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Application to QCD

e On the lattice, finite density QCD suffers from the complex action prob- e The DoS formulation is intrinsically bosonic, but QCD has fermions
lem: the Boltzmann factor e becomes complex and cannot be used —> require bosonization.
as a weight in Monte-Carlo simulations.
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e QCD partition sum:
e The problem has no universal solution. To deal with finite density, we
here investigate the density of states approach for QCD. 7 /D[U]eSG[U] det(D[U]) .

Density of states (DoS) [1]

e U: gauge links, S |U|: gauge action, D|U]|: Dirac operator.

DoS approach for a theory with bosonic fields ®: , ,
e Use pseudofermion representation:

e Split action into real and imaginary parts: |
det(D[U]) = det(D'[U]D[U)) T
S[®] = Sp[®] — i X[P] . det(D

oy | Dl

e Prefactor is real and positive — can be treated with standard meth-

Introduce density of states: . .
’ 4 ods, e.g., multiboson techniques [3].

p(x) = / D[®le °rl®l§(x — X[D]) . e Apply DoS FFA to ¢t DT[U]¢.

e Obtain observables via: Free theory in 1 + 1 dimensions

1 . . e [0 gain first insights, set all gauge links U = 1 and restrict to 1 + 1
0) = E/dxp(x)e Oz), Z= /dxp(z)e ' dimensions = can compare to analytical result.

e We use Wilson fermions.

—> need to determine the density with high numerical precision.
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e Usually, p(x) falls off rapidly for large |z| and is even = consider =0 - : — analyfical
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i—0 Fig.1: Left: Observable V;, (\) obtained by a simulation and fit of results. Right: Comparision

between the DoS calculated via simulation and analytically.
Lattice size: L x L with L = 16, mass: m = 0.1, chemical potential: © = 0.05.

e Use exponential of piecewise linear function L(x) as an ansatz for p(x):

p(x) = e @) e Results already in good agreement.
L(z)=kpx+d,, x€l,. e Calculate (X) as first simple observable:
e Requiring continuity and normalizing p(0) = 1 fixes all d,. T T T
l — analytica
— task: find £,,. We employ the functional fit approach. . : i“fgé
| Az=1:0
The functional fit approach (FFA) [2] 3 A, = 005002
A O _
e Introduce restricted expectation values with a control parameter A € R: g
1 50 ' : i
(X))n(A) = / D[@le”"r AT X [0]O, (X[2]) 8
Zn(A)
Z,(\) = [ Dlg]eSrUX e, (X)) T T YR

)
Fig.2: Expectation value of X for different interval lenghts A,, as a function of . 4 X 4 - lattice.

e Can be calculated via Monte-Carlo simulation (no sign problem).

e Support function ©,,(x) restricts x to interval I,,: Summary and Outlook

e DoS FFA can be applied to a toy theory with the application to full QCD

1, ifx € |z, Trat o . . .
O,(x) : { 3 : L in mind. The results for p(x) agree well with an analytic calculation.
0, ifx ¢ |x,,ni1

e Room for improvement in accuracy to improve results for observables.

o ({(X))n(A) can be computed explicitly using the parametrized density: e First modern DoS implementation for theory with fermions.

1 1
V) = = ({XD)n(N) = 2n) = 5 = h(An (A= kn) )
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