
Lattice Quantum Gravity
Jack Laiho

(in collaboration with Daniel Coumbe)

University of Glasgow

Jena

November 30, 2012

Jena, Nov 2012 – p.1/27



Quantum Gravity

Quantizing gravity is one of the outstanding problems in theoretical physics.

Straightforward implementation as a perturbative quantum field theory is

not renormalizable

Can still be formulated as an effective field theory at low energies

Explicitly confirmed that a counter-term is necessary at 2-loop order for

pure gravity [Goroff + Sagnotti, NPB266, 709, 1986] and 1-loop for

gravity+matter [t’Hooft+Veltman]

New couplings at each order in perturbation theory leads to a loss of

predictive power.
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Approach to Quantum Gravity

Weinberg proposed idea that gravity might be Asymptotically Safe in 1976

[Erice Subnucl. Phys. 1976:1]. This scenario would entail:

Gravity is effectively renormalizable when formulated non-perturbatively.

Renormalization group flows of couplings have a non-trivial fixed point,

with a finite dimensional ultraviolet critical surface of trajectories attracted

to the fixed point at short distances.

In a Euclidean lattice formulation the fixed point would show up as a

second order critical point, the approach to which would define a

continuum limit.
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History

Within the last decade renormalization group studies have been done

that suggest that pure gravity has a non-trivial fixed point with a small

number of adjustable parameters (there is evidence that there are only

three). [Lauscher + Reuter Phys. Rev. D65, 025013 (2002), Litim, PRL

92, 201301 (2004), Codello, et al. Ann. Phys. 324, 414 (2009)

arXiv:0805.2909; Benedetti, et al, Mod. Phys. Lett. A24, 2233 (2009)

arXiv:0901.2984].

These calculations use truncations of the complete effective action.

Errors can only be estimated by comparing various truncations, but

systematic errors are hard to estimate.

A lattice formulation would serve as a powerful cross-check. There have

been several attempts...
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Lattice gravity

A number of different approaches to lattice gravity were introduced in the

1990’s.

Euclidean dynamical triangulations (EDT) was among the most popular

formulations. [Ambjorn, Carfora, and Marzuoli, The geometry of

dynamical triangulations, Springer, Berlin, 1997] Lattice geometries are

approximated by triangles with fixed edge lengths. The dynamics is

contained in the connectivity of the triangles, which can be added or

deleted.

In lattice gravity, the lattice itself is a dynamical entity, which evolves in

Monte Carlo time. The dimension of the building blocks can be fixed, but

the effective fractal dimension must be calculated from simulations.

The EDT formulation was shown to have two phases, a “crumpled” phase

with infinite Hausdorff dimension and a branched polymer phase, with

Hausdorff dimension 2. The critical point separating them was shown to

be first order, so that new continuum physics is not expected. [Bialas et

al, Nucl. Phys. B472, 293 (1996), hep-lat/9601024; de Bakker, Phys.

Lett. B389, 238 (1996), hep-lat/9603024]

Jena, Nov 2012 – p.5/27



Causal Dynamical Triangulations

In the late 90’s, Ambjorn and Loll introduced Causal Dynamical Triangulations

(CDT) [NPB 536, 407 (1998), hep-th/9805108] . They introduced a causality

condition, where only geometries that admit a time foliation are included in the

path integral.

Simulations from 2004-2005 show a good semi-classical limit, with

(Euclidean) de Sitter space as a solution. [Ambjorn, et. al., PRD 78,

063544 (2008), arXiv:0807.4481.]

Striking result is a running effective dimension

Effective (spectral) dimension runs from ∼ 2 at short distances to ∼ 4 at

long distances. [Ambjorn, et. al., PRL 95, 171301 (2005),

hep-th/0505113.]
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Point of departure

Revisiting the EDT simulations for a few reasons [JL + Coumbe, PRL 107,

161301 (2011)]:

If fixing the foliation in CDT is a gauge condition that does not remove

physical degrees of freedom, should be possible to simulate using a

covariant formulation.

CDT has three tunable parameters: GN , Λ and ∆, which is an

asymmetry parameter between space-like and time-like links, so that

CDT lattices are anisotropic in the time direction. Taking the RG studies

seriously, maybe UV critical surface is 3 dimensional.

Perhaps good results of CDT are a result of having 3 parameters, not the

causality condition?

Revisiting EDT simulations with a third parameter in the action.
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Einstein Hilbert Action

Continuum path-integral:

Z =

∫

Dg eiS[g], (1)

S[gµν ] =
k

2

∫

ddx
√
−det g(R− 2Λ), (2)

where k = 1/(8πGN).
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Discrete action

Discrete Euclidean (Regge) action is

SE = k
∑

2V2δ − λ
∑

V4, (3)

where δ = 2π −∑

θ is the deficit angle around a triangular face, Vi is the

volume of an i-simplex, and λ = kΛ. Can show that

SE = −
√
3

2
πkN2 +N4

(

5
√
3

2
k arccos

1

4
+

√
5

96
λ

)

(4)

where Ni is the total number of i-simplices in the lattice. Conveniently written
as

SE = −κ2N2 + κ4N4. (5)
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Measure term

Adding a measure term was investigated somewhat in the 90’s, but not in great

detail [Brugmann and Marinari, PRL 70, 1908 (1993), hep-lat/9210002; Bilke,

et. al., PLB 432, 279 (1998), hep-lat/9804011.]. In the continuum:

Z =

∫

Dg
√−det g

β
eiS[g], (6)

Going to the discretized theory, we have

√
−det g

β →
N2
∏

j=1

o(tj)
β , (7)

where o(tj) is the order of triangle tj , i.e. the number of 4-simplices to which a

triangle belongs. Can incorporate this term in the action by taking exponential

of the log. β is our third parameter.
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Simulations

Methods for doing these simulations were introduced in the 90’s. I wrote new

MC code, and my student and I performed extensive tests against the

literature.

The Metropolis Algorithm is implemented using a set of local update
moves.

Lists of simplices and sub-simplices are stored in arrays. Pointers to

nearest neighbors of any given four-simplex and pointers to the

sub-simplices of any given four-simplex are also stored to speed up the

local moves.

We relax the combinatorial manifold constraints on the space of

triangulations used in the path integral. This leads to significantly

reduced finite-size effects (for both exactly solvable 2-d models and

comparing 4-d results for the unphysical phases). [Bilke and

Thorleifsson, PRD 59, 124008 (1999), hep-lat/9810049.]
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Phase diagram
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Spectral Dimension

Spectral dimension is defined by a diffusion process

DS(σ) = −2
d logP (σ)

d log σ
, (8)

where σ is the diffusion time step on the lattice, and P (σ) is the return

probability, i.e. the probability of being back where you started in a random

walk after σ steps.
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Spectral Dimension

χ2/dof=35/32, CL=37%
DS(∞) = 4.04± 0.26, DS(0) = 1.457± 0.064 (includes “fitting” systematic

error)
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Other Systematic Errors?

Must go to finer lattice spacings. Still need to explore the phase diagram

to understand where the fixed point(s) is(are), so we know how to go to

finer lattices. Studies in progress indicate that going to finer lattices is

possible, and that the spectral dimension approaches 4/3.
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Taking the continuum limit
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Comparison with previous results

Note that [Lauscher + Reuter, JHEP 0510, 050 (2005)] use renormalization

group methods and find that DS(0) = 2 exactly, independent of any truncation.

Rosten [arXiv:1106.2544] suggests that the value DS(0) = 2 may be an

artifact of truncations used so far.

Reuter + Saueressig [arXiv:1110.5224] suggest that the lattice spacing is still

too coarse to resolve the actual fixed-point behavior, and that the spectral

dimension is non-monotonic, with a more complicated shape and a long

plateau at 4/3 that could lead lattice calculations to underestimate the value 2.

CDT result is DS(0) = 1.80± 0.25. [Ambjorn, et. al., PRL 95, 171301 (2005)]
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Collapsed phase?

New data suggests that the “extended” phase is actually the collapsed phase,

but with especially large finite-size effects.

At large volumes both the Hausdorff and spectral dimensions become large.

Still, at small volumes in the collapsed phase, the behavior of the spectral

dimension is strikingly similar to the CDT calculations and RG prediction.

Furthermore, it appears that within this phase one can push to arbitrarily fine

lattice spacings.

Perhaps the Euclidean theory can be rescued? Tests of new ideas in
progress...
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Is Asymptotic Safety Correct?

Holographic argument against asymptotic safety due to Banks and Shomer

(arXiv:0709.3555):

For a renormalizable theory with an ultraviolet fixed point the theory is a CFT at

very high energies. The only dimensionful scale is temperature T , so

S ∼ (RT )d−1, E ∼ Rd−1T d, (9)

where R is the radius of the spacetime region, S is entropy and E is energy.

This leads to an entropy EOS

S ∼ E
d−1

d (10)
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Holography and Asymptotic Safety

For gravity one expects that the high energy spectrum will be dominated by

black holes. In asymptotically flat d dimensional spacetime, the general

(Schwarzschild-Tangherlini) solution to the d dimensional Einstein equations

for a spherically symmetric stationary geometry gives a horizon at

rd−3 ∼ GNM (11)

Assuming the Beckenstein-Hawking entropy formula

S ∼ Area ∼ rd−2
(12)

This is believed to hold quite generally, and is a consequence of the

generalized 2nd law of thermodynamics.

This leads to an entropy EOS

S ∼ E
d−2

d−3 (13)
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Consistent?

S ∼ E
d−1

d , CFT (14)

S ∼ E
d−2

d−3 , GR (15)

The scaling is inconsistent!

However, the effective dimension may change as we go to shorter distances.

The spectral dimension is defined by a diffusion process via a heat kernal, and

it is the relevant dimension for thermodynamic quantities like entropy scaling

on a fractal space (Akkermans et al, PRL 105, 230407, 2010).
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Consistent?

S ∼ E
d−1

d , CFT (16)

S ∼ E
d−2

d−3 , GR (17)

For Eq. (21) the relevant dimension is the spectral dimension on a fractal

space. Under the assumption that the spectral dimension is also the relevant

dimension in the scaling argument for Eq. (22), the scaling becomes consistent

when d = 3/2.
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Future Directions

Evidence for a 2nd order phase transition [Ambjorn, et al, arXiv:1108.3932]

and for 4-dimensional de Sitter space in CDT. Can we find the same thing in

EDT with appropriate modifications?

Add matter! Scalar and gauge fields straightforward, though previous studies

combined with the present work suggest they won’t change the phase

diagram. Fermions require defining a spin connection, so they are more

challenging, but should be possible.
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Backup Slides

Jena, Nov 2012 – p.24/27



Update Moves

Update moves are known as (p, q) moves. There are 5, since the last is its own

inverse.

12346 + 12356 + 12456 + 13456 + 23456 ↔ 12345 (18)

12345 + 12346 + 12356 + 12456 ↔ 13456 + 23456 (19)

12456 + 13456 + 23456 ↔ 12345 + 12346 + 12356 (20)
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Hausdorff dimension

We look at the three-volume correlator,

CN4
(δ) =

t
∑

τ=1

4〈N3(τ)N3(τ + δ)〉
N2

4

, (21)

where N3(τ) is the total number of four-simplices in a spherical shell a

geodesic distance τ from its center, N4 is the total number of four-simplices in

the configuration. The normalization is chosen so that

t−1
∑

δ=0

CN4
(δ) = 1, (22)

If we rescale δ by N
1/dH
4 , introducing x = δ

N
1/dH
4

, then CN4
(x) should be

independent of volume. Thus, we can determine dH , the Hausdorff dimension.
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Three volume correlator
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