string breaking

- dynamic configuration: bunches with charge ±Q
 - string breaking: screening of sources
 - additional kinetic energy available
 - multiple string breaking: zero crossings of electric field

Turbulent thermalization of the Quark Gluon Plasma with Kirill Boguslavski, Sören Schlichting, Raju Venugopalan arXiv:1303.5650, arXiv:1311.3005

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:30:46 Fill : 1482 Run : 137124 Event : 0x00000000D3BBE693

Particle production in non-Abelian gauge theory

initial stages of ultra-relativistic heavy-ion collisions ٠

 $A^a_\mu(x) = \langle \hat{A}^a_\mu(x) \rangle \sim \mathcal{O}(1/g)$

CGC: Lappi, McLerran, Dusling, Gelis, Venugopalan,...

small initial (vacuum) fluctuations: •

$$F^{ab}_{\mu\nu}(x,y) = \frac{1}{2} \left\langle \left\{ \hat{A}^a_\mu(x), \hat{A}^b_\nu(y) \right\} \right\rangle - A^a_\mu(x) A^b_\nu(y)$$

 $\sim \mathcal{O}(1)$

\rightarrow plasma instabilities!

Mrowczynski; Rebhan, Romatschke, Strickland; Arnold, Moore, Yaffe ...

Longitudinally expanding SU(2) gauge theory

Which thermalization scenario is realized?

'BMSS': Baier, Mueller, Schiff, Son, PLB 502 (2001) 51; 'KM': Kurkela, Moore, JHEP 1111 (2011) 120; 'BGLMV': Blaizot, Gelis, Liao, McLerran, Venugopalan, NPA 873 (2012) 68; ...

Insensitivity to initial conditions: Nonthermal fixed point

Self-similar evolution

Self-similar distribution: $f(p_T, p_z, t) = t^{\alpha} f_S(t^{\beta} p_T, t^{\gamma} p_z)$ (Coulomb gauge)

Qt = 750 to 4000

stationary fixed-point distribution

Nature of nonthermal fixed point: wave turbulence

Berges, Boguslavski, Schlichting, Venugopalan, arXiv:1303.5650, arXiv:1311.3005 Boltzmann equation with generic collision term for longitudinal expansion:

$$\left[\partial_t - \frac{p_z}{t}\partial_{p_z}\right]f(p_T, p_z, t) = C[p_T, p_z, t; f]$$

Self-similar evolution:

$$f(p_T, p_z, t) = t^{\alpha} f_S(t^{\beta} p_T, t^{\gamma} p_z) , \quad C[p_T, p_z, t; f] = t^{\mu} C[t^{\beta} p_T, t^{\gamma} p_z; f_S]$$

 \rightarrow a) fixed point equation for stationary distribution:

$$\alpha f_S(p_T, p_z) + \beta p_T \partial_{p_T} f_S(p_T, p_z + (\gamma - 1) p_z \partial_{p_z} f_S(p_T, p_z)) = C[p_T, p_z; f_S]$$

 \rightarrow b) scaling condition:

$$\alpha - 1 = \mu(\alpha, \beta, \gamma)$$

Nature of nonthermal fixed point II

Interpret scaling condition with **energy/number conserving*** Fokker-Planck-type dynamics for the collisional broadening of longitudinal momentum distribution:

$$C^{(\text{elast})}[p_T, p_z; f] = \hat{q} \ \partial_{p_z}^2 f(p_T, p_z, t)$$

with momentum diffusion parameter: $\hat{q} \sim \alpha_S^2 \int \frac{d^2 p_T}{(2\pi)^2} \int \frac{dp_z}{2\pi} f^2(p_T, p_z, t)$

*cf. early stages of Baier, Mueller, Schiff, Son, PLB 502 (2001) 51 ('BMSS')

Nonthermal fixed points in quantum many-body systems

Schematically:

Universality far from equilibrium

Universality far from equilibrium

Conclusions

Real-time lattice gauge theory techniques provide powerful tool for ab initio calculations in a large range of **nonequilibrium problems**

Nonequilibrium particle production:

 \rightarrow QED₁₊₁: real-time dynamics of string breaking

Thermalization dynamics:

 \rightarrow QCD₃₊₁ with longitudinal expansion: Turbulent thermalization/ Universality far from equilibrium near **nonthermal fixed points**

Insensitivity to initial condition details

Initial gluon distribution:
$$f(p_T, p_z, t_0) = \frac{n_0^{\checkmark}}{\alpha_s} \Theta\left(Q - \sqrt{p_T^2 + (\xi_0 p_z)^2}\right)$$

anisotropy parameter

Universal scaling exponents

Typical ('hard') momenta: $\Lambda_L^2(t) \sim (Qt)^{-2\gamma}, \quad \Lambda_T^2(t) \sim (Qt)^{-2\beta}$ $2\gamma = 0.67 \pm 0.07$, monoton. decr. $|\beta| < 0.04$ for $Qt \gtrsim 650$ Exponent: 2 γ ο $\xi_0 = 1 - 6$ $n_0 = 0.25 - 1$ $N_T = 256 - 512$ $N_\eta = 1024 - 4096$ \$ Hard scale: $\xi_0^{7/8} \Lambda_L^2/Q^2$ ξ₀=2 0.3 £50=A 300 1000 0, 0, 1, 1 Qt)-2/3 0.1 $n_0 = 1$ 1000 Time: Qt

'Thermal' 1/p_T spectrum far from equilibrium

Self-similar evolution with decreasing amplitude:

$$n_{\text{Hard}}(t) = f(p_T = Q, p_z = 0, t)$$

A well understood quantum example

Early universe preheating:

Quantum field theory:

Berges, Serreau, PRL 91 (2003) 111601

Dynamical power counting (2PI):

time

Kofman, Linde, Starobinsky, PRL 73 (1994) 3195 Scalar $\lambda \Phi^4$ inflaton: $\lambda \ll 1$

• large initial field $\phi = \langle \Phi \rangle \sim 1/\lambda^{1/2}$

• small fluctuation $F \sim \langle \{\Phi, \Phi\} \rangle$ - $\phi \phi \sim 1$

Instability: $F(t) \sim e^{\gamma t}$ ($\gamma > 0$)

Turbulent thermalization

Direct cascade: Micha, Tkachev, PRL 90 (2003) 121301, ...

Inverse cascade: Berges, Rothkopf, Schmidt, PRL 101 (2008) 041603, ... ($\kappa = d+z-\eta$) Bose condensation: Berges, Sexty, PRL 108 (2012) 161601, ...

Cascade dynamics described by universal power laws! self-similar evolution, same universality class as classical-statistical field theory