QCD probed by strong magnetic fields

Falk Bruckmann (Univ. Regensburg)

"Strongly interacting field theories", Jena, Nov. 2012

with G. Bali, M. Constantinou, M. Costa, G. Endrődi, Z. Fodor, S. Katz, T. Kovács, S. Krieg, H. Panagopoulos, A. Schäfer, K. Szabó

JHEP 1202 (2012) 044, PRD 86 (2012) 071502, 1209.6015, in prep.

QCD probed by strong magnetic fields A strong field interacting with my favourite theory

> Falk Bruckmann (Univ. Regensburg)

"Strongly interacting field theories", Jena, Nov. 2012

with G. Bali, M. Constantinou, M. Costa, G. Endrődi, Z. Fodor, S. Katz, T. Kovács, S. Krieg, H. Panagopoulos, A. Schäfer, K. Szabó

JHEP 1202 (2012) 044, PRD 86 (2012) 071502, 1209.6015, in prep.

Strong Magnetic fields

early universe $\sqrt{eB} \simeq 2 \text{ GeV}$ **RHIC/LHC** non-central collisions charged spectators *B* perp. to reaction plane

neutron stars, magnetars

0.1..0.5 GeV QCD scale!

1 MeV $B \sim 10^{14}$ G

Strong Magnetic fields

early universe	$\sqrt{\textit{eB}} \simeq$ 2 GeV	
RHIC/LHC non-central collisions charged spectators <i>B</i> perp. to reaction plane	0.10.5 GeV	QCD scale!
neutron stars, magnetars	1 MeV	$B\simeq 10^{14}~{ m G}$
cf. strongest field in lab		10 ⁵ G (10 ⁷ G unstable)
refrigerator magnet		100 G
earths magn. field		0.6 G

What to expect?

- quarks couple to electromagnetism: (q_u, q_d, q_s) = (²/₃, -¹/₃, -¹/₃)e neutral gluons do not ← indirect effects
- strong electric field \Rightarrow pair creation
- magn. field \Rightarrow Landau orbits

dimensional reduction to 1+1 dimensions? Mermin-Wagner?

'chiral magnetic effect'?

Kharzeev 04

- bubble of coherent top. charge ('instanton') in collision event: prefers part. alignment of spins wrt. momenta
- magnetic field: aligns spins
- \Rightarrow alignment of momenta along *B* (as if *E*) \Rightarrow part. charge correlations
 - some experimental hints

- constant external magnetic field in Euclidean space gluons, but no photons (no QED)
- accessible to lattice simulations (no sign problem) magnetic fields quantized and bounded (like momenta) 't Hooft 79 state-of-the-art: $\sqrt{eB} = 0.1 \dots 1$ GeV • simulation details

Free particles in magnetic fields

nonrelativistic and classical:

- motion on circle perpendicular to magn. field
- radius $r = \frac{mv}{qB}$ (qB > 0)
- angular velocity $\omega = \frac{qB}{m}$
- energy $E = \frac{1}{2} \omega L$ with angular momentum L

Bohr-Sommerfeld quantization: $L = k \in \mathbb{Z}$ (in units of $\hbar = 1$)

• quantized energies: $E = k \frac{qB}{2m}$

like for harmonic oscillator

... and spin

Free Dirac equation with magnetic field

gauge field for $B = B_z = (\operatorname{curl} A)_z$:

$$A_y = Bx, A_{rest} = 0$$
 (no gluons)

Dirac operator $D = \gamma_{\mu}(\partial_{\mu} + qA_{\mu})$, square:

$$-\not D^2 = -D^2_{\mu} + \frac{1}{2}qF_{\alpha\beta}\sigma_{\alpha\beta} \qquad \qquad \sigma_{\alpha\beta} = [\gamma_{\alpha}, \gamma_{\beta}]/2i \quad (1)$$

Free Dirac equation with magnetic field

gauge field for $B = B_z = (\operatorname{curl} A)_z$:

$$A_y = Bx, A_{rest} = 0$$
 (no gluons)

Dirac operator $D = \gamma_{\mu}(\partial_{\mu} + qA_{\mu})$, square:

$$-\mathcal{D}^{2} = -D_{\mu}^{2} + \frac{1}{2}qF_{\alpha\beta}\sigma_{\alpha\beta} \qquad \qquad \sigma_{\alpha\beta} = [\gamma_{\alpha}, \gamma_{\beta}]/2i \quad (1)$$

$$= -\partial_{t}^{2} - \partial_{z}^{2} - \partial_{x}^{2} - (\partial_{y} + qBx)^{2} + qB\sigma_{12} \quad \sigma_{12} = \text{diag}(1, -1, 1, -1)$$

free waves harm. oscillator spin

Free Dirac equation with magnetic field

gauge field for $B = B_z = (\operatorname{curl} A)_z$:

$$A_y = Bx, A_{rest} = 0$$
 (no gluons)

$$-\mathcal{D}^{2} = -D_{\mu}^{2} + \frac{1}{2}qF_{\alpha\beta}\sigma_{\alpha\beta} \qquad \qquad \sigma_{\alpha\beta} = [\gamma_{\alpha}, \gamma_{\beta}]/2i \quad (1)$$

$$= -\partial_{t}^{2} - \partial_{z}^{2} - \partial_{x}^{2} - (\partial_{y} + qBx)^{2} + qB\sigma_{12} \quad \sigma_{12} = \text{diag}(1, -1, 1, -1)$$

free waves harm. oscillator spin

eigenvalues thereof:

Landau 1930; Euler, Heisenberg 1935

$$\lambda^2 = p_t^2 + p_z^2 + |qB|(2n+1) + qB(2s)$$

 $p_t, p_z \in \mathbb{R}$ $n = 0, 1, \dots$ $s = \pm 1/2$

degeneracy: $|qB| \cdot \text{area} = |\text{magn. flux}|$

eigenvalues of massive operator:

$$m^{2} + \lambda^{2} = m^{2} + p_{t}^{2} + p_{z}^{2} + |qB|(2n+1) + qB(2s)$$

like class. energies plus spin

• charged quarks, spin 1/2: lowest Landau level (LLL) has $\lambda^2 = 0$

eigenvalues of massive operator:

$$m^{2} + \lambda^{2} = m^{2} + p_{t}^{2} + p_{z}^{2} + |qB|(2n+1) + qB(2s)$$

like class. energies plus spin

- charged quarks, spin 1/2: lowest Landau level (LLL) has λ² = 0
- o charged pions, spin 0:

 $\lambda^2 = |eB| \Rightarrow$ mass grows as: $m^2(B) = m^2(0) + |eB|$

eigenvalues of massive operator:

$$m^2 + \lambda^2 = m^2 + p_t^2 + p_z^2 + |qB|(2n+1) + qB(2s)$$

like class. energies plus spin

- charged quarks, spin 1/2:
 lowest Landau level (LLL) has λ² = 0
- charged pions, spin 0:

 $\lambda^2 = |eB| \Rightarrow$ mass grows as: $m^2(B) = m^2(0) + |eB|$

• charged rho mesons, spin 1:

 $\lambda^2 = -|eB| \Rightarrow$ mass reduces as: $m^2(B) = m^2(0) - |eB|$ $|eB| = m_{
ho}^2 \Rightarrow$ condensation? Chernodub 10

[gluons under chromomagnetic field: instability of Savvidy vacuum]

Magnetic catalysis

NJL model in 3+1 dimensions

Gusynin, Miransky, Shovkovy 96

$$\mathcal{L} = \bar{\psi} \mathcal{D}[B] \psi + GO(\psi^4)$$

o chiral condensate in mean field:

• dynamical mass *m* from gap equation:

$$m = G\langle \bar{\psi}\psi
angle = mG\left[\Lambda^2 + qB\lograc{qB}{m^2}
ight]$$

always trivial solution m = 0 preserving chiral symmetry
nontrivial solution m > 0 breaking chiral symmetry

$$m = \sqrt{qB} \exp\left(-\frac{1}{G qB}\right) \exp\left(\frac{\Lambda^2}{qB}\right)$$

for arbitrarily small magnetic fields & small couplings *G* nonperturbative

magn. field catalyzes condensate and dyn. mass

 in contrast vanishing magnetic field: nontrivial solution only for strong couplings G

Magnetic catalysis from the lattice

• change of condensate with B: (D'Elia et al. 10) Bali, FB, Endrődi et al. 11

mult. and add. renorm.: $\Delta \Sigma_{u,d} \equiv \# m_{u=d} \left[\langle \bar{\psi} \psi_{u,d} \rangle (B) - \langle \bar{\psi} \psi_{u,d} \rangle (0) \right]$

continuum limit with $N_f = 2 + 1$ (staggered) quarks at phys. masses

Magnetic catalysis from the lattice: comparison

• change of condensate with B:

 \Rightarrow well approximated unless $eB > \frac{0.1}{0.3}$ GeV² (approaches valid there?)

QCD phase diagram with B

• at *B* = 0: crossover

Aoki et al. 06

QCD phase diagram with B

• at *B* = 0: crossover

Aoki et al. 06

• with B: catalysis seems to prefer chirally broken = low T phase, but

QCD phase diagram with B

• at *B* = 0: crossover

Aoki et al. 06

• with *B*: catalysis seems to prefer chirally broken = low *T* phase, but pseudo-critical temperatures $T_c(B)$: Bali, FB, Endrődi et al. 11

renorm. condensate of light quarks, strange number susceptibility $\Rightarrow T_c$ decreases by O(10) MeV

Falk Bruckmann

Nature of the transition

• volume dependence of light susceptibility:

no volume scaling \Rightarrow remains a crossover up to $\sqrt{eB} \simeq 1 \text{ GeV}$

Inverse magnetic catalysis

• again change of condensate, for finite T:

 \Rightarrow non-monotonic behaviour:

magn. catalysis turns into inverse magnetic catalysis around T_c captured by models? understanding?

Falk Bruckmann

Inverse magnetic catalysis in the gluonic sector

• change of gluonic action at T = 0 and $T \gtrsim T_c$: Bali, FB, Endrődi in prep.

similar behaviour: magnetic catalysis \rightarrow inverse magnetic catalysis mediated by quarks

Inverse magnetic catalysis: consequences

• again condensate, now as function of *T* at fixed *B*:

magn. catalysis and inverse magnetic catalysis (vertically) \checkmark ${\cal T}_c$ decreases \checkmark

Falk Bruckmann

Inverse magnetic catalysis: comparison

• again to χ PT and PNJL model:

Andersen 12; Gatto, Ruggieri 10

 $\Rightarrow \chi$ PT ok unless *T* > 100 MeV (valid there?!)

PNJL? this one uses Polyakov loop potential from $N_f = 2$ lattice data \Rightarrow no inverse magn. catalysis (= crossing of curves)

Inverse magnetic catalysis: previous lattice simulations

1 + 1 + 1 (staggered, smeared) us at phys. masses

1 + 1 (staggered) D'Elia et al. 10 at higher-than-phys. masses

light quark masses!

Falk Bruckmann

cross-checked

$$\bar{\psi}\psi^{\text{full}} = \frac{\int DA_{\mu}e^{-S_{g}[A_{\mu}]}\det(\mathcal{D}[A_{\mu}; \mathbf{B}] + m)\operatorname{tr}(\mathcal{D}[A_{\mu}; \mathbf{B}] + m)^{-1}}{\int DA_{\mu}e^{-S_{g}[A_{\mu}]}\det(\mathcal{D}[A_{\mu}; \mathbf{B}] + m)}$$

$$\bar{\psi}\psi^{\mathsf{val}} = \frac{\int DA_{\mu}e^{-S_{g}[A_{\mu}]}\det(\mathcal{D}[A_{\mu}; 0] + m)\operatorname{tr}(\mathcal{D}[A_{\mu}; B] + m)^{-1}}{\int DA_{\mu}e^{-S_{g}[A_{\mu}]}\det(\mathcal{D}[A_{\mu}; 0] + m)}$$

$$\bar{\psi}\psi^{\text{sea}} = \frac{\int DA_{\mu}e^{-S_{g}[A_{\mu}]}\det(\not\!\!D[A_{\mu};B]+m)\operatorname{tr}(\not\!\!D[A_{\mu};0]+m)^{-1}}{\int DA_{\mu}e^{-S_{g}[A_{\mu}]}\det(\not\!\!D[A_{\mu};B]+m)}$$

$$\bar{\psi}\psi^{\text{full}} = \frac{\int DA_{\mu}e^{-S_{g}[A_{\mu}]}\det(\mathcal{D}[A_{\mu}; \mathcal{B}] + m)\operatorname{tr}(\mathcal{D}[A_{\mu}; \mathcal{B}] + m)^{-1}}{\int DA_{\mu}e^{-S_{g}[A_{\mu}]}\det(\mathcal{D}[A_{\mu}; \mathcal{B}] + m)}$$

approx. summed up: $\bar{\psi}\psi^{\text{full}} \simeq \bar{\psi}\psi^{\text{val}} + \bar{\psi}\psi^{\text{sea}}$ D'Elia, Negro 11 • at low *T* and around *T_c*: FB, Endrődi, Kovács (in prep.)

valence: *B* generates condensates via low modes (catalysis) sea: low modes disfavored, det = weight ! (quarks feed back)

Summary I

- magnetic catalysis: $\langle \bar{\psi}\psi \rangle(B) \nearrow$ at T = 0
- inv. magnetic catalysis: $\langle \bar{\psi}\psi \rangle(B)\searrow$ at $T\simeq T_c$
 - sea quark effect
 - only for light (phys.) quark masses
- QCD crossover: $T_c(B)$ decreases slightly

Summary I

• magnetic catalysis: $\langle \bar{\psi}\psi \rangle(B) \nearrow$ at T = 0

• inv. magnetic catalysis: $\langle \bar{\psi}\psi \rangle(B) \searrow$ at $T \simeq T_c$

sea quark effect

only for light (phys.) quark masses

• QCD crossover: $T_c(B)$ decreases slightly

second part: Is the QCD vacuum diamagnetic or paramagnetic?

Does the free energy increase/decrease with B?

dF = -M dB: do spins align antiparallel or parallel to *B* from partition function:

$$e^{-F/T} = Z = \int DA \, e^{-S_{\text{gauge}}} \det(D + m)$$

reminder *m*-derivative and condensate:

$$rac{\partial \log Z}{\partial m} \stackrel{\text{det=exp tr log}}{=} \left\langle \text{tr} rac{1}{\not \! D + m} \mathbf{1} \right
angle = \left\langle ar{\psi} \psi
ight
angle$$

B-derivative:

angular momentum + spin

...₁₂ allowed because $B = F_{12}$

Free quarks

$$\begin{split} \left\langle \bar{\psi}\sigma_{12}\psi \right\rangle &= \frac{T}{V} \left\langle \operatorname{tr} \frac{\sigma_{12}}{\not{p} + m} \right\rangle = \frac{T}{V} m \left\langle \operatorname{tr} \frac{\sigma_{12}}{-\not{p}^2 + m^2} \right\rangle \\ &= \frac{m \, qB}{\pi} \int \frac{d^2 p}{(2\pi)^2} \sum_{\substack{n = 0, 1, \dots \\ 2s = \pm 1}} \frac{2s}{p^2 + qB(2n+1) + qB2s + m^2} \\ &= \frac{m \, qB}{\pi} \int \frac{d^2 p}{(2\pi)^2} \frac{-1}{p^2 + m^2} \quad \text{ only LLL survived!} \end{split}$$

- negative
- linear in *qB*: degeneracy

for LLL: 2d index predicts magn. flux \checkmark

 log. divergence mlog(m/Λ) = mlog(ma) not present in chiral limit removed through 1 - m ∂/∂m and renorm. factor of tensor operators connected to charge renormalisation

Magnetic susceptibility

• χ and tensor coefficient τ from leading behavior: Ioffe, Smilga 84

$$\left< \bar{\psi} \sigma_{12} \psi \right> \equiv q B \underbrace{\left< \bar{\psi} \psi \right> \cdot \chi}_{\tau} + O((q B)^3)$$

for each quark flavor

- χ relevant for radiative D_s meson transitions, anomalous magn. moment of the muon, chiral-odd photon distribution amplitudes
- in free energy:

$$F\propto - au(qB)^2+O((qB)^4)$$

negative τ as we will find \Rightarrow free energy increases with $B \Rightarrow$ diamagnetic contribution of spin

• technically: $\langle \bar{\psi}\sigma_{12}\psi \rangle$ is easily available in staggered formalism (the angular momentum term seems not)

Magnetic susceptibility from the lattice

• linear behaviour of $-\langle \bar{\psi}\sigma_{12}\psi \rangle$ in *B*:

Bali, FB, Constantinou et al. 12

 \Rightarrow negative

 \Rightarrow decreasing slope for higher temperatures

Order parameter

• behaviour of tensor coefficient $au = \frac{\left\langle \bar{\psi}\sigma_{12}\psi \right\rangle}{qB}$ at different *T*'s:

compatible with $\mathcal{T}_c^{\langlear\psi\psi
angle}=$ 159(3)(3) MeV at B=0

Numbers

• at T = 0 and $\overline{\text{MS}}$ scheme at 2 GeV:

$$\begin{split} \tau_{\rm up} &= -(40.7 \pm 1.3) \; \text{MeV} \\ \tau_{\rm down} &= -(39.4 \pm 1.4) \; \text{MeV} \\ \tau_{\rm strange} &= -(53.0 \pm 7.2) \; \text{MeV} \\ \chi_{\rm up} &= -(2.08 \pm 0.08) \; \text{GeV}^{-2} \\ \chi_{\rm down} &= -(2.02 \pm 0.09) \; \text{GeV}^{-2} \end{split}$$

quenched unrenorm.: $\tau_{up/down} = -52 \text{ MeV}$ Braguta, Buividovich et al. 2010 QCD sum rules: $\chi_{light} = -(2.11 \pm 0.23) \text{ GeV}^{-2}$ Ball, Braun, Kivel 2003 vector dominance: $\chi_{light} = -\frac{2}{m_a^2} \approx -3.3 \text{ GeV}^{-2}$

Summary II

spin polarization $\langle \bar{\psi} \sigma_{12} \psi \rangle$:

- exists due to anisotropy $F_{12}^{\text{ext}} = B$
- $\propto qB$ already for free quarks

divergence: removed

- coefficient τ is an order parameter
- contributes to free energy: spin diamagnetism condensed matter, ideal Fermi gas:

spin paramagn. & angular diamagn., 3 : -1 Landau 30 here we discuss the (QCD) vacuum:

related to asymptotic freedom Nielsen 81

Backup: Simulation details

as for transition studies at B = 0

Budapest-Wuppertal

- tree-level improved gauge action
- stout smeared staggered fermions (rooting trick)
- 2 light quarks + strange quark, charges $(q_u, q_d, q_s) = (\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3})e$
- lattice spacing set at T = 0, B = 0physical pion masses set by $f_K, f_K/m_{\pi}$ and f_K/m_K

• $T = 0:24^3 \times 32, 32^3 \times 48$ and $40^3 \times 48$ lattices

• *T* > 0: *N*_t = 6, 8, 10 meaning *a* = 0.2, 0.15, 0.12 fm

 $N_s = 16, 24, 32$ for finite volumes

- condensates from stochastic estimator method with 40 vectors
- magn. flux quanta: $N_B \le 70 < \frac{N_x N_y}{4} = 144$

Backup: Mass sensitivity

• what if we put $(m_{\text{light}}, m_{\text{light}}, m_{\text{strange}}) \rightarrow (m_{\text{strange}}, m_{\text{strange}}, m_{\text{strange}})$?

T-dep. of *u*-susceptibility (top) and change of *u*-condensate (bottom) \Rightarrow effects of decreasing T_c & inverse magn. catalysis disappear light quark masses are important