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Standard Model and beyond

The strong and electroweak interactions successfully
described by the standard model (QCD for the strong sector,
SU(2)L ⊗ U(1)Y with Higgs mechanism for the electroweak
sector)

The strong sector is believed to be valid at all energies, while
the weak sector has a natural cut-off at the scale of the TeV

Among the various models formulated to extend the
electroweak sector of the SM above the TeV, strongly
interacting BSM dynamics is based on the existence of a
new strong interaction

The lattice provide a natural framework to perform
calculations in strongly coupled gauge theories from first
principles
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DEWSB in QCD

As a result of chiral symmetry breaking, in QCD there is a quark
condensate

〈ūu + d̄d〉 ≈ (200 MeV)
3

that is not invariant under SU(2)L ⊗ U(1)Y

Not enough for accounting for the symmetry breaking of the
Standard Model:

〈φ〉 = 246 GeV

Can a scaled-up version of QCD work?
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From Colour to Technicolour

New strongly interacting gauge theory with NTC colours and
NTCf fermions

The (bilinear) fermionic condensate replaces the Higgs
condensate

Some of the Goldstone bosons of the techni-chiral symmetry
are absorbed by three gauge bosons, which become the
massive W±, Z, while others acquire a mass of the order of
the TeV

The chiral condensate provide standard model quarks with a
non-zero mass (Extended Technicolour)
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From QCD-like to walking dynamics

Problems:

Large flavour changing neutral currents

Quark mass hierarchy

Prediction for the S parameter

The problems of the technicolour models can be traced back to
the logarithmic running of the coupling in QCD

Ultimately, QCD-like dynamics will dominate in the infrared
(confinement) and in the ultraviolet (asymptotic freedom)

A very slowly running (walking) coupling in an intermediate
energy domain could determine a natural mass hierarchy,
suppress flavour changing neutral currents and give a small
contribution to the S parameter, but needs a large (order 1)
anomalous dimension of the chiral condensate
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Perturbative IR fixed point

The running of the coupling in SU(N) gauge theories with Nf fermion flavours
transforming in the representation R is determined by the β-function

µ
dg
dµ

= −b0g3 − b1g5 + . . . ,

with

b0 =
1

(4π2)

(
11
3

N − 4
3

TRNf

)
, b1 =

1
(4π)4

[
34
3

N2 − 20
3

NTRNf − 4
N2 − 1

dR
Nf

]

Banks-Zaks (perturbative) fixed point (two-loops):

dg
dµ

∣∣∣∣
2−L

= 0 ⇒ g? ' − b0

b1
� 1

Starting from g < g? in the ultraviolet, in the infrared g→ g? (IR fixed point)
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Phases of a gauge theory

At fixed N a critical number of flavours Ncu
f exists above which asymptotic freedom

is lost

Banks and Zaks conjectured that an Nlu
f exists such that a non-trivial infrared fixed

point appears for Nlu
f ≤ Nf ≤ Ncu

f (conformal window)

Walking and Conformal window

�(µ) = µ
dg

dµ
= �b0g3 � b1g5 + . . .

b0 =
1

(4⇡)2

✓
11

3
N � 4

3
TRNf

◆

b1 =
1

(4⇡)4

✓
34

3
N2 � 20

3
NTRNf � 4

N2 � 1

dR
T 2

RNf

◆

0 N lu
f Ncu

f = 11N
4TR

Nf

confinement walking(?) conformal
window

no asymptotic freedom

Banks-Zaks (perturbative) fixed point:

g2
⇤ ' � b0

b1
<< 1

A. Rago (U. Plymouth) Lattice Technicolor 31 May 2012 7 / 36

At fixed fermion representation Nlu
f depends on the number of flavours

Near the BZ point naive scaling arguments can not be applied and walking can

arise
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Near-conformality and β-function

QCD-like vs. Walking

Figure 5: Top Left Panel: QCD-like behavior of the coupling constant as function of the mo-
mentum (Running). Top Right Panel: Walking-like behavior of the coupling constant as func-
tion of the momentum (Walking). Bottom Right Panel: Cartoon of the beta function associated
to a generic walking theory.

of the TC condensate at different scales shows that if the dynamics is such that the TC coupling
does not run to the UV fixed point but rather slowly reduces to zero one achieves a net enhance-
ment of the condensate itself with respect to the value estimated earlier. This can be achieved if
the theory has a near conformal fixed point. This kind of dynamics has been denoted of walking
type. In this case

〈Q̄Q〉ETC ∼
(
ΛETC

ΛTC

)γ(α∗)

〈Q̄Q〉TC , (2.44)

which is a much larger contribution than in QCD dynamics [32, 33, 34, 35]. Here γ is evalu-
ated at the would be fixed point value α∗. Walking can help resolving the problem of FCNCs
in technicolor models since with a large enhancement of the 〈Q̄Q〉 condensate the four-fermi
operators involving SM fermions and technifermions and the ones involving technifermions are
enhanced by a factor of ΛETC/ΛTC to the γ power while the one involving only standard model
fermions is not enhanced.

In the figure 5 the comparison between a running and walking behavior of the coupling is
qualitatively represented.

2.7 Weinberg Sum Rules and Electroweak Parameters

Any strongly coupled dynamics, even of walking type, will generate a spectrum of reso-
nances whose natural splitting in mass is of the order of the intrinsic scale of the theory which
in this case is the Fermi scale. In order to extract predictions for the composite vector spectrum
and couplings in presence of a strongly interacting sector and an asymptotically free gauge the-

18

Walking needs two separate scales Λχ (onset of the plateau at high energy) and

ΛQCD (start of QCD-like low-energy running)



IR
conformality

Biagio Lucini

Motivations

DEWSB

IR
Conformality

The Spectrum
of SU(2)
Nf = 2 Adj

Finite Size
Effects

FSS

Conclusions

Open problems

Can we determine the extent of the conformal window?
Can we see a walking behaviour just below the
conformal window?
Can we measure the anomalous dimension?
How does the spectrum of an IR conformal theory
differs from that of a QCD-like theory?
In particular, do (near-)conformal gauge theories have
light scalars and if yes under which assumptions?

The inherently non-perturbative nature of the problem
requires an approach from first principles like lattice
calculations
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The spectrum for a QCD-like theory

At high fermion masses the theory is nearly-quenched

At low fermion masses the relevant degrees of freedoms are the
pseudoscalar mesons
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IR Conformality, Walking and Confinement

1 Confinement (and χSB) characterised by a string tension
(and a chiral condensate) of the order of the dynamically
generated scale

2 Conformality characterised by power-law behaviour of
correlators (unparticles)

3 A small mass term m in a conformal theory generates
dynamical scales, a meson spectrum scaling as mρ and a
non-trivial running of the coupling

4 A walking theory is confining in the infrared, but presents
features of a IR-conformal theory in an intermediate energy
range

A study in the chiral limit is mandatory
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Mass-deformation of the IR-conformal theory

A mass term drive the system outside the IR conformal point

Running of the mass

m(µ) = m(µ0) exp

{
−
∫ g(µ)

g(µ0)

γ(z)
β(z)

dz

}
≡ Z(µ, µ0,Λ)m(µ0)

Close to the IR fixed point we assume a regular behaviour for the RG functions:

g→ g∗ :

{
β(g) ' β∗(g− g∗)
γ(g) ' γ∗

Define a renormalised mass M from the condition m(M) = M

A large M destroys conformality and the theory looks like Yang-Mills with heavy
sources

mmes = 2M

mglue = BglueΛ

We are interested in the opposite regime M � Λ
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Mass-deformation near the BZ fixed point

V. A. Miransky. Dynamics in the Conformal Window in QCD like theories.
hep-ph/9812350.

ΛYM = M e
− 1

2bYM
0 g2∗ � M � Λ

At energies much lower than M, the original theory is effectively described
by a pure Yang-Mills theory with scale ΛYM .

Glueballs are lighter than mesons.

A deconfinement transition occurs at a temperature Tc ' ΛYM .

Mesons are effectively quenched. The mesons are bound states of the
quark-antiquark pair interacting via the YM static potential, the bound
energy is small with respect to the mass of the fermions, and the correction
to the potential due to quark-antiquark pair creation are negligible.

As the mass M is reduced, the IR physics is always the same, provided that
all the masses are rescaled with M.
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Locking

For a physical quantity

mX = AXµ
γ∗

1+γ∗ m(µ)
1

1+γ∗ .

On the lattice, choosing µ = a−1 gives

amX = AX(am0)
1

1+γ∗

Consequences
Ratios of physical quantities with the same mass
dimension are independent of the fermion mass if the
latter is sufficiently small
γ∗ can be determined by looking at the small-mass
scaling of a physical observable
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Locking at intermediate Mlock

All spectral mass ratios depend very mildly on m below the locking scale
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Locking at large Mlock

If this scenario is valid beyond BZ, at all scales� Λ

mV/mPS ' 1 + ε

mPS � σ1/2

mG/σ
1/2 '

[
mG/σ

1/2
](YM)
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Details of the Simulations

Study SU(2) with two adjoint Dirac flavour (suggested to be
walking by Sannino-Dietricht) on the lattice

SU(2) 1x1 plaquette action in the fundamental representation

2 Dirac Wilson fermions in the adjoint representation

fixed lattice spacing: β = 2.25

various volumes to account for finite size effects
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Spectrum hierarchy

(L. Del Debbio et al., arXiv:0907.3896)
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Spectrum hierarchy
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 (σ = string tension)

The pseudoscalar is always higher in mass than the 0++ glueball

⇓
The locking scenario at high fermion mass looks plausible
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mV/mPS vs. amps

(L. Del Debbio et al., arXiv:0907.3896)
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Locking at amps ' 1.25
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mV/mPS vs. amps

(L. Del Debbio et al., arXiv:0907.3896)
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Is it dynamical quenching?
How do we go to lower masses of the fermions?
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Comparing with quenched data

Note that the spirit of the comparison is different than for the
case of heavy quarks in QCD: here we are tuning β
quenched to define the string tension in units of the cut-off
and assuming that the latter is fixed while the other changes

To compare with quenched data, we need to match the bare
parameters of the quenched and the dynamical calculation

β is matched demanding that
√
σ is the same

κ is matched demanding that mPS is the same

The other observables can then be compared
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IR dynamics - The spectrum

(L. Del Debbio et al., arXiv:1004.3206)
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quenched V meson

The large-distance dynamics is nearly quenched
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IR dynamics - Instantons

(E. Bennett and B. Lucini, arXiv:1209.5579)

 0

 1
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 8
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 0  0.5  1  1.5  2  2.5  3

D
(ρ

√σ
)

ρ √σ

Pure gauge, β = 2.40, V = 124

Pure gauge, β = 2.55, V = 204

Nf = 2, β = 2.25, V = 24 × 123, m = −0.95
Nf = 2, β = 2.25, V = 24 × 123, m = −1.00

The large-distance dynamics is nearly quenched
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Polyakov loop distribution

(L. Del Debbio et al., arXiv:1004.3206)
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We need larger lattices closer to the chiral limit
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Instanton size distribution

(E. Bennett and B. Lucini, arXiv:1209.5579)
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Nf = 2, β = 2.25, V = 16 × 83, m = −0.50
Nf = 2, β = 2.25, V = 16 × 83, m = −0.75
Nf = 2, β = 2.25, V = 16 × 83, m = −0.90

We need larger lattices closer to the chiral limit
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Temporal size effect

(F. Bursa et al., arXiv:1104.4301)Temporal finite size e↵ects

A. Rago (U. Plymouth) Lattice Technicolor 31 May 2012 22 / 36A short temporal direction increases masses
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Spatial size effect

(F. Bursa et al., arXiv:1104.4301)
Spatial finite size e↵ects

0 10 20 30 40
t
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0.60

0.65
m
PS
(t)

L=8
L=12
L=16
L=24
L=32
L=48

A. Rago (U. Plymouth) Lattice Technicolor 31 May 2012 23 / 36A small spation volume decreases masses
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Spectrum vs. Size (MPS = 1.187(2))

(F. Bursa et al., in preparation)
Summary

0.00

0.50

1.00
a 

m

812162432∞ 48
L

m2++
m
π

m0++

Spatial σ1/2

Temporal σ1/2

Remember: M⇡ = 1.187(2)

A. Rago (U. Plymouth) Lattice Technicolor 31 May 2012 32 / 36

Lighter states are more difficult to keep under control, very
large lattices are needed
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Estimate of Finite Size Effects

(A. Patella et al., arXiv:1111.4672)In the end: not too bad
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A. Rago (U. Plymouth) Lattice Technicolor 31 May 2012 27 / 36We can assume scaling with MPSL
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Finite size scaling
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 =  8  
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Ratios of spectral quantities are universal functions of
x = Ns(amq)

1
1+γ or equivalently y = NsmPS

(B. Lucini, arXiv:0911.0020)
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Condensate anomalous dimension - I

(Del Debbio et al., arXiv:1004.3206)

0.12 0.25 0.50 1.00
amPCAC

0.06
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0.25

0.50

aσ
1/

2

aσ1/2 = Aσ(amq)
1

1+γ γ = 0.22(6)

γ too small for phenomenology?
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Condensate anomalous dimension - II

(Giedt and Weinberg, arXiv:1201.6262)

2

This form has also been considered in [26]; there it was
pointed out that fitting data to such a hypothesis would
require an extensive and highly accurate study. For us
the main use of this equation is just that the scaling
violations are largest for the smallest values of L. We
use this as an interpretation of data on small lattices
that does not fall on a scaling curve. Our present study
is not extensive enough to fit to this more general form
and extract ω. Below, we will consider ξL = 1/M or
1/fπ, where M is a meson mass.

III. FITTING METHOD

The method described here seeks to optimize ym such
that all the data falls on a scaling curve. It is due to [27]
and was used in [19, 23]. For each L we have a data set p.
We use this to obtain a fit fp. The types of fit functions
that we consider will be described below. We then use
this fit function on the other values of L, which we label
as Lj.

We minimize the following function with respect to ym.

P (ym) =
1

Nover

∑

p

∑

j !=p

∑

i,over

(
ξL(mi,j)

Lj
− fp(L

ym

j mi,j)

)2

(3.1)

Here i labels the different partially conserved axial current (PCAC) mass values for a given Lj . The effect of this
is to find a ym such that fp for the other values Lj, mi,j is as close as possible to the curve obtained from fitting
Lp, mi,p. This is summed over all possibilities p. Also, “over” indicates that only i are used such that mi,jL

ym

j falls
within the range of values of mi,pL

ym
p , so that the comparison is to an interpolation of the mi,pL

ym
p data, rather than

an extrapolation. Unweighted fits were used so that the approximation to the scaling curve would pass through data
at small x = mLym , where absolute (statistical) errors are largest. (Using a weighted fit reduces our conclusion for γ
by 4%.)

Type f(x)

Quadratic c0 + c1x + c2x
2

Log quadratic c0 + c1 lnx + c2(lnx)2

Piece-wise log-linear Straight lines connecting data

TABLE I. Interpolating functions that we use to fit data for
a fixed Lp. In the last case, the straight lines interpolating
between data are on a semi-log plot.

For the fitting function we have considered the possi-
bilities listed in Table I. In the case of the quadratic we
follow one of the methods of [19, 23]. The log quadratic
fit was motivated by the behavior of the data when ξL/L
is plotted versus ln(mLym), which is close to a parabola.
The piece-wise log-linear form was used as a third choice
that trivially passes through the data, giving a reasonable
interpolation.

IV. RESULTS

We have used four observables: the “pion” mass
mπ, the “rho” mass mρ, the “a1” mass ma1 , and the
“pion” decay constant fπ. These are all obtained from
standard correlation functions using point sources and
sinks. We fit the correlation functions with a single
exponential, allowing the first time tfirst in the fit to
be large enough for the excited state contributions to
be negligible. This is determined by looking at the
mass of the meson as a function of tfirst and extract-
ing the value on the plateau. Five values of bare masses
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0.6

0.7

0.8

0.9

1 10 100

1
/m

π
L

x

L=10
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L=16
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L=24

FIG. 1. Collapse of π data for ym = 1.46. Here and in the
other figures, x = mLym .

m0a = −1.0, −1.1, −1.165, −1.175, −1.18 on lattices of
size L/a = 10, 12, 16, 20, 24 were simulated, all at β =
2.25. These are the same configurations as were gener-
ated in [28], and the values of the PCAC mass and details
on the simulations are given there. Also note that the size
of the temporal direction is T = 2L.

Using these results, and performing the minimization
described in the previous section, we obtain values for
ym. In the case of ma1 and fπ, the quantity ξL/L is
small, and scaling violations [cf. Eq. (2.5)] can compete
with the scaling function for small lattices. For this rea-
son we exclude the small lattices L/a = 10, 12 for these
channels. The results for ym are summarized in Table
II. It can be seen that each of the channels, and each of
the fitting methods are consistent with each other within

γ = 0.51(16)

γ too small for phenomenology?
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Condensate anomalous dimension - III

(Patella, arXiv:1204.4432)

A smart idea!

Study the scaling of the integral of the spectral density of the Dirac operator.

The mode number ⌫̄(⌦) = 2
Rp⌦2�m2

0 ⇢(!)d!

It can be shown ⌫̄(⌦) ' ⌫̄0 + A[⌦2 � m2]
2

1+�⇤

0.01 0.1 1

[ (aΩ)
2
 - (am)

2
 ]

1/2

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

a
-4

 [
ν
(Ω

) 
- 

ν
0
]

64x24
3
 am

0
=-1.15

A. Rago (U. Plymouth) Lattice Technicolor 31 May 2012 35 / 36γ = 0.371(20)

γ too small for phenomenology?
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Condensate anomalous dimension - Summary

Method γ

FSS (Lucini:2009) 0.05 < γ < 0.25
SF (Bursa:2009) 0.05 < γ < 0.56

FSS (DelDebbio:2010) 0.05 < γ < 0.20
FSS (DelDebbio:2010) 0.22± 0.06
MCRG (Catterall:2011) −0.6 < γ < 0.6

SF (DeGrand:2011) 0.31± 0.06
FSS (Giedt:2012) 0.51± 0.16

MNS (Patella:2012) 0.371± 0.020
Perturbative 4-loop (Pica:2010) 0.500
Schwinger-Dyson (Ryttov:2010) 0.653

All-orders hypothesis (Pica:2010) 0.46

All estimates are well below one
Discrepancies accounted for by finite size effects?
Can we quantify better systematic effects?
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The Emerging Picture

1 The spectrum of SU(2) gauge theory shows the following
features:

Well-defined mass hierarchy mPS,V > mG >
√
σ

Dynamical quenching
Dynamically-generated scale sliding with mPCAC

Anomalous dimension γ ' 0.37(2) preliminary result!

2 These results are compatible with the idea that SU(2) with
Nf = 2 flavours of Dirac fermions is in a (near-)conformal
phase

3 However

The anomalous dimension is too small for fitting current
models of DEWSB
A walking scenario can not be completely excluded at
this stage
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Perspectives

Improvement of the finite size analysis
Investigation of other observables
Better control over the chiral limit
Extrapolation to the continuum limit
Finite temperature studies
Extension to other gauge groups/representations
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Conclusions

We have developed tools and techniques for looking at IR
conformality signatures in the spectrum

In particular, FSS and (mostly) Dirac MNS allow precise
measurements of the condensate anomalous dimension
(relevant for phenomenology)

These techniques played a crucial role in establishing IR
conformality in SU(2) gauge theory with Nf = 2 Dirac adjoint
fermions

With this result resting on firm ground, the latter theory is an
ideal play ground for testing methods of numerical
investigations of IR conformal behaviour
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