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Monte Carlo methods for fermionic systems
have not advanced much over the past 25 yrs!

This talk is about a new Monte Carlo method!
The “fermion-bag” approach

While the new ideas are general,
the new method is currently

only applicable to Yukawa models
(and Four-Fermion models)
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If Det(M([ϕ])) < 0, the method usually fails!

Problems
Sign Problems :

Singularities : 

If M([ϕ]) contains small or zero eigenvalues,
algorithms like HMC develop singularities

Scaling :
M([ϕ]) is a V x V matrix 

calculating determinants is computationally intensive

exception (?) : Hybrid Monte Carlo (HMC)
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= Det
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W0[n]

�
≥ 0

fermion bag configuration

Fermion bags

Fermion Bags --> A collection of fermion d-o-f
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small fermion bags --> massive fermions

Fermion bags
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�
�
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�

�
�
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is given by
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�
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�

�
�

x
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�
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Thus, the partition function 
is given by

Z =
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�
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[n,k] configurations

Thursday, November 29, 2012



Thursday, November 29, 2012



Applications?

Thursday, November 29, 2012



Applications?
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Lattice Thirring Model

auxiliary
gauge field

auxiliary
gauge field

No sign problem in traditional MC method

But can be solved also in the fermion bag approach!

ST =
1
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x,α

ηx,α
�
ψx(1 + g eiθx,α)ψx+α − ψx+α(1 + g e−iθx,α)ψx

�

+ m
�

x

ψxψx

Symmetry : SU(2) x U(1)

Barbour, Debbio, Focht, Hands, Lucini, Strouthos,...
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Lattice Gross-Neveu Model

Sb[σx̃,πx̃] =
1

4g2

�

x̃

�
(σx̃)

2 + (πx̃)
2
�

SGN =
�

x,y

ψx

�
D0

xy + δxyφx

�
ψy + Sb[σx̃,πx̃]

φx =
1

8

�

x̃

(σx̃ + iεxπx̃)

Suffers from sign problem
in the traditional method

but not in the fermion bag approach!

Symmetry: SU(2) x U(1)

Christofi, Hands, Karkkainen, Kocic, Kogut, Strouthos,...
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S.C. A.Li PRL (2012)

Fermion Bag Approach

S(θ,ψ,ψ) =
�

xy

ψxD
0
xyψx −

�

�xy�

U�xy�ψxψx ψyψy

Thirring Gross-Neveu

UUc

massless fermions/
U(1) symmetric

massive fermions/
U(1) broken
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partition function

Z =
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[b]

Uk Det
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�

(V-k) x (V-k) matrix 

strong coupling
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partition function
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strong coupling
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chiral susceptibility
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ψxψx ψyψy

�

CF(t) =
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RF = CF(L/2− 1)/C(1)

fermion correlation ratio

chiral winding susceptibility
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χ =
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α

(q2
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Critical Finite Size Scaling

χ−1L2−η = f0 + f1(U−Uc)L
1/ν + f2(U−Uc)

2L2/ν + ...

Rf L2+ηψ = p0 + p1(U−Uc)L
1/ν + p2(U−Uc)

2L2/ν + ...

�q2
χ� = κ0 + κ1(U−Uc)L

1/ν + κ2(U−Uc)
2L2/ν + ...
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Critical Finite Size Scaling

χ−1L2−η = f0 + f1(U−Uc)L
1/ν + f2(U−Uc)

2L2/ν + ...

Rf L2+ηψ = p0 + p1(U−Uc)L
1/ν + p2(U−Uc)

2L2/ν + ...

�q2
χ� = κ0 + κ1(U−Uc)L

1/ν + κ2(U−Uc)
2L2/ν + ...

If we plot LHS w.r.t U
all quantities must be independent of L at U = Uc 
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Combined fit results
Uc = 0.2608(2)
ν = 0.85(1)
η = 0.65(1)
ηψ = 0.37(1)

Thirring model results
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Previous work on Lattice Thirring Model
SU(2) x U(1) symmetric model
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Previous work on Lattice Thirring Model

Work
Range 
of L

Range 
of m

Uc ν η ηΨ

Mean Field Theory
Lee & Shrock 
PRL (1987)

N/A 0 0.25 1.0 1.0 0.0

Hybrid Monte Carlo
Debbio & Hands, 

PLB (1997)
8-12 0.4-0.02 0.250(10) 0.80(15) 0.7(15) ??

Hybrid Monte Carlo
Barbour et. al., 

PRD (1998)
16-24 0.06-0.01 0.250(06) 0.80(20) 0.4(2) ??

Fermion Bag
S.C & A. Li (our work)

PRL, (2012)
12-40 0 0.2608(2) 0.85(1) 0.65(1) 0.37(1)

SU(2) x U(1) symmetric model
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Gross-Neveu
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Gross-Neveu model results
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Combined fit results
Uc = 0.0909(1)
ν = 0.88(1)
η = 0.63(1)
ηψ = 0.37(1)

Gross-Neveu model results
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Previous work on Lattice GN Model
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Previous work on Lattice GN Model
SU(Nf) x G symmetric model
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Previous work on Lattice GN Model

Work Nf G ν η

Christoffi & Strouthos
JHEP05 (2007)088 4

Z2 0.99(2) 0.83(4)
Christoffi & Strouthos
JHEP05 (2007)088 4 U(1) 1.03(4) 0.90(5)

Christoffi & Strouthos
JHEP05 (2007)088 4

SU(2) 1.16(5) 1.10(6)

Karkkainen et. al.,
NPB415 (1994) 781

2 Z2 1.00(4) 0.754(8)

Rossa, Vitale and Wetterich
PRL86 (2001) 958

2 Z2 1.0(5) 0.76(2)

Our Work 2 U(1) 0.88(1) 0.63(1)

SU(Nf) x G symmetric model
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Lattice Thirring versus GN models
with same symmetries

Do the phase transitions
belong to the same
universality class?

Traditional Belief : No!

GN models : 
Consistent with Large N

Thirring model : 
Not consistent with Large N

Our finding : Yes!

Clear deviations 
from Large N

We get the same
critical exponents
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Conclusions
• Fermion bag approach is a new approach to 

strongly correlated fermion systems.

• Solves “some” unsoved sign problems! 

• First calculations near quantum critical points 
with massless fermions completed. 

• Calculations with exactly massless fermions 
feasible in “some” models.

Future : Many new applications!

• Thirring and GN model with same 
symmetries belong to the same universality 
class.
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