Phase transitions in strong QED₃

Christian S. Fischer

Justus Liebig Universität Gießen

30. November 2012

Phase transitions in strong QED₃

I.Introduction to QED₃

$2.QED_3$ and high T_c superconductors

3.QED₃ and graphene

Christian Fischer (University of Gießen)

Phase transitions in strong QED₃

QCD phase diagram

Interesting open questions:

- Details of phase transitions
- Existence and location of critical point
- Properties of quarks and gluons in different phases
- Consequences for astrophysics

QCD phase diagram

Interesting open questions:

- Details of phase transitions
- Existence and location of critical point
- Properties of quarks and gluons in different phases
- Consequences for astrophysics

Strong QFTs: QCD vs QED₃

non-Abelian

• dynamical generation of scale

asymptotically free

Confinement and DxSB

QED₃

Abelian

 ${}^{\bullet}$ scale set by coupling $\alpha = N_f \, e^2/8$

asymptotically free

Confinement and DχSB

Christian Fischer (University of Gießen)

Properties of QCD: Dynamical mass generation

Dynamical quark masses via weak and strong force

Yoichiro Nambu, Nobel prize 2008

		u	d	S	С	b	t
Mweak	$[MeV/c^2]$	3	5	80	1200	4500	176000
Mstrong	$[MeV/c^2]$	350	350	350	350	350	350
M _{total}	$[MeV/c^2]$	350	350	450	1500	4800	176000

 $S^{-1}(p) = [i\not p + M(p^2)]/Z_f(p^2)$

Christian Fischer (University of Gießen)

Properties of QCD: Dynamical mass generation

Dynamical quark masses via weak and strong force

Yoichiro Nambu, Nobel prize 2008

Input parameters in N_f=2+1 QCD

		u	d	S	С	b	t
Mweak	$[MeV/c^2]$	3	5	80	1200	4500	176000
Mstrong	$[MeV/c^2]$	350	350	350	350	350	350
M _{total}	$[MeV/c^2]$	350	350	450	1500	4800	176000

 $S^{-1}(p) = [i\not p + M(p^2)]/Z_f(p^2)$

Properties of QED₃: Chiral Symmetry

$$S = \int d^3x \left(\sum_{N_f} \bar{\Psi} i \not\!\!\!D \Psi - \frac{1}{4} F_{\mu\nu} F_{\mu\nu} \right)$$

Four component spinors

•Clifford algebra $\{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu}, \qquad \mu, \nu = 0..2$ •Generators for chiral symmetry:

$$\gamma_3, \gamma_5, [\gamma_3, \gamma_5] \to U(2N_f)$$

Chiral symmetry breaking

 $U(2N_f) \to U(1) \times U(1) \times SU(N_f) \times SU(N_f)$

Properties of QCD: Confinement

Quark confinement

Millenium-Prize (I Mio Dollar) Clay Mathematics Institute

- baryons, mesons (and glueballs ?)
 linear rising potential
 - related to center symmetry

Jeff Greensite, Lecture Notes in Physics 821 (2011) 1.

Phase transitions in strong QED₃

Properties of QED₃: 'Confinement'

Logarithmically rising potential:

$$V(r) \sim \int d^2k \, \frac{1}{k^2} \, e^{ikr} \sim \ln(r)$$

- massless one boson exchange
- •'geometrical confinement'
- dressed Polyakov loop does NOT show confinement (similar to NJL model...)

I.Introduction to QED₃

$2.QED_3$ and high T_c superconductors

3.QED₃ and graphene

Phase transitions in strong QED₃

High-temperature superconductors

- superconducting CuO₂-planes
- doping is important
- normal state is insulator
- order parameter has d-wave symmetry

Fermi surface

Schematic Fermi surface:

Ding et al. PRB 54 R9678 (1996)

Gap has nodes on Fermi surface: d-wave symmetry Measured via ARPES experiments

Damascelli, Hussain, Shen, Rev. Mod. Phys. 75 (2003)

Christian Fischer (University of Gießen)

Phase transitions in strong QED₃

Disperson relation

Effective BCS-like Hamiltonian: 2d-Quasiparticles

- Linear expansion around nodes: $\epsilon_{\vec{k}} = v_f q_1 + \dots$ $\Delta_{\vec{k}} = v_\Delta q_2 + \dots$ Anisotropy!
- Two neutral spin 1/2 quasiparticles combined in four-spinors interacting with topological excitations of the gap function

Christian Fischer (University of Gießen)

Phase transitions in strong QED₃

Strong QED3: Eff. theory for superconductors

Three phases:

- $D\chi SB \leftrightarrow Anti-Ferromagn.$
- Symmetric ↔ pseudogap
- 'Higgs'-phase ↔ superconducting

イロト イロト イヨト

Open questions:

- critical number of fermion flavours $N_f^c \stackrel{>}{<} 2?$
- effects of anisotropies ?

Franz, Tesanovic and Vafek, PRB **66** (2002) 054535, PRB **65** (2002) 180511; Franz and Tesanovic, PRL **87**, (2001) 257003. Herbut, PRB **66**, 094504 (2002), PRL **88** (2002) 047006

Christian Fischer (University of Gießen)

Phase transitions in strong QED₃

13 / 32

Lattice QCD vs. DSE/FRG: Complementary!

- Lattice simulations
 - Ab initio
 - Gauge invariant
- Functional approaches: Dyson-Schwinger equations (DSE) Functional renormalisation group (FRG)
 - Analytic solutions at small momenta
 - CF, J. Pawlowski, PRD 80 (2009) 025023
 - Space-Time-Continuum
 - Chiral symmetry: light quarks and mesons
 - Multi-scale problems feasible: e.g. (g-2)_µ

T. Goecke, C.F., R. Williams, PLB 704 (2011); PRD 83 (2011)

Chemical potential: no sign problem

Friday, November 30, 2012

Phase transitions in strong QED₃

DSEs of QED₃ in Landau gauge

Transverse photon

Quark propagator

$$D_{\mu\nu}(p^2) = \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) \frac{1}{Z_3 + \Pi(p^2)}$$
$$S(p) = \frac{i\not p A(p^2) + B(p^2)}{p^2 A^2 + B^2}$$

Quark-photon vertex:

$$k_{\mu}\Gamma_{\mu}(p,q) = S^{-1}(p) - S^{-1}(q)$$

Ball, Chiu, PRD 22 (1980) 2542 Curtis, Pennington, PRD 42 (1990) 4165-4169

Phase transitions in strong QED₃

Analytic solutions: PT vs deep infrared

large momenta (PT):
$$\Pi(p^2) = \frac{\alpha}{p}$$
 $A(p^2) \to 1$ $B = 0$

small momenta:

Chirally broken phaseChirally symmetric phase $A(p^2) \sim const$ $A(p^2) \sim (p^2)^{\kappa}$ $\Pi(p^2) \sim const$ $\Pi(p^2) \sim (p^2)^{-1/2-\kappa}$ $B(p^2) \sim const$ $B(p^2) \sim 0$ C. F., Alkofer, Dahm and Maris PRD 70, 073007 (2004) $B(p^2) \sim 0$

• Symmetric phase: 'almost-conformal' infrared behaviour with running coupling: $\alpha(n^2) = \alpha/(n(1 + \Pi(n))) = (n^2)\kappa$

$$\alpha(p^2) = \alpha/(p(1 + \Pi(p)) \sim (p^2)'$$

$$\kappa = \frac{0.115}{N_f} + \frac{0.044}{N_f^2} + O(1/N_f^3)$$

Friday, November 30, 2012

Numerical solutions

Christian Fischer (University of Gießen)

Phase transitions in strong QED₃

Running coupling

g^2*Nf = const

•broken phase: IR scale set by generated fermion mass

Phase transition: Miransky scaling

C. F., Alkofer, Dahm and Maris PRD 70, 073007 (2004)

Finite volume: DSEs on a torus

- critical N_f much smaller on lattice why ?
- separation of scales: dynamical mass $<< \alpha$ volume effects ?
- Put DSEs on torus with (anti-)periodic boundary conditions
 Integrals become Matsubara sums

$$\int d^4 p \to \left(\frac{2\pi}{L}\right)^4 \sum_{j_1, j_2, j_3, j_4} = \left(\frac{2\pi}{L}\right)^4 \sum_{j, l} \sum_{j, l} d^4 p \to \left(\frac{2\pi}{L}\right)^4 \sum_{j, l} d^4 p \to \left$$

Formalism well known from QCD...

C.F., Alkofer and Reinhardt, PRD 65 (2002) 094008
C.F., Gruter and Alkofer, Annals Phys.321 (2006) 1918
C.F. and Pennington, PRD 73 (2006) 034029
C.F., Maas, Pawlowski and von Smekal, Annals Phys. 322 (2007) 2916
Luecker, C.F. and Williams, PRD 81 (2010) 094005

Volume effects: results

Goecke, C.F. and Williams, PRB 79, 064513 (2009) 'Ref[20]': Gusynin and Reenders, PRD 68 (2003) 025017 Hands, Kogut, Scorzato and Strouthos, PRB 70 (2004) 104501 Strouthos and Kogut, arXiv:0808.2714 [cond-mat.supr-con]

Christian Fischer (University of Gießen)

Phase transitions in strong QED₃

21 / 32

Anisotropy

 Recall: high temperature superconductors governed by (large) anisotropy

$$\epsilon_{\vec{k}} = v_f q_1 + \dots$$
$$\Delta_{\vec{k}} = v_\Delta q_2 + \dots$$

Define metric-like quantity...

$$(g^{\mu\nu}) = \begin{pmatrix} 1 & & \\ & (v_F)^2 & \\ & & (v_\Delta)^2 \end{pmatrix}$$

In and modify Lagrangian accordingly

$$S = \int d^3x \left(\sum_{N_f} \bar{\Psi} i \gamma_\mu \sqrt{g_{\mu\nu}} (\partial_\nu + iA_\nu) \Psi - \frac{1}{4} F_{\mu\nu} F_{\mu\nu} \right)$$

Christian Fischer (University of Gießen)

Friday, November 30, 2012

Modified critical N_f

Finite Temperature: beyond Miransky scaling

Universal power law corrections to Miransky scaling:

$$T_{cr} \sim k_0 |N_{f,0}^c - N_f|^{-rac{1}{\Theta_0}} \exp\left(-rac{a}{\sqrt{|N_{f,0}^c - N_f|}}
ight)$$

Two generic cases for critical exponent:

Braun, CF, Gies, PRD 84, 034045 (2011) Braun, Gies, JHEP 1005 (2010) 060

Christian Fischer (University of Gießen)

Phase transitions in strong QED₃

Finite T and scaling in anisotropic QED₃

Scaling observed
Critical exponent is controlled by anisotropy
Physical case numerically not yet accessible

Bonnet and CF, PLB 718, (2012) 532

I.Introduction to QED₃

2.QED₃ and high T_c superconductors

3.QED₃ and graphene

Christian Fischer (University of Gießen)

Phase transitions in strong QED₃

Graphene

a single layer of carbon atoms

→ honeycomb lattice of carbon atoms in a two-dimensional plane

→ electronic band structure with two bands (yellow) that intersect at corners of a hexagonal Brillouin zone (red)

www.als.lbl.gov/als/science/sci_archive/154graphene.html

unusual nature of low-energy excitations

→ massless fermions with linear dispersion:

$$\varepsilon \sim v p$$
 , $v \sim c/300$

[Wallace, 1947; Semenoff, 1984]

Christian Fischer (University of Gießen)

Phase transitions in strong QED₃

Quantum critical point

graphene analogue of fine structure constant

 $\alpha_g \sim e^2/(4\pi\varepsilon_0\hbar v)$

→ coupling reduced on a substrate with large dielectric constant: weakly-coupled semimetallic phase

→ freely suspended in vacuum or air:

 $\alpha_g \gtrsim 1$ strong coupling!

if substrate is removed:

→ dynamical semimetal-insulator transition?

- → phase transition involving chiral symmetry breaking?
- → quantum critical point showing properties of a nearly perfect fluid?

Quantum critical point

graphene analogue of fine structure constant

 $\alpha_g \sim e^2/(4\pi\varepsilon_0\hbar v)$

→ coupling reduced on a substrate with large dielectric constant: weakly-coupled semimetallic phase

→ freely suspended in vacuum or air:

 $\alpha_g \gtrsim 1$ strong coupling!

• if substrate is removed:

→ dynamical semimetal-insulator transition?

- → phase transition involving chiral symmetry breaking?
- → quantum critical point showing properties of a nearly perfect fluid?

Gamayun et al, 2007, 2010; Drut, Lähde, 2009; Son, 2007

Christian Fischer (University of Gießen)

Phase transitions in strong QED₃

QED₃ as an effective theory for graphene

low-energy degrees of freedom

→ 2 atoms per unit cell × 2 zeros per zone × 2 spin components per electron

 \rightarrow N = 2 four-component massless Dirac fermions with action (ħ=1)

$$S = -\sum_{a=1}^{N} \int dt \, d^2x \left(\bar{\psi}_a \gamma^0 \partial_0 \psi_a + v \bar{\psi}_a \gamma^i \partial_i \psi_a + i A_0 \bar{\psi}_a \gamma^0 \psi_a \right) + \frac{1}{2g^2} \int dt \, d^3x \left(\partial_i A_0 \right)^2$$

velocity of photon practically infinite compared to fermion velocity (c/300)

→ instantaneous Coulomb interaction

Herbut, PRL 97 (2006) 146401

Christian Fischer (University of Gießen)

Phase transitions in strong QED₃

DSE for Fermions

$$S^{-1}(p_0, \vec{p}) = p_0 \gamma^0 - \vec{p} A(p_0, \vec{p}) - B(p_0, \vec{p})$$

• Vector dressing function A renormalizes fermi velocity $v_f(p) = v_f A(p)$

Solve DSEs with bare vertex and one-loop photon

$$D(q_0, \vec{q}) = \frac{2\pi}{|\vec{q}| + \Pi(q_0, \vec{q})} \qquad \Pi(q_0, \vec{q}) = \frac{\pi e^2 N_f}{4\varepsilon} \frac{\vec{q}^2}{\sqrt{\hbar^2 v_F^2 \vec{q}^2 - q_0^2}}$$

DSE for Fermions

$$S^{-1}(p_0, \vec{p}) = p_0 \gamma^0 - \vec{p} A(p_0, \vec{p}) - B(p_0, \vec{p})$$

• Vector dressing function A renormalizes fermi velocity $v_f(p) = v_f A(p)$ Gonzalez, Vozmediano et al, 1994

Solve DSEs with bare vertex and one-loop photon

$$D(q_0, \vec{q}) = \frac{2\pi}{|\vec{q}| + \Pi(q_0, \vec{q})} \qquad \Pi(q_0, \vec{q}) = \frac{\pi e^2 N_f}{4\varepsilon} \frac{\vec{q}^2}{\sqrt{\hbar^2 v_F^2 \vec{q}^2 - q_0^2}}$$

Results

Analytic result in symmeric phase:

$$v_F(p) = v_F \left[1 + f_1(\alpha) \ln \frac{\Lambda}{p} + f_2(\alpha) \right]$$

- Symmetric phase: infrared
 divergence → experiment ?!
- Critical coupling: α_c ~ 2.7
 → larger than value 2.19 for suspended graphene !

Results

- Symmetric phase: infrared divergence \rightarrow experiment ?!
- Critical coupling: $\alpha_c \sim 2.7$ \rightarrow larger than value 2.19 for suspended graphene !

Analytic result in symmeric phase:

$$v_F(p) = v_F \left[1 + f_1(\alpha) \ln \frac{\Lambda}{p} + f_2(\alpha) \right]$$

Elias, Gorbachev, Mayorov et al, Nature Physics, 2011

Popovici, CF, von Smekal, in preparation

Summary

QED₃

Analytic and numerical solutions from DSEs

- Transition at N_{fc} with Miransky scaling
- •Large volume effects: extremely difficult for lattice
- Anisotropies taken into account
- N_{fc} > 2: at zero temperature direct transition from dSC to AF

instantaneous QED₃

- Iarge effects due to running fermion velocity
- critical coupling too large: suspended graphene remains semi-metalic

Christian Fischer (University of Gießen)