A Supersymmetric Lattice Theory: $\mathcal{N} = 4$ YM

Simon Catterall, Poul Damgaard, Tom Degrand, Dhagash Mehta, Richard Galvez also Joel Giedt, Anosh Joseph,..

November 29, 2012

・ロン ・回と ・ヨン・

Lattice SUSY - the problems and how to dodge them $\mathcal{N}=4 \text{ Super Yang-Mills: new formulation} \\ \text{Non-perturbative study: phase diagram}$

Lattice SUSY - the problems and how to dodge them

$\mathcal{N}=4$ Super Yang-Mills: new formulation

Non-perturbative study: phase diagram

・ロト ・回ト ・ヨト ・ヨト

3

Barriers to Lattice Supersymmetry

- $\{Q, \overline{Q}\} = \gamma_{\mu} p_{\mu}$. No generators of infinitessimal translations on lattice. Equivalently: no Leibniz rule for difference ops on lattice: $\Delta(AB) \neq \Delta AB + A\Delta B$.
- Classical SUSY breaking leads to (many) SUSY violating ops via quantum corrections. Couplings must be adjusted with cut-off (1/a) to achieve SUSY in continuum limit -fine tuning.
- ► Discretization of Dirac equation: Lattice theories contain additional fermions (doublers) which do not decouple in continuum limit. Consequence: no. fermions ≠ no. bosons
- Lattice gauge fields live on lattice links and take values in group. Fermions live on lattice sites and (for adjoint fields) live in algebra

・ロト ・回ト ・ヨト ・ヨト

Putting SUSY on a lattice

Goals of any successful SUSY lattice formulation:

- ► Reduce/eliminate fine tuning. In particular scalar masses.
- More symmetrical treatment of bosons and fermions particularly for gauge theories.
- Keep exact gauge invariance. Lesson of lattice QCD (Wilson)
- Avoid fermion doubling...
- Avoid sign problems. After integration over fermions is effective bosonic action real ? Monte Carlo simulation requires this ...

New formulations exist with all these features

・ロン ・回と ・ヨン ・ヨン

New ideas - twisting

- Rewrite continuum theory in twisted variables.
- Exposes a single scalar supersymmetry Q whose algebra is simple: Q² = 0. Furthermore S =~ QΛ.
- Key: this SUSY can be retained on discretization: easy to build invariant lattice action.
- Fine tuning reduced (eliminated ?):

Exact hypercubic symmetry $\stackrel{a \to 0}{\rightarrow}$ Full Poincare invarianceExact Q symmetry \rightarrow Full SUSY

- See that all fields will live on links and take values in algebra.
- Structure of fermionic action dictated by exact SUSY would doublers will be physical

Cutline Lattice SUSY - the problems and how to dodge them $\mathcal{N} = 4$ Super Yang-Mills: new formulation Non-perturbative study: phase diagram

Most interesting application: $\mathcal{N} = 4$ SYM

Many lattice SUSY theories in D < 4.

However in D = 4 they single out a unique theory: $\mathcal{N} = 4$ YM

- Fascinating QFT finite but non-trivial. A lattice formulation gives a non-perturbative definition of theory (like lattice QCD for QCD)
- Heart of AdS/CFT correspondence. Equivalence between string theory in AdS_5 and $\mathcal{N} = 4$ SYM on boundary. Lattice formulation allows us to verify and extend holographic ideas: compute classical and quantum string corrections ... (expansion in 1/N and $1/\lambda$)
- Possible connection to low energy physics: Prototype CFT (SU(2) adj ..). Higgs as a dilaton arising from scalar fluctuations along flat directions ?

Outline Lattice SUSY - the problems and how to dodge them $\mathcal{N} = 4$ Super Yang-Mills: new formulation Non-perturbative study: phase diagram

Twisting - basic idea

- Consider (extended) SUSY theories possessing additional flavor (R) symmetries.
- If flavor contains an appropriate subgroup can Twist: decompose fields under G = Diag(SO_{Lorentz}(D) × SO_R(D))
- Fermions: spinors under both factors become integer spin after twisting.
- Scalars transform as vectors under R-symmetry vectors after twisting.
- Gauge fields remain vectors combine with scalars to make complex gauge fields. Still just U(N) gauge symmetry...

Important: flat space: just a change of variable

Twisted (Lattice) Fields for $\mathcal{N}=4$

Usual fieldsTwisted fields
$$A_{\mu}, \mu = 1 \dots 4$$
 $\phi_i, i = 1 \dots 6$ $\mathcal{U}_a, a = 1 \dots 5$ $\Psi^i, i = 1 \dots 4$ $\eta, \psi_a, \chi_{ab}, a, b = 1 \dots 5$

- ► Scalars appear as Im U_a ! (miracle of twisting...)
- Fermions appear as anticommuting antisymmetric tensors ...
- All Lattice fields live on links.
- ► Lattice is determined: 5 (complex) gauge fields \rightarrow lattice with (equal) 5 basis vectors. 4D implies $\sum_{a=1}^{5} \mathbf{e}^{a} = 0$. A_{4}^{*}

• • E • • E •

- All fields take values in U(N) algebra.
- Fields transform like links: $\psi_a \to G(x)\psi_a(x)G^{\dagger}(x+a)$

Twisted supersymmetry

Scalar ${\mathcal Q}$ arises after transforming to twisted variables: decompose fields under twisted rotation group

$$SO(4)' = \operatorname{diag} (SO_{\operatorname{rot}}(4) \times SO_R(4))$$

$$\begin{array}{rcl} \mathcal{Q} \ \mathcal{U}_{a} & = & \psi_{a} \\ \mathcal{Q} \ \psi_{a} & = & 0 \\ \mathcal{Q} \ \overline{\mathcal{U}}_{a} & = & 0 \\ \mathcal{Q} \ \chi_{ab} & = & -\overline{\mathcal{F}}_{ab} \\ \mathcal{Q} \ \eta & = & d \\ \mathcal{Q} \ d & = & 0 \end{array}$$

field strength: $\mathcal{F}_{ab} = \mathcal{U}_a(x)\mathcal{U}_b(x+a) - \mathcal{U}_b(x)\mathcal{U}_a(x+b)_{ab}$

Q-exact form of action

w

$$S = \frac{N}{\lambda}(S_1 + S_2)$$

$$S_1 = \mathcal{Q}\sum_x \operatorname{Tr} \left(\chi_{ab}(x)\mathcal{F}_{ab}(x) + \eta[\overline{\mathcal{D}}_a^{(-)}\mathcal{U}_a(x) + \frac{1}{2}\eta d\right)$$
here $\mathcal{F}_{ab} = \mathcal{D}_a^{(+)}\mathcal{U}_b(x) = \mathcal{U}_a(x)\mathcal{U}_b(x+a) - \mathcal{U}_b(x)\mathcal{U}_a(x+b)$

$$S_2 = \sum_x \operatorname{Tr} \epsilon_{abcde}\chi_{ab}\overline{\mathcal{D}}_c^{(-)}\chi_{de}$$

 $Q^2 = 0$ guarantees S_1 invariant. $Q\chi_{ab} = \overline{F}_{ab}$ plus Bianchi yield $QS_2 = 0$

Derivatives

Derivatives replaced with covariant differences compatible with lattice G.I eg.

$$\mathcal{D}_{\mathsf{a}}^{(+)}\mathcal{U}_{\mathsf{b}}(x) = \mathcal{F}_{\mathsf{a}\mathsf{b}}(x) = \mathcal{U}_{\mathsf{a}}(x)\mathcal{U}_{\mathsf{b}}(x+\mathsf{a}) - \mathcal{U}_{\mathsf{b}}(x)\mathcal{U}_{\mathsf{a}}(x+\mathsf{b})$$

Transforms like link $x \rightarrow x + a + b$ Contract with $\chi_{ab}(x)$ to form gauge invariant loop ...

$$\overline{\mathcal{D}}_{\mathsf{a}}^{(-)}\mathcal{U}_{\mathsf{a}}(x) = \mathcal{U}_{\mathsf{a}}(x)\overline{\mathcal{U}}_{\mathsf{a}}(x) - \overline{\mathcal{U}}_{\mathsf{a}}(x-\mathsf{a})\mathcal{U}_{\mathsf{a}}(x-\mathsf{a})$$

イロト イヨト イヨト イヨト

3

Transforms like site - contract with η

Lattice action

Twisting=change of variables in flat space

$$S_{1} = \sum_{\mathbf{x}} \operatorname{Tr} \left(\mathcal{F}_{ab}^{\dagger} \mathcal{F}_{ab} + \frac{1}{2} \left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a} \right)^{2} - \chi_{ab} \mathcal{D}_{[a}^{(+)} \psi_{b]} - \eta \overline{\mathcal{D}}_{a}^{(-)} \psi_{a} \right)$$

$$S_{2} = -\frac{1}{2} \sum_{\mathbf{x}} \operatorname{Tr} \epsilon_{abcde} \chi_{de} (\mathbf{x} + \mu_{\mathbf{a}} + \mu_{\mathbf{b}} + \mu_{\mathbf{c}}) \overline{\mathcal{D}}_{\mathbf{c}}^{(-)} \chi (\mathbf{x} + \mu_{\mathbf{c}})$$

- Bosonic action collapses to Wilson plaquette if $\mathcal{U}_a^{\dagger}\mathcal{U}_a = 1$.
- Fermions: Kähler-Dirac action ≡ (reduced) staggered fermions Describes 4 (Majorana) fermions in continuum limit.

Gauge invariance, doublers and all that

- All terms local, correspond to closed loops and hence are lattice gauge invariant
- ► U_a 's non compact! $U_a = \sum_B T^B U_a^B$ flat measure $\int \prod D U_a D \overline{U}_a$. Nevertheless, still gauge invariant - Jacobians resulting from gauge transformation of U and \overline{U} cancel.
- Bigger question: how to generate correct naive continuum limit requires that can expand (suitable gauge)
 U_a = I + A_a(x) +?

Naive continuum limit

- ► Need U_a = I + A_a(x) + Here, unlike lattice QCD, unit matrix necessary for generating kinetic terms arises from the vev of a dynamical field! - trace piece of imaginary part (scalar) of the gauge field
- Ensure by adding gauge invariant potential

$$\delta S = \mu^2 \sum_{x,a} \left(\frac{1}{N} \operatorname{Tr} \left(\mathcal{U}_a^{\dagger} \mathcal{U}_a \right) - 1 \right)^2$$

To leading order: If $U_a = e^{A_a + iB_a}$ then Tr $B_a = 0$.

▶ Breaks Q SUSY softly. All breaking terms must vanish for $\mu \rightarrow 0$ (exact Q).

Quantum corrections ...

Can show:

- Lattice theory renormalizable: only counterterms allowed by exact symmetries correspond to terms in original action
- Effective potential (formally) vanishes to all orders in p. theory. No scalar mass terms!
- At one loop:
 - No fine tuning: common wavefunction renormalization
 - Vanishing beta function: Divergence structure matches continuum
- ▶ Need to go beyond p. theory. Phase diagram of lattice theory

イロン イヨン イヨン イヨン

2

Sketch of $\Gamma_{\rm eff}=0$

- Classical vacual constant commuting complex matrices \mathcal{U}_{μ}
- ► Expand to quadratic order about generic vacuum $U_b(x) = I + A_b^c + a_b(x).$ Integrate

► Bosons det⁻⁵
$$\left(\overline{\mathcal{D}}_{a}^{(-)}\mathcal{D}_{a}^{(+)}\right)$$

- ► Ghosts+Fermions: det $\left(\overline{\mathcal{D}}_{a}^{(-)}\mathcal{D}_{a}^{(+)}\right) + \left(Pf(M_{F}) \stackrel{Maple}{=} \det^{4}\left(\overline{\mathcal{D}}_{a}^{(-)}\mathcal{D}_{a}^{(+)}\right)\right)$
- Thus Z_{pbc} = 1 at 1-loop. Q-exact structure result good to all orders! Exact quantum moduli space
- ▶ Witten index: all states cancel except vacua. Counting indep of *g*.

Simulations

- Integrate fermions $\rightarrow \operatorname{Pf}(M)$. Realize as $\det (M^{\dagger}M)^{-\frac{1}{4}}$
- Standard lattice QCD algs may be used: RHMC with Omelyan, multi time step evolution. GPU acceleration for inverter (speedup: 5-10 over single core code for L = 8³ × 16)
- Phase quenched approximation should be ok: analytical argument, numerical evidence ...
- First step: phase structure $U(2), L^4, apbc, L = 4, 6, 8$
 - Fix the unit matrix vev ? Instabilities from flat directions ?

・ロン ・回 と ・ ヨ と ・ ヨ と

- Supersymmetry realized ?
- String tension, chiral symmetry breaking ?
- Phase transitions ?

Lattice SUSY - the problems and how to dodge them $\mathcal{N}=4 \text{ Super Yang-Mills: new formulation} \\ \text{Non-perturbative study: phase diagram} \end{cases}$

Setting the vev

Simon Catterall, Poul Damgaard, Tom Degrand, Dhagash Meh A Supersymmetric Lattice Theory: $\mathcal{N} = 4$ YM

Lattice SUSY - the problems and how to dodge them $\mathcal{N}=4~\text{Super Yang-Mills: new formulation}$ Non-perturbative study: phase diagram

SU(2) Flat directions - I

Simon Catterall, Poul Damgaard, Tom Degrand, Dhagash Meh A Supersymmetric Lattice Theory: $\mathcal{N} = 4$ YM

Comments

- Common statement: "Moduli space is not lifted in N = 4 by quantum corrections …" Why is scalar distribution not flat as µ → 0?
- Pfaffian vanishes on flat directions. Formally this zero cancels against infinity from boson zero modes but latter are lifted at non-zero µ.
- Thus configurations corresponding to flat directions make no contribution to lattice path integral.
- Small fluctuations around flat directions cost increasing action as move away from origin in field space - large scalar eigenvalues suppressed.

Lattice SUSY - the problems and how to dodge them $\mathcal{N}=4 \text{ Super Yang-Mills: new formulation} \\ \text{Non-perturbative study: phase diagram} \end{cases}$

Test of exact supersymmetry

Simon Catterall, Poul Damgaard, Tom Degrand, Dhagash Meh A Supersymmetric Lattice Theory: $\mathcal{N}=4$ YM

Sign problem ?

Integrate fermions: complex Pfaffian. But observed phase small in phase quenched simulations..

Why ? For $\mu = 0$ and pbc one can show that $Z_{lattice}^{1-loop} = 1$ indep of λ ! No phase appears!

Exact Q symmetry -(formally) true to all orders in p theory!

・ロン ・回と ・ヨン・

Lattice SUSY - the problems and how to dodge them $\mathcal{N}=4 \text{ Super Yang-Mills: new formulation} \\ \text{Non-perturbative study: phase diagram} \end{cases}$

Phase structure - Polyakov lines

 $P = \prod \mathcal{U}_t$

Lattice SUSY - the problems and how to dodge them $\mathcal{N}=4 \text{ Super Yang-Mills: new formulation} \\ \text{Non-perturbative study: phase diagram} \end{cases}$

Phase structure - String tension

Simon Catterall, Poul Damgaard, Tom Degrand, Dhagash Meh A Supersymmetric Lattice Theory: $\mathcal{N}=4$ YM

Lattice SUSY - the problems and how to dodge them $\mathcal{N}=4~\text{Super Yang-Mills: new formulation}$ Non-perturbative study: phase diagram

Coulomb fits

Simon Catterall, Poul Damgaard, Tom Degrand, Dhagash Meh A Supersymmetric Lattice Theory: $\mathcal{N}=4$ YM

Lattice SUSY - the problems and how to dodge them $\mathcal{N}=4~\text{Super Yang-Mills: new formulation}$ Non-perturbative study: phase diagram

Chiral symmetry breaking - or lack of it ...

Simon Catterall, Poul Damgaard, Tom Degrand, Dhagash Meh A Supersymmetric Lattice Theory: $\mathcal{N} = 4$ YM

Conclusions

- Simulations of N = 4 YM look promising: gauge invariance and (some) SUSY can be preserved. No instabilities from flat directions, no sign problem.
- Prelim investigations show no sign of any phase transitions as vary \u03c0. String tension small and static quark potential best fit with simple Coulomb term. Evidence for single, deconfined phase.
- Consistent with pert theory: 1 loop calc shows $\beta_{\text{latt}}(\lambda) = 0$
- In addition to tests of AdS/CFT theory may serve as test bed for lattice theories with IRFPs

・ロン ・回 と ・ 回 と ・ 回 と

3

Lattice SUSY - the problems and how to dodge them $\mathcal{N}=4$ Super Yang-Mills: new formulation Non-perturbative study: phase diagram

The end

돌▶ ★ 돌▶ ...

æ

Lattice SUSY - the problems and how to dodge them $\mathcal{N}=4~\text{Super Yang-Mills: new formulation}$ Non-perturbative study: phase diagram

SU(2) Flat directions - II

Э

Simon Catterall, Poul Damgaard, Tom Degrand, Dhagash Meh A Supersymmetric Lattice Theory: $\mathcal{N} = 4$ YM

frame

- Establish phase structure definitively ... using large lattices (better quark potentials), push to stronger λ, smaller μ
- \blacktriangleright Examine the spectrum: evidence of SUSY, anomalous dims. Compare to known results in $\mathcal{N}=4$
- Check restoration of full SUSY: study broken SUSY Ward identities, determine how much fine tuning needed.
- Need to understand how to take continuum limit; in QCD send β → ∞ with ever increasing L. In CFT g is parameter does not determine lattice spacing. Continuum physics by increasing L. But how to tune μ ?

Exciting time - lots to do !!