

# Density of States Techniques for Finite Density Lattice QCD

UNIGRAZ

M. Mandl, C. Gattringer Karl-Franzens-Universität Graz We acknowledge support by the DFG RTG 2522.

### Motivation

- ullet On the lattice, finite density QCD suffers from the complex action problem: the Boltzmann factor  $e^{-S}$  becomes complex and cannot be used as a weight in Monte-Carlo simulations.
- The problem has no universal solution. To deal with finite density, we here investigate the density of states approach for QCD.

## Density of states (DoS) [1]

DoS approach for a theory with bosonic fields  $\Phi$ :

• Split action into real and imaginary parts:

$$S[\Phi] = S_R[\Phi] - iX[\Phi] .$$

• Introduce density of states:

$$\rho(x) = \int \mathcal{D}[\Phi] e^{-S_R[\Phi]} \delta(x - X[\Phi]) .$$

Obtain observables via:

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int dx \rho(x) e^{ix} \mathcal{O}(x) , \quad Z = \int dx \rho(x) e^{ix} .$$

- => need to determine the density with high numerical precision.
- Usually,  $\rho(x)$  falls off rapidly for large |x| and is even  $\implies$  consider  $\rho(x)$  on interval  $[0,x_{\max}]$ .

## Parametrization of the density

• Partition  $[0, x_{\text{max}}]$  into N subintervals  $I_n$  of length  $\Delta_n$ :

$$I_n = [x_n, x_{n+1}], \quad x_n = \sum_{i=0}^{n-1} \Delta_i.$$

• Use exponential of piecewise linear function L(x) as an ansatz for  $\rho(x)$ :

$$\rho(x) = e^{-L(x)},$$

$$L(x) = k_n x + d_n, \quad x \in I_n.$$

- Requiring continuity and normalizing  $\rho(0) = 1$  fixes all  $d_n$ .
  - $\implies$  task: find  $k_n$ . We employ the functional fit approach.

## The functional fit approach (FFA) [2]

• Introduce restricted expectation values with a control parameter  $\lambda \in \mathbb{R}$ :

$$\langle \langle X \rangle \rangle_n(\lambda) = \frac{1}{Z_n(\lambda)} \int \mathcal{D}[\Phi] e^{-S_R[\Phi] + \lambda X[\Phi]} X[\Phi] \Theta_n(X[\Phi])$$
$$Z_n(\lambda) = \int \mathcal{D}[\Phi] e^{-S_R[\Phi] + \lambda X[\Phi]} \Theta_n(X[\Phi]).$$

- Can be calculated via Monte-Carlo simulation (no sign problem).
- Support function  $\Theta_n(x)$  restricts x to interval  $I_n$ :

$$\Theta_n(x) : \begin{cases}
1, & \text{if } x \in [x_n, x_{n+1}] \\
0, & \text{if } x \notin [x_n, x_{n+1}]
\end{cases}$$

•  $\langle\langle X\rangle\rangle_n(\lambda)$  can be computed explicitly using the parametrized density:

$$V_n(\lambda) = \frac{1}{\Delta_n} \left( \langle \langle X \rangle \rangle_n(\lambda) - x_n \right) - \frac{1}{2} = h \left( \Delta_n \left( \lambda - k_n \right) \right),$$

$$h(s) = \frac{1}{1 - e^{-s}} - \frac{1}{s} - \frac{1}{2}.$$

 $\implies$  determine  $k_n$  via a fit of the Monte-Carlo results to  $h(\Delta_n(\lambda-k_n))$ .

# **Application to QCD**

- The DoS formulation is intrinsically bosonic, but QCD has fermions
   require bosonization.
- QCD partition sum:

$$Z = \int \mathcal{D}[U]e^{-S_G[U]} \det(D[U]) .$$

- U: gauge links,  $S_G[U]$ : gauge action, D[U]: Dirac operator.
- Use pseudofermion representation:

$$\det(D[U]) = \det(D^{\dagger}[U]D[U]) \frac{1}{\det(D^{\dagger}[U])} \propto \int \mathcal{D}[\phi] e^{-\phi^{\dagger}D^{\dagger}[U]\phi}.$$

- Prefactor is real and positive 
   ⇒ can be treated with standard methods, e.g., multiboson techniques [3].
- Apply DoS FFA to  $\phi^\dagger D^\dagger [U] \phi$ .

## Free theory in 1+1 dimensions

- ullet To gain first insights, set all gauge links U=1 and restrict to 1+1 dimensions  $\Longrightarrow$  can compare to analytical result.
- We use Wilson fermions.

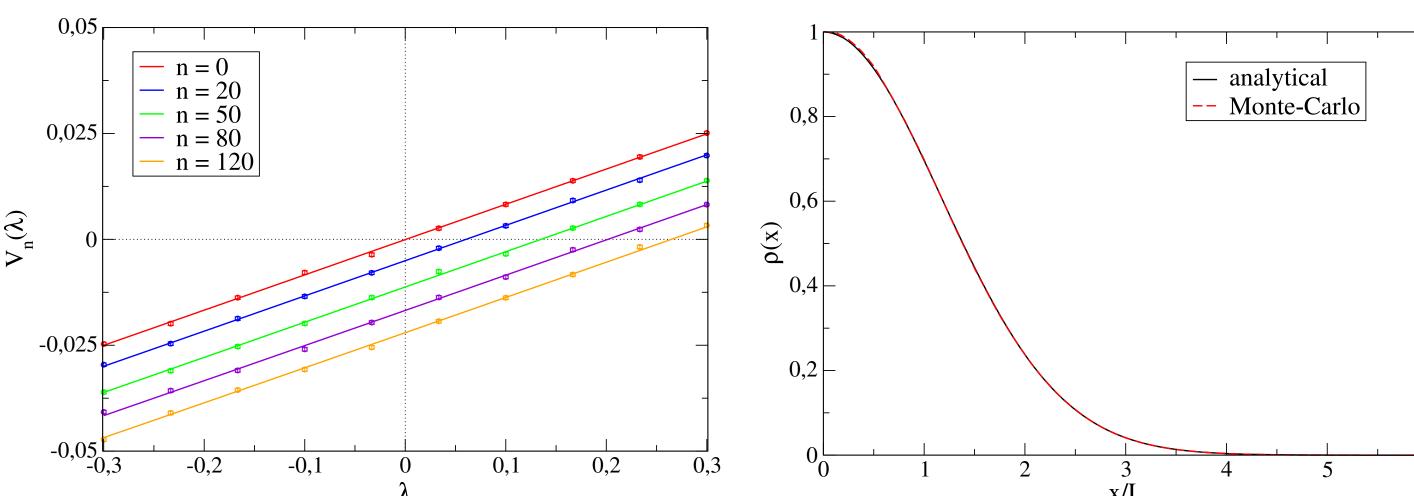


Fig.1: Left: Observable  $V_n(\lambda)$  obtained by a simulation and fit of results. Right: Comparision between the DoS calculated via simulation and analytically.

Lattice size:  $L \times L$  with L=16, mass: m=0.1, chemical potential:  $\mu=0.05$ .

- Results already in good agreement.
- Calculate  $\langle X \rangle$  as first simple observable:

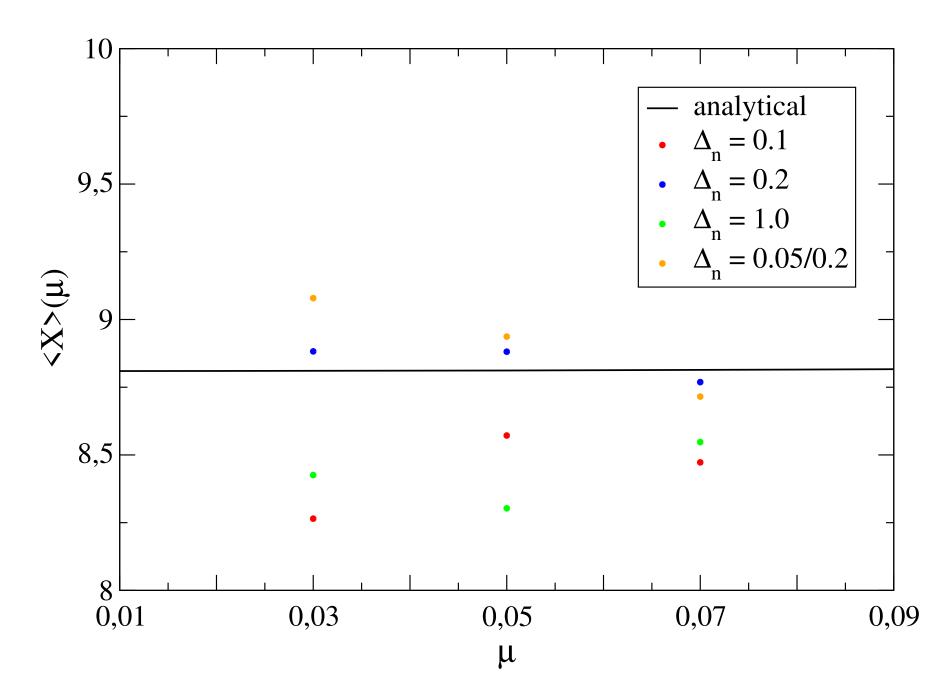


Fig.2: Expectation value of X for different interval lenghts  $\Delta_n$  as a function of  $\mu$ .  $4 \times 4$  - lattice.

## Summary and Outlook

- DoS FFA can be applied to a toy theory with the application to full QCD in mind. The results for  $\rho(x)$  agree well with an analytic calculation.
- Room for improvement in accuracy to improve results for observables.
- First modern DoS implementation for theory with fermions.

#### References

- [1] K. Langfeld, B. Lucini, and A. Rago. *The density of states in gauge theories.* Phys. Rev. Lett. **109**, 111601 (2012), arXiv: 1204.3243v1 [hep-lat]
- [2] C. Gattringer, M. Giuliani, A. Lehmann and P. Törek. *Density of states techniques for lattice field theories using the functional fit approach (FFA).* PoS LATTICE2015 **195** (2015), arXiv: 1511.07176v1 [hep-lat]
- [3] M. Cè, L. Giusti, and S. Schaefer. *Local factorization of the fermion determinant in lattice QCD.* Phys. Rev. D **95**, 034503 (2017), arXiv:1609.02419 [hep-lat]