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FEuclidean path integral, complex action problem and dual representation

e Vacuum expectation values with Feynman's path integral:

©) = 5 [P e op

e In a Monte Carlo simulation observables are computed as averages over
field configurations ¢ distributed according to

Ply) = e

e For finite chemical potential x the action S[¢] is complex and the Boltz-
mann factor cannot be used as probability weight in a stochastic process.

Rewriting a system in terms of new variables where only real and positive
terms appear in the partition sum could overcome the complex action problem.



I will discuss two examples
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e Relativistic Bose gas = charged ¢* field with chemical potential.

e Scalar electrodynamics with 2 flavors and chemical potential.
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Example for a dual representation: Charged ¢* field

e Continuum action:
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e Action on the lattice:
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Dual representation — I

e Expand the individual nearest neighbor terms:
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e |dea: Use the j,, and jx’l, as the new degrees of freedom.

e Remaining ¢-integrals at a site x :
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F.(j,7), F.(j,7) € Ny are linear combinations of the j and j variables
attached to the site . They correspond to the total j, j-flux at x.



Dual representation — I

e Using ¢, = re' the integrals at a site = read:
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e At every site there is a weight factor Z(F, + F,) and a constraint.
e The constraint §(F, — I, forces the total flux F, — F, at x to vanish.

e The structure can be simplified by using linear combinations k,, € Z
and [, € Ny of the original variables j,, and j,,,.

e Only the k, , are subject to constraints.



Dual representation — III (final form)

e The original partition function is mapped exactly to a sum over
configurations of the dual variables k£ and (:

Z =Y Wkick).
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e Weight factor (real and positive):

1
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e Constraint (only for k-variables):
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Admissible configurations are loops:

e Constraint from the integration over the U(1) phases:

V. fm = Z[kx,u_km—ﬁ,y] =0
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e Admissible configurations of dynamical variables are loops of flux:

< < < < <
N o~ o~ o~ o~
Y N Y N
SN SN N N N N &
s s ”~ ~ ~ ~ NN
Ay Y A Y A
<< << —> < >
Y
A Y Y A v 4
<< >> >

e Chemical potential gives different weight to forward and backward

temporal flux.



Worm algorithm

e A worm locally violates the constraint and propagates the defect until
the worm closes and the constraint is healed.
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e Every step is accepted with the Metropolis probability computed from

W = H |kxv|‘|’l — H6 ukMI(ZHkx,A+|lcx_g,y\+2(zx,y+zx_ﬁv,,)])




Bulk observables

e Bulk observables are obtained as derivatives of the free energy with
respect to the parameters.

e They have the form of averages and fluctuations of the dual variables.

e Observables related to the particle number:
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e Observables related to field expectation values:
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e Dual forms:
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Checks

Simulation with dual variables can be checked with high precision:

0.02 - _ 5
- 1 1<l0l’>

1.2

0.01}
I 1.0

0.00 | 0.8




Thermodynamics at

zero temperature
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Second order transition at the end of the Silver Blaze region.

Cross checked with the complex Langevin study by G. Aarts.



Non-zero temperature

v T/u, = 0.0087
> T/, = 0.0872
o T/u, = 0.1745

T/p, = 0.2908
s T/u, = 0.4362

Observables depend on u throughout.

Still pronounced transition behavior.



Phase diagram

Phase diagram in the yu — 71" plane:
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Silver Blaze transition persists for finite temperature.



Mass of lowest excitation

Important test:  pu. = my 777

Compare i, to effective masses from a conventional simulation:
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Spectroscopy at finite density = Dual spectroscopy

e /ero momentum propagator

C(t) = Z (60 05,) o e
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e Dual representation of the partition sum Z, . with two insertions:
D | T [T6(3 (o — ] = s+ 5.)
(k1) 2w T,V :c,
< [Le e z( Zu B | + Ve | 4200 + Lo )] + 00y + )

e Admissible configurations in Z, . :

Closed loops of flux plus an open string of flux connecting v and z.



Worm strategy for correlators

e Since Z, . consists of closed loop plus a single open string, every step of
the worm corresponds to an admissible configuration for some Z,, .

e In our propagators we project to zero momentum, i.e., the spatial lattice
indices are summed.

e To compute C(t) one simply evaluates the temporal distance ¢ of head
and tail of the worm at every step and C(t) is obtained as a histogram.



What do we expect? Analysis of the free case in the continuum.
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e Propagator in the continuum: Rep,
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e Asymmetry between forward and backward propagation:
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Test of free propagators against (lattice) Fourier transformation
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Excellent agreement indicates that the finite density propagators computed
from the dual representation are under control. (16% x 100, m = 1, A = 0)



Propagators at non zero coupling
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Asymmetric propagation for u < p. ~ 0.17. Condensation (= constant
propagator) for u above p.. (16% x 100, K = 7.44, A = 1)



Scalar electrodynamics

.. adding U(1) gauge fields to the charged scalar ....



Surfaces for the gauge fields:

e Expansion of an individual plaquette term from the gauge action:
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e For gauge fields the expansion indices p, ,, live on the plaquettes.
e The matter loops are dressed with gauge links.

e The new constraints at the links of the lattice force the combined flux
from the matter variables £, , and the plaquette variable p, ,, to vanish.

e Admissible configurations of the plaquette variables p, ,, have the inter-
pretation of 2-D surfaces embedded in 4-D.

e The surfaces are either closed or bounded by matter flux.



Dual form of the partition function:

The original partition sum is mapped exactly to a sum over loop and surface
configurationS'

= 3 W) War (k1) Culp K) Cs(k)
{p.kel}

We(p) : plaquette-based weight factor for gauge variables p
Wi (k, 1) @ link-based weight factor for matter variables k,
Cr(p, k) : link-based constraint = gauge surfaces

Cs(k) : site-based constraint = matter loops

CL[ ;k] = H H Y ( Z Pzvp px—ﬁ,yp] - Z [pa:,pu - px—ﬁ,pu] + km,u)

z v=1 pv<p pv>p

CS[k] = H 0 <Z[kxﬁ,u - kx,u])



Generalized worm algorithm for gauge Higgs systems:

Worm starts by inserting a unit of matter flux. Adding segments transports
both the site and link defects across the lattice ....




Generalized worm algorithm for gauge Higgs systems

|
-+
+

'\l
|
&
I
+ |\
M|
I
K

X
)

\

+
|
&
[
\
K

)
A
X

. until the worm terminates with the insertion of another line of flux.



Example of a Silver Blaze transition
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Using two flavors of opposite charge one can couple a chemical potential.

= Silver Blaze behavior



Summary:

e Considerable progress was made towards rewriting several systems in rep-
resentations where the partition sum has only real and positive terms.

e Dual degrees of freedom are surfaces for gauge fields and loops for matter.
e Constraints for dual variables can be handled with worm-type algorithms.
e Interesting new algorithmic options when surfaces have boundaries.

e Spectroscopy is under control.

e Examples:

— Relativistic Bose gas / charged scalar field.

— Scalar electrodynamics.

e May serve as solved test cases for other approaches.



