Aspects of confinement and the center symmetry phase transition from QCD correlation functions

On the status of studies of Landau gauge QCD Green functions within functional continuum methods

Reinhard Alkofer

Institute of Physics Department of Theoretical Physics University of Graz

Workshop on "Strongly-Interacting Field Theories" Jena, Dec. 1, 2012

∃ ► < ∃ ►</p>

Outline

Fundamental Concepts

- BRST quartets & Kugo–Ojima confinement criterion
- Gribov horizon & Zwanziger condition
- 2 Infrared Structure of Landau gauge Yang-Mills theory
 - Infrared Behavior of Gluons and Ghosts
 - Two-loop terms in the gluon propagator DSE
- Coupling matter to gluons
 - Quark propagator and quark-gluon vertex
 - The effect of an IR divergent quark-antiquark interaction kernel
- 4 Center symmetry phase transition
- 5 Conclusions and Outlook

< ∃ →

CONFINEMENT

implies

• a non-perturbative RG invariant confinement scale

$$\Lambda = \mu \exp\left(-\int^g \frac{dg'}{\beta(g')}\right) \stackrel{g \to 0}{\to} \mu \exp\left(-\frac{1}{2\beta_0 g^2}\right)$$

ullet infrared singularities \iff continuum approach

R. Alkofer (Theoretical Physics, U. Graz)

э

ヨト・モヨト

I > <
 I >
 I

CONFINEMENT

implies

• a non-perturbative RG invariant confinement scale

$$\Lambda = \mu \exp\left(-\int^g \frac{dg'}{\beta(g')}\right) \stackrel{g \to 0}{\to} \mu \exp\left(-\frac{1}{2\beta_0 g^2}\right)$$

ullet infrared singularities \iff continuum approach

R. Alkofer (Theoretical Physics, U. Graz)

э

3 + 4 = +

CONFINEMENT

implies

• a non-perturbative RG invariant confinement scale

$$\Lambda = \mu \exp\left(-\int^g \frac{dg'}{\beta(g')}\right) \stackrel{g \to 0}{\to} \mu \exp\left(-\frac{1}{2\beta_0 g^2}\right)$$

 \bullet infrared singularities \iff continuum approach

ヨト・モート

Gauge theory in covariant gauges: Unphysical degrees of freedom!

QED: Physical states obey Lorentz condition.

 $\partial_{\mu} A^{\mu} |\Psi\rangle = 0$ (Gupta – Bleuler).

 \Rightarrow Two physical massless photons.

Time-like photon (i.e. negative norm state!) cancels longitudinal photon in physical states!

Covariant Gauge Theory and BRST Quartets

Faddeev-Popov Quantization & BRST in QCD:

$$= \bigwedge^{\circ \circ} = \bigwedge^{\circ \circ} = \bigwedge^{\circ \circ}$$

Selfinteraction of gluons \Rightarrow cancelation between four fields: forward & backward pol. gluons, ghost & antighosts, the elementary BRST quartet!

Global ghost field as 'gauge parameter':

BRST symmetry of the gauge-fixed action!

$$\delta_B A^a_\mu = D^{ab}_\mu c^b \lambda , \qquad \delta_B q = -igt^a c^a q \lambda ,$$

 $\delta_B c^a = -\frac{g}{2} f^{abc} c^b c^c \lambda , \qquad \delta_B \bar{c}^a = \frac{1}{\xi} \partial_\mu A^a_\mu \lambda ,$

Becchi-Rouet-Stora & Tyutin (BRST), 1975

A B F A B F

Covariant Gauge Theory and BRST Quartets

BRST symmetry of the gauge-fixed generating functional:

- Via Noether theorem: BRST charge operator Q_B
- generates ghost # graded algebra $\delta_B \Phi = \{iQ_B, \Phi\}$
- $\mathcal{L}_{GF} = \delta_B \left(\bar{c} \left(\partial_\mu A^\mu + \frac{\alpha}{2} B \right) \right)$ is BRST exact.

BRST algebra: $Q_B^2 = 0$, $[iQ_c, Q_B] = Q_B$,

BRST cohomology:

Positive definite subspace $V_{pos} = \text{Ker}(Q_B)$ contains $\text{Im}Q_B$.

Hilbert space: cohomology $\mathcal{H} = \frac{\text{Ker}Q_B}{\text{Im}Q_B} \simeq \mathcal{V}_s$ space of BRST singlets

forw. & backw. gluons, ghosts & antighosts : elementary BRST quartet (c.f. Gupta–Bleuler mechanism in QED)

Sac

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Covariant Gauge Theory and BRST Quartets

BRST symmetry of the gauge-fixed generating functional:

- Via Noether theorem: BRST charge operator Q_B
- generates ghost # graded algebra $\delta_B \Phi = \{iQ_B, \Phi\}$
- $\mathcal{L}_{GF} = \delta_B \left(\bar{c} \left(\partial_\mu A^\mu + \frac{\alpha}{2} B \right) \right)$ is BRST exact.

BRST algebra: $Q_B^2 = 0$, $[iQ_c, Q_B] = Q_B$,

BRST cohomology:

Positive definite subspace $V_{pos} = \text{Ker}(Q_B)$ contains $\text{Im}Q_B$.

Hilbert space: cohomology $\mathcal{H} = \frac{\text{Ker}Q_B}{\text{Im}Q_B} \simeq \mathcal{V}_s$ space of BRST singlets

forw. & backw. gluons, ghosts & antighosts : elementary BRST quartet (c.f. Gupta–Bleuler mechanism in QED)

R. Alkofer (Theoretical Physics, U. Graz)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

⇒ Hypothesis: Physical states are BRST singlets! (BRST cohomology: Hilbert space $\mathcal{H} = \frac{\text{Ker } Q_{BRST}}{\text{Im } Q_{PRST}}$.)

Time–like and longitudinal gluons (in elementary BRST quartet) removed from asymptotic states as in QED, but:

Transverse gluons and quarks also members of BRST quartets, *i.e.* kinematically confined, if ghost propagator is highly infrared singular! (⇒ Kugo–Ojima confinement criterion)

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Kugo–Ojima confinement criterion

Realization of KO scenario depends on global gauge structure: Globally conserved current $(\partial^{\mu}J^{a}_{\mu} = 0)$

$$J^a_\mu = \partial^
u F^a_{\mu
u} + \{Q_B, D^{ab}_\mu ar c^b\}$$

 $Q^a = G^a + N^a.$

with charge

QED: MASSLESS PHOTON states in both terms. Two different combinations yield: unbroken global charge $\tilde{Q}^a = G^a + \xi N^a$. spont. broken displacements (photons as Goldstone bosons).

Kugo–Ojima confinement criterion

QCD: Well-defined (in \mathcal{V}) unbroken global charge

$$Q^a = N^a = \{Q_B, \int d^3x \, D_0^{ab} \bar{c}^b\}$$

With $D^{ab}_{\mu}\bar{c}^{b}(x) \stackrel{x^{0} \to \pm \infty}{\longrightarrow} (\delta^{ab} + u^{ab})\partial_{\mu}\bar{\gamma}^{b} + \dots$

 $\Rightarrow \text{Kugo-Ojima Confinement Criterion:} \quad u^{ab}(0) = -\delta^{ab}$ where $\int dx e^{ip(x-y)} \langle 0|T D_{\mu}c^{a}(x)g(A_{\nu} \times \bar{c})^{b}(y)|0\rangle =: (g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^{2}})u^{ab}(p^{2}),$

Sufficient condition in Landau gauge:

Ghost propagator more sing. than simple pole!

If fulfilled: Physical States \equiv BRST singlets \equiv color singlets!

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Kugo–Ojima confinement criterion

Non-perturbative BRST quartets of transverse gluons, resp., quarks:

R. Alkofer (Theoretical Physics, U. Graz)

QCD correlation functions

Jena, Dec. 1, 2012

10/36

Gribov horizon & Zwanziger condition

Gauge fixing in YM theories never completely unique:

A topologically non-trivial as complete config. space also is! Landau gauge: $\Gamma = \{A : \partial \cdot A = 0\}$

Minimal Landau gauge: $\Omega = \{A : ||A||^2 \text{ minimal}\}$ First Gribov region: $\Omega = \{A : \partial \cdot A = 0, \partial \cdot D(A) \ge 0\}$

Fundam. Modular Region: $\Lambda = \{A : global extrema\}$

QCD correlation functions

Landau gauge:

$$\Gamma = \{A : \partial \cdot A = 0\}$$

Minimal Landau gauge: $\Omega = \{A : ||A||^2 \text{ minimal}\}\$ First Gribov region: $\Omega = \{A : \partial \cdot A = 0, \partial \cdot D(A) \ge 0\}$

Fundam. Modular Region: $\Lambda = \{A : global extrema\}$ NO GRIBOV COPIES

Relevant configuration space: $\Lambda/SU(N_c)$

Gribov: Cut off integral at boundary $\partial \Omega$ Zwanziger: Ambiguities resolved due to additional IR boundary condition on ghost prop. $\lim_{k^2 \to 0} (k^2 D_{\text{Ghost}}(k^2))^{-1} = 0.$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Landau gauge:

$$\Gamma = \{A : \partial \cdot A = 0\}$$

Minimal Landau gauge: $\Omega = \{A : ||A||^2 \text{ minimal}\}\$ First Gribov region: $\Omega = \{A : \partial \cdot A = 0, \partial \cdot D(A) \ge 0\}\$

Fundam. Modular Region: $\Lambda = \{A : global extrema\}$ NO GRIBOV COPIES

Relevant configuration space: $\Lambda/SU(N_c)$ Gribov: Cut off integral at boundary $\partial\Omega$ Zwanziger: Ambiguities resolved due to additional IR boundary condition on ghost prop. $\lim_{k^2 \to 0} (k^2 D_{\text{Ghost}}(k^2))^{-1} = 0.$

R. Alkofer (Theoretical Physics, U. Graz)

3

∃ ► < ∃ ►</p>

Kugo-Ojima vs. Gribov-Zwanziger

- In Landau gauge: Kugo-Ojima and Gribov-Zwanziger lead to practically same infrared constraints.
- Results in positivity violation for transverse gluons: non-pert. realization of Oehme–Zimmermann superconvergence relation (antiscreening contradicts positivity of gluon spectral density).
 R. Oehme and W. Zimmermann, Phys. Rev. **D21** (1980) 471.
- Kugo-Ojima requires Lorentz-covariant gauge, but fails *e.g.* also in the Lorentz-cov. Maximally Abelian gauge.
- Gribov-Zwanziger applies to Landau and Coulomb gauge (where Λ is compact and convex), but *e.g.* not to Maximally Abelian gauge (where Gribov region is unbounded).
- Recently: generalized ("refined") Gribov-Zwanziger scheme which results in infrared finite Landau gauge Green functions, D. Dudal, S. Sorella, N. Vandersickel, *et al.*

UNI GRAZ

12/36

R. Alkofer (Theoretical Physics, U. Graz)

QCD correlation functions

Jena, Dec. 1, 2012

 Starting point in gauges with transverse gluon propagator: Ghost-Gluon-Vertex fulfills Dyson-Schwinger equation

- Transversality of gluon $I_{\mu}D_{\mu\nu}(l-q) = q_{\mu}D_{\mu\nu}(l-q) \Rightarrow$ Bare Vertex for $q_{\mu} \rightarrow 0$
- No anomalous dimensions in the IR

J.C. Taylor, Nucl. Phys. B 33 (1971) 436;C. Lerche, L. v. Smekal, PRD 65 (2002) 125006.

Recently: Solution of DSEs for YM propagators *and* ghost-gluon vertex!

Poster of M. Q. Huber; M. Q. Huber, L. v. Smekal, arXiv:1211.6092.

R. Alkofer (Theoretical Physics, U. Graz)

QCD correlation functions

Quantitatively?

Sunset diagram:

- Overlapping divergence!
- non-perturbative renormalization?
 RA, M.Q.Huber, V.Mader, A.Windisch, PoS QCD-TNT-II (2011) 003 [1112.6173];
 V. Mader, A. Windisch and RA, in preparation.
- MOM (verified by BPHZ)

프 > - 프 >

R. Alkofer (Theoretical Physics, U. Graz)

R. Alkofer (Theoretical Physics, U. Graz)

• Include squint diagram (in progress):

- also quantitatively unimportant?
- qualitatively: cancelation of spurious divergencies !?!
- Mismatch to lattice data at intermediate p^2
 - resolved in ERG

C.S. Fischer, A. Maas, J.M. Pawlowski, Ann. Phys. 324 (2009) 2408.

• in DSEs:

zero crossing of 3-gluon vertex function

Poster of M. Q. Huber; M. Q. Huber, L. v. Smekal, arXiv:1211.6092.

DSEs for Landau gauge QCD propagators:

R. Alkofer (Theoretical Physics, U. Graz)

QCD correlation functions

Sac

DSEs for quark propagator and quark-gluon vertex:

cf. poster of M. Hopfer

Sac

Quark mass function with models for QGV:

R. Alkofer (Theoretical Physics, U. Graz)

QCD correlation functions

Sac

Quark mass function with models for QGV: m@2GeV = 100 MeV

R. Alkofer (Theoretical Physics, U. Graz)

QCD correlation functions

DQA

Solving for the quark-gluon vertex: Preliminary results for a simplified system

 self-consistent solution of the quark-gluon vertex DSE in a truncation including all 12 tensor structures

cf. poster of M. Hopfer

- scaling-type gluon propagator
- model for three-gluon vertex (cf. MQ Huber)

R. Alkofer (Theoretical Physics, U. Graz)

Quark mass function with calculated QGV:

DQA

Leading tensor structure, calculated QGV, symm. momenta $x = p_1^2 = p_2^2 = p_3^2$: Significant IR enhancement! $\lambda_1(x)$

Subleading $D\chi SB$ tensor structure, calculated QGV:

Assuming an IR divergent 4-point function

M. Mitter, RA, in preparation

How is Confinement described by Green's functions?

Assume quark 4-point function to be maximally IR singular, *i.e.*, ~ 1/k⁴:

Consequences an IR divergent 4-point function

- For simplicity: Analysis first for fundamentally charged scalar!
- Consistency requirements:
 - ⓒ Boundedness of higher *n*-point functions to $1/k^4 \implies$ matter-gluon vertex less singular ⇒ **colour structure**

- One-gluon exchange fails to reproduce this colour structure!
- Output All 4-point functions

(4-gluon, ghost-gluon, matter-gluon, matter-ghost) inherit the $1/k^4$ singularity in specific colour channels.

- © Higher *n*-point functions contain contributions $\propto 1/k^4$ with *k* being the momentum transfer between two coloured clusters.
- © Propagators and 3-point functions protected by cancellations.

Decoupling theorem circumvented by IR singularities: One heavy fundamental charge induce changes in the IR behaviour of YM Green's functions!?!

UNI GRAZ

29/36

R. Alkofer (Theoretical Physics, U. Graz)

QCD correlation functions

Jena, Dec. 1, 2012

- Assumption of confining IR singularity in matter-matter scattering kernel leads to several wanted features.
- Especially Casimir scaling!
- No decoupling of infinitely heavy charges?
- Further to be clarified:
 - Absence of van-der-Waals forces?
 - N-ality?
 - Relation to dynamical chiral symmetry breaking / restoration?
 - ...

프 > - 프 >

M. Mitter, M. Hopfer, BJ Schaefer, RA, in preparation

Investigate QCD correlation functions at $T \neq 0$: Exploit dependence on boundary conditions!

Propagator of fund. scalar:

- gluon propagator from lattice data C.S. Fischer, A. Maas, J.A. Mueller, Eur. Phys. J. C 68 (2010) 165 [1003.1960].
- vacuum vertex model

R. Alkofer (Theoretical Physics, U. Graz)

M. Mitter, M. Hopfer, BJ Schaefer, RA, in preparation

Investigate QCD correlation functions at $T \neq 0$: Exploit dependence on boundary conditions!

Propagator of fund. scalar:

- gluon propagator from lattice data
 C.S. Fischer, A. Maas, J.A. Mueller, Eur. Phys. J. C 68 (2010) 165 [1003.1960].
- vacuum vertex model

Periodic boundary conditions:

M. Mitter, M. Hopfer, BJ Schaefer, RA, in preparation

Investigate QCD correlation functions at $T \neq 0$: Exploit dependence on boundary conditions!

Propagator of fund. scalar:

- gluon propagator from lattice data
 - C.S. Fischer, A. Maas, J.A. Mueller, Eur. Phys. J. C 68 (2010) 165 [1003.1960].
- vacuum vertex model

Anti-periodic boundary conditions:

R. Alkofer (Theoretical Physics, U. Graz)

Dual order parameter for scalar QCD:

$$\begin{split} \Sigma_{\phi} &= \mathcal{T} \sum_{\omega_n(\phi)} D_{S,\phi}^2(\vec{0},\omega_n(\phi)) \xrightarrow{z} \mathcal{T} \sum_{\omega_n(\phi)} D_{S,\phi+\arg(z)}^2(\vec{0},\omega_n(\phi)) \\ &= \mathcal{T} \sum_{\omega_n(\phi+\arg(z))} D_{S,\phi+\arg(z)}^2(\vec{0},\omega_n(\phi+\arg(z))) = \Sigma_{\phi+\arg(z)} \\ \Sigma_{\phi+2\pi} &= \Sigma_{\phi} \end{split}$$

R. Alkofer (Theoretical Physics, U. Graz)

Center transition in scalar QCD:

$$\Sigma_S = \int\limits_{0}^{2\pi} rac{d\phi}{2\pi} e^{-i\phi} \Sigma_{\phi} \;, \qquad \Sigma_{\phi} = \mathcal{T} \sum_{\omega_n(\phi)} D^2_{S,\phi}(ec{0},\omega_n(\phi))$$

Vertex model / mass dep. of center transition in scalar QCD:

$$A(x, y, z) = \tilde{Z}_{3} \frac{D_{S}^{-1}(x) - D_{S}^{-1}(y)}{x - y} d_{1} \left\{ \left(\frac{\Lambda^{2}}{\Lambda^{2} + k^{2}} \right) + \frac{k^{2}}{\Lambda^{2} + k^{2}} \left(\frac{\beta_{0} \alpha(\mu) \ln \left[k^{2} / \Lambda^{2} + 1 \right]}{4\pi} \right)^{2\delta} \right\}$$

Alternative order paramater in QCD (with guarks):

$$\Sigma_Q = \int\limits_0^{2\pi} rac{d\phi}{2\pi} e^{-i\phi} \Sigma_{Q,\phi} \;, \qquad \Sigma_{Q,\phi} = \mathcal{T} \sum_{\omega_n(\phi)} rac{1}{4i} \mathrm{tr} \left[S_{Q,\phi}(ec{0},\omega_n(\phi))
ight]^2$$

۲ no regularization necessary for bare quark mass $m_0 \neq 0$

۲ different definitions of crossover in unquenched QCD possible

R. Alkofer (Theoretical Physics, U. Graz)

Conclusions and Outlook

Landau gauge QCD Green functions:

- © Progress in the understanding of IR behaviour.
- © Two-loop terms in gluon propagator DSE quant. unimportant.
- Coupled system of quark propagator and quark-gluon vertex DSEs under investigation.
- © Chiral symmetry dynamically broken! In 2- and **3-**point function!
- Quark/matter confinement: Analysis of IR divergencies!
 Color structure, Casimir scaling, no decoupling of heavy d.o.f., ...
- Center symmetry phase transition: sensitivity to quark-gluon vertex, dual order parameter, ...
- ⁽²⁾ Quark/matter-gluon vertex (T = 0):
 - quark/matter confinement, $D\chi$ SB, $U_A(1)$
 - phase transition at $T \neq 0$
 - finite density, color-superconducting phase(s

36/36

3

・ロト ・四ト ・ヨト・

Conclusions and Outlook

Landau gauge QCD Green functions:

- © Progress in the understanding of IR behaviour.
- © Two-loop terms in gluon propagator DSE quant. unimportant.
- Coupled system of quark propagator and quark-gluon vertex DSEs under investigation.
- © Chiral symmetry dynamically broken! In 2- and **3-**point function!
- Quark/matter confinement: Analysis of IR divergencies!
 Color structure, Casimir scaling, no decoupling of heavy d.o.f., ...
- Center symmetry phase transition: sensitivity to quark-gluon vertex, dual order parameter, ...
- ⁽²⁾ Quark/matter-gluon vertex (T = 0):
 - quark/matter confinement, $D\chi$ SB, $U_A(1)$
 - phase transition at $T \neq 0$
 - finite density, color-superconducting phase(s

36/36

3

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Conclusions and Outlook

Landau gauge QCD Green functions:

- © Progress in the understanding of IR behaviour.
- © Two-loop terms in gluon propagator DSE quant. unimportant.
- Coupled system of quark propagator and quark-gluon vertex DSEs under investigation.
- © Chiral symmetry dynamically broken! In 2- and **3-**point function!
- Quark/matter confinement: Analysis of IR divergencies!
 Color structure, Casimir scaling, no decoupling of heavy d.o.f., ...
- Center symmetry phase transition: sensitivity to quark-gluon vertex, dual order parameter, ...
- ⁽²⁾ Quark/matter-gluon vertex (T = 0):
 - quark/matter confinement, $D\chi$ SB, $U_A(1)$
 - phase transition at $T \neq 0$
 - finite density, color-superconducting phase(s

36/36

3

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

- © Progress in the understanding of IR behaviour.
- © Two-loop terms in gluon propagator DSE quant. unimportant.
- Coupled system of quark propagator and quark-gluon vertex DSEs under investigation.
- © Chiral symmetry dynamically broken! In 2- and **3-**point function!
- Quark/matter confinement: Analysis of IR divergencies!
 Color structure, Casimir scaling, no decoupling of heavy d.o.f., ...
- Center symmetry phase transition: sensitivity to quark-gluon vertex, dual order parameter, ...
- ⁽²⁾ Quark/matter-gluon vertex (T = 0):
 - quark/matter confinement, $D\chi$ SB, $U_A(1)$
 - phase transition at $T \neq 0$
 - finite density, color-superconducting phase(s

36/36

3

・ロト ・四ト ・ヨト・

- © Progress in the understanding of IR behaviour.
- © Two-loop terms in gluon propagator DSE quant. unimportant.
- Coupled system of quark propagator and quark-gluon vertex DSEs under investigation.
- © Chiral symmetry dynamically broken! In 2- and **3-**point function!
- Quark/matter confinement: Analysis of IR divergencies!
 Color structure, Casimir scaling, no decoupling of heavy d.o.f., ...
- Center symmetry phase transition: sensitivity to quark-gluon vertex, dual order parameter, ...
- ^(C) Quark/matter-gluon vertex (T = 0):
 - quark/matter confinement, $D\chi$ SB, $U_A(1)$
 - phase transition at $T \neq 0$
 - finite density, color-superconducting phase(s

36/36

3

- © Progress in the understanding of IR behaviour.
- © Two-loop terms in gluon propagator DSE quant. unimportant.
- Coupled system of quark propagator and quark-gluon vertex DSEs under investigation.
- © Chiral symmetry dynamically broken! In 2- and **3-**point function!
- <u>Quark/matter confinement:</u> Analysis of IR divergencies!
 Color structure, Casimir scaling, no decoupling of heavy d.o.f., ...
- Center symmetry phase transition: sensitivity to quark-gluon vertex, dual order parameter, ...
- ⁽²⁾ Quark/matter-gluon vertex (T = 0):
 - quark/matter confinement, $D\chi$ SB, $U_A(1)$
 - phase transition at $T \neq 0$
 - finite density, color-superconducting phase(s

36/36

э

- © Progress in the understanding of IR behaviour.
- © Two-loop terms in gluon propagator DSE quant. unimportant.
- Coupled system of quark propagator and quark-gluon vertex DSEs under investigation.
- © Chiral symmetry dynamically broken! In 2- and **3-**point function!
- Quark/matter confinement: Analysis of IR divergencies!
 Color structure, Casimir scaling, no decoupling of heavy d.o.f., ...
- Center symmetry phase transition: sensitivity to quark-gluon vertex, dual order parameter, ...
- ⁽²⁾ Quark/matter-gluon vertex (T = 0):
 - quark/matter confinement, $D\chi SB$, $U_A(1)$
 - phase transition at $T \neq 0$
 - finite density, color-superconducting phase(s

3

36/36

- © Progress in the understanding of IR behaviour.
- © Two-loop terms in gluon propagator DSE quant. unimportant.
- Coupled system of quark propagator and quark-gluon vertex DSEs under investigation.
- © Chiral symmetry dynamically broken! In 2- and **3-**point function!
- Quark/matter confinement: Analysis of IR divergencies!
 Color structure, Casimir scaling, no decoupling of heavy d.o.f., ...
- Center symmetry phase transition: sensitivity to quark-gluon vertex, dual order parameter, ...
- © Quark/matter-gluon vertex (T = 0):
 - quark/matter confinement, $D\chi SB$, $U_A(1)$
 - phase transition at $T \neq 0$
 - finite density, color-superconducting phase(s)

3

36/36

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A