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Biagio Lucini The strong and electroweak interactions successfully
described by the standard model (QCD for the strong sector,
SU(2), ® U(1)y with Higgs mechanism for the electroweak
sector)

Motivations

@ The strong sector is believed to be valid at all energies, while
the weak sector has a natural cut-off at the scale of the TeV

@ Among the various models formulated to extend the
electroweak sector of the SM above the TeV, strongly
interacting BSM dynamics is based on the existence of a
new strong interaction

@ The lattice provide a natural framework to perform
calculations in strongly coupled gauge theories from first
principles
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As a result of chiral symmetry breaking, in QCD there is a quark
condensate

(iu + dd) ~ (200 MeV)?
that is not invariant under SU(2), ® U(1)y

Not enough for accounting for the symmetry breaking of the
Standard Model:

(¢) = 246 GeV

Can a scaled-up version of QCD work?



From Colour to Technicolour

IR
conformality

Biagio Lucini

@ New strongly interacting gauge theory with Nz¢ colours and
Nrcr fermions



From Colour to Technicolour

IR
conformality

Biagio Lucini

@ New strongly interacting gauge theory with Ny¢ colours and
Nrcr fermions

@ The (bilinear) fermionic condensate replaces the Higgs
condensate



From Colour to Technicolour

IR
conformality

Biagio Lucini

@ New strongly interacting gauge theory with Ny¢ colours and
Nrcr fermions

@ The (bilinear) fermionic condensate replaces the Higgs
condensate

@ Some of the Goldstone bosons of the techni-chiral symmetry
are absorbed by three gauge bosons, which become the
massive W+, Z, while others acquire a mass of the order of
the TeV



From Colour to Technicolour

IR
conformality

Biagio Lucini

New strongly interacting gauge theory with Ny¢ colours and
Nrcr fermions

@ The (bilinear) fermionic condensate replaces the Higgs
condensate

@ Some of the Goldstone bosons of the techni-chiral symmetry
are absorbed by three gauge bosons, which become the
massive W+, Z, while others acquire a mass of the order of
the TeV

@ The chiral condensate provide standard model quarks with a
non-zero mass (Extended Technicolour)
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Biagio Lucini @ Large flavour changing neutral currents
@ Quark mass hierarchy
@ Prediction for the S parameter

The problems of the technicolour models can be traced back to
the logarithmic running of the coupling in QCD

Ultimately, QCD-like dynamics will dominate in the infrared
(confinement) and in the ultraviolet (asymptotic freedom)

A very slowly running (walking) coupling in an intermediate
energy domain could determine a natural mass hierarchy,
suppress flavour changing neutral currents and give a small
contribution to the S parameter, but needs a large (order 1)
anomalous dimension of the chiral condensate
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transforming in the representation R is determined by the 8-function

d
I T ST
dup
with
by = — <“N 4TN) b= [P - DOy, a1y
07 (ar2) \ 3 3 K)o YT @n)t |3 Pl dr

Banks-Zaks (perturbative) fixed point (two-loops):

dg
dup

=0 = g*g,bj

<1
2L b

Starting from g < g* in the ultraviolet, in the infrared g — g* (IR fixed point)
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At fixed N a critical number of flavours N;* exists above which asymptotic freedom

Biagio Lucini is lost

Banks and Zaks conjectured that an N}“ exists such that a non-trivial infrared fixed
point appears for N}" < Ny < Ni* (conformal window)

I = I >

! cu _ 11N
0 Ny N = oy Ny
confinement walking(?) COW'-;E:;I no asymptotic freedom

At fixed fermion representation N}” depends on the number of flavours

Near the BZ point naive scaling arguments can not be applied and walking can
arise
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/k\ ‘

Walking needs two separate scales A, (onset of the plateau at high energy) and

Agcp (start of QCD-like low-energy running)
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@ Can we determine the extent of the conformal window?

@ Can we see a walking behaviour just below the
conformal window?

@ Can we measure the anomalous dimension?

@ How does the spectrum of an IR conformal theory
differs from that of a QCD-like theory?

@ In particular, do (near-)conformal gauge theories have
light scalars and if yes under which assumptions?

The inherently non-perturbative nature of the problem

requires an approach from first principles like lattice
calculations
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@ At high fermion masses the theory is nearly-quenched

@ At low fermion masses the relevant degrees of freedoms are the
pseudoscalar mesons
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e @ Confinement (and xSB) characterised by a string tension

(and a chiral condensate) of the order of the dynamically
generated scale

g‘onformamy @ Conformality characterised by power-law behaviour of
correlators (unparticles)

@ A small mass term m in a conformal theory generates
dynamical scales, a meson spectrum scaling as m” and a
non-trivial running of the coupling

© A walking theory is confining in the infrared, but presents
features of a IR-conformal theory in an intermediate energy
range

A study in the chiral limit is mandatory
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Biagio Lucini Running of the mass

(1)
m(p) = m(po) exp {— /f H) 28011} = Z(p, po, Aym(po)
8o

IR
Conformality Close to the IR fixed point we assume a regular behaviour for the RG functions:

. J B(g) = B«(g—8x)
8778 { v(8) ~ ¥«

Define a renormalised mass M from the condition m(M) = M

A large M destroys conformality and the theory looks like Yang-Mills with heavy
sources

Mymes = 2M
Mglye = BglucA

We are interested in the opposite regime M < A



Mass-deformation near the BZ fixed point

IR
conformality
V. A. Miransky. Dynamics in the Conformal Window in QCD like theories.

Biagio Lucini hep—ph/9812350.

_ 1
IR Amy=Me 0% <M< A

Conformality

@ At energies much lower than M, the original theory is effectively described
by a pure Yang-Mills theory with scale Ay,.

@ Glueballs are lighter than mesons.

@ A deconfinement transition occurs at a temperature T, ~ Ayy.

@ Mesons are effectively quenched. The mesons are bound states of the
quark-antiquark pair interacting via the YM static potential, the bound
energy is small with respect to the mass of the fermions, and the correction
to the potential due to quark-antiquark pair creation are negligible.

@ As the mass M is reduced, the IR physics is always the same, provided that
all the masses are rescaled with M.



IR
conformality For a physical quantity

Biagio Lucini
1

x L
my = Ay m('u) Ty |

IR On the lattice, choosing . = a~! gives

Conformality

1
amy = Ax(amq) =+~

Consequences
@ Ratios of physical quantities with the same mass
dimension are independent of the fermion mass if the
latter is sufficiently small
@ -, can be determined by looking at the small-mass
scaling of a physical observable
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Locking at intermediate M,

large mq locki

S|

g mq=0

All spectral mass ratios depend very mildly on m below the locking scale



Locking at large M,
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large mq

mv/mps ~14+e¢€
If this scenario is valid beyond BZ, at all scales < A mps > ol/?
mG/U1/2 ~ [mG/O.I/Z](YM)
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The Spectrum e The Spectrum of SU(2) with 2 adj. Dirac Flavours

of SU(2)
Ny = 2Adj



Details of the Simulations
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@ Study SU(2) with two adjoint Dirac flavour (suggested to be
walking by Sannino-Dietricht) on the lattice

@ SU(2) 1x1 plaquette action in the fundamental representation
The Spectrum

of SU(2)

Nr = 2 Adj

: ] @ 2 Dirac Wilson fermions in the adjoint representation

@ fixed lattice spacing: g = 2.25

@ various volumes to account for finite size effects
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The Spectrum
of SU(2)
Ny = 2 Adj

(L. Del Debbio et al., arXiv:0907.3896)
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The Spectrum
of SU(2)
Ny = 2 Adj

Spectrum hierarchy
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The pseudoscalar is always higher in mass than the 0+ glueball

The lo

4

cking scenario at high fermion mass looks plausible
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Locking at amyps >~ 1.25
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Is it dynamical quenching?
How do we go to lower masses of the fermions?
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case of heavy quarks in QCD: here we are tuning 3
quenched to define the string tension in units of the cut-off
and assuming that the latter is fixed while the other changes

jehisell  To compare with quenched data, we need to match the bare
Np=2Ad parameters of the quenched and the dynamical calculation

@ [ is matched demanding that /o is the same
@ x is matched demanding that mpg is the same

The other observables can then be compared
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(L. Del Debbio et al., arXiv:1004.3206)
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The large-distance dynamics is nearly quenched
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(E. Bennett and B. Lucini, arXiv:1209.5579)
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The large-distance dynamics is nearly quenched
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Finite Size e Controlling Finite Size effects

Effects



Polyakov loop distribution
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We need larger lattices closer to the chiral limit



Instanton size distribution

IR
conformality

(E. Bennett and B. Lucini, arXiv:1209.5579)

Biagio Lucini

7 i ‘ ‘
Ny =2, B=225V=16%8% m=-050 =
Ny=2,3=225V=16x8m=-0.75 - =~
or rEE N=2,B=225,V=16x8m=-090 -+ ]
- ki’i,<
51 . [
T s
g i
e 3t : .
Finite Size ¥y
Effects 2 o
1
e
0
0 05 1 15 2 25 3

We need larger lattices closer to the chiral limit
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A short temporal direction increases masses



Spatial size effect

(F. Bursa et al., arXiv:1104.4301)
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Lighter states are more difficult to keep under control, very
large lattices are needed
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We can assume scaling with MpgL
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Finite size scaling
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Ratios of spectral quantities are universal functions of
x= Ns(amq)ﬁ or equivalently y = Nymps
(B. Lucini, arXiv:0911.0020)
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(Del Debbio et al., arXiv:1004.3206)

~ too small for phenomenology?
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fm, L

v =0.51(16)

~ too small for phenomenology?
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~ too small for phenomenology?
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\ Method \ v |
FSS (Lucini:2009) 0.05 < v < 0.25
SF (Bursa:2009) 0.05 < v < 0.56
FSS (DelDebbio:2010) 0.05 < v < 0.20
FSS (DelDebbio:2010) 0.22 4 0.06
MCRG (Catterall:2011) —0.6 <~ <0.6
SF (DeGrand:2011) 0.31 +0.06
FSS (Giedt:2012) 0.51 +0.16
MNS (Patella:2012) 0.371 £ 0.020
Perturbative 4-loop (Pica:2010) 0.500
Schwinger-Dyson (Ryttov:2010) 0.653
All-orders hypothesis (Pica:2010) 0.46

All estimates are well below one
Discrepancies accounted for by finite size effects?
Can we quantify better systematic effects?
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@ The spectrum of SU(2) gauge theory shows the following
features:
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Well-defined mass hierarchy mps y > mg > /o
Dynamical quenching

Dynamically-generated scale sliding with mpcac
Anomalous dimension v ~ 0.37(2) preliminary result!

@ These results are compatible with the idea that SU(2) with
Ny = 2 flavours of Dirac fermions is in a (near-)conformal
phase

Conclusions e However

e The anomalous dimension is too small for fitting current
models of DEWSB

e A walking scenario can not be completely excluded at
this stage



Perspectives

IR
conformality

Biagio Lucini

@ Improvement of the finite size analysis
@ Investigation of other observables

@ Better control over the chiral limit

@ Extrapolation to the continuum limit

@ Finite temperature studies

@ Extension to other gauge groups/representations

Conclusions
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We have developed tools and techniques for looking at IR
conformality signatures in the spectrum

@ In particular, FSS and (mostly) Dirac MNS allow precise
measurements of the condensate anomalous dimension
(relevant for phenomenology)

@ These techniques played a crucial role in establishing IR
conformality in SU(2) gauge theory with N; = 2 Dirac adjoint
fermions

ConsisEie @ With this result resting on firm ground, the latter theory is an
ideal play ground for testing methods of numerical
investigations of IR conformal behaviour



	Dynamical Electroweak Symmetry Breaking
	Infrared Conformality
	The Spectrum of SU(2) with 2 adj. Dirac Flavours
	Controlling Finite Size effects
	Scaling and Anomalous Dimension
	Conclusions

