X-ray photon scattering at a focused high-intensity

¹Theoretisch-Physikalisches Institut, Friedrich-Schiller-Unversität Jena
 ²Helmholtz-Institut Jena
 ³Tomsk Polytechnic University, email: mosmanea@tpu.ru

www.quantumvacuum.org

Abstract

laser pulse

Felix Karbstein^{1,2} and <u>Elena Mosman^{2,3}</u>

We study x-ray photon scattering in the head-on collision of an XFEL pulse and a focused high-intensity laser pulse, described as paraxial Laguerre-Gaussian beam of arbitrary mode composition. For adequately chosen relative orientations of the polarization vectors of the colliding laser fields, this gives rise to a vacuum birefringence effect manifesting itself in polarization flipped signal photons. The XFEL is assumed to be mildly focused to a waist larger than that of the high-intensity laser beam. This scenario is generically accompanied by a scattering phenomenon of x-ray energy signal photons outside the forward cone of

Results

We consider two different quantities:

the number of signal photons N^{tot} attainable in polarization insensitive measurement, and
the number of polarization-flipped signal photons N[⊥].

The latter are discernible from the background of the probe photons $N_{\rm in}$, traversing the interaction region unaltered if they fulfill $\frac{N^{\perp}}{N_{\rm in}} > \mathcal{P}.$

A. Pure Laguerre-Gaussian modes

The total numbers of signal photons are $N^{tot} \simeq 23.77 \ (N^{tot} \simeq 11.57)$ per shot for the case of the LG_{0,0} (LG_{1,0}) pump. The number of signal photons contained within a ring around the beam axis delimited by $\vartheta'_{min} = 50 \,\mu rad$ and $\vartheta'_{max} = 100 \,\mu rad$ is $N_{\circ}^{tot} \simeq 1.31 \ (N_{\circ}^{tot} \simeq 4.50)$, which is to be compared with the negligible number of probe photons $N_{in,\circ} \simeq 1.14 \times 10^{-9}$ contained in the same angular interval.

the XFEL beam, potentially assisting the detection of the effect in experiment. Here, we demonstrate the fate of the x-ray scattering signal under exemplary deformations of the transverse focus profile of the high-intensity pump.

Studied experimental scenario

For a LG_{0,0} (LG_{1,0}) pump, the signal photons scatter outside $\vartheta' = 22.36 \,\mu \text{rad}(\vartheta' = 24.38 \,\mu \text{rad})$. The corresponding number of discernible signal photons per shot is $N_{\text{dis}}^{\perp} \simeq 0.61 \, (N_{\text{dis}}^{\perp} \simeq 0.34)$.

Far-field angular decay of the signal as a function of the polar angle ϑ' measured from the forward beam axis of the probe for different transverse pump profiles. Here, we consider the pump to be prepared in a pure LG mode; see the inset for the radial intensity profiles in the focus. For comparison, in gray we also highlight the angular decay of a fundamental Gaussian probe of waist $w_{probe} = 3w_0$; w_0 is the waist of the fundamental pump mode $LG_{0,0}$. The data points marked by crosses follow from a direct numerical evaluation for the $LG_{1,0}$ scenario. They are in good agreement with the red dashed line obtained from analytical approximation.

B. Flattened Gaussian beams

We assume the XFEL to deliver pulses of duration $T=10 \text{ fs} \simeq 15.20 \text{ eV}^{-1}$, comprising $N_{\text{in}} = 10^{12}$ photons at an energy of $\omega = 12914 \text{ eV}$. The polarization purity of x-ray photons of this energy can be measured to the level of $P=5.7\times10^{-10}$. The counter-propagating high-intensity laser field is assumed to be provided by a petawatt class intensity system, delivering pulses of energy $W=30 \text{ J} \simeq 1.87 \times 10^{20} \text{ eV}$, duration $\tau = 30 \text{ fs} \simeq 45.60 \text{ eV}^{-1}$ and wavelength $\lambda = 800 \text{ nm} \simeq 4.06 \text{ eV}^{-1}$. As a realistic estimate for the beam waist of the fundamental mode we choose $w_0 = 1000 \text{ nm} \simeq 5.07 \text{ eV}^{-1}$. The corresponding Rayleigh range is $z_R \simeq 19.89 \text{ eV}^{-1}$. The radius of the probe is assumed to be given by $w_{\text{probe}} = 3w_0$.

[Marx et al., Opt. Comm.**284**, 915 (2011)] [Marx et al., Phys. Rev. Lett.**110**, 254801 (2013)]

Theoretical setting

We use in our calculation:

[Euler and Kockel, Naturwiss. **23**, 246 (1935)] [Heisenberg and Euler, Z. Phys. **98**, 714 (1936)]

Far-field angular decay of the signal and probe (gray) for different transverse pump profiles. For the high-intensity pump we consider different order \mathcal{N} flattened Gaussian beams of the same pulse energy; see the inset for the radial intensity profiles in the focus.

The corresponding numbers of signal photons are:

\mathcal{N}	0	1	2	3	4
N^{tot}	23.77	12.68	8.51	6.37	5.09
$N_{\rm dis}^{\perp}$	0.61	0.17	0.05	0.01	0.005

Finally, we compare these findings with the results obtained for fundamental Gaussian pumps of similar waist:

→ Weak field limit of the 1-loop Heisenberg-Euler effective Lagrangian:

 $\mathcal{L}_{\rm HE}^{1\text{-loop}} \simeq \frac{m_e^4}{(8\pi)^2} \frac{1}{90} \left(\frac{e}{m_e^2}\right)^4 \left[4(F_{\mu\nu}F^{\mu\nu})^2 + 7(F_{\mu\nu}*F^{\mu\nu})^2\right]$

 \rightarrow Generic paraxial solutions of the wave equation in vacuum describing focused beams with rotational symmetry around the beam axis. These can be represented by the superposition of Laguerre-Gaussian modes LG_{l,p}:

[Siegman, Lasers, (1986)] [Saleh, Teich, Fundamentals of Photonics, (1991)]

$$E(x) = \sum_{l,p} E_{l,p}(x)$$

$$\vec{E}(x) \perp \vec{B}(x), \vec{E}(x) \perp \vec{k}, \vec{B}(x) \perp \vec{k}$$
$$\vec{E}(x)| = |\vec{B}(x)| = E(x)$$

Far-field angular decay of the signal and probe (gray) for different transverse pump profiles. Here, we compare the angular decay of the signal for flattened Gaussian pumps of order $\mathcal{N} \in \{1, 2\}$ (dashed lines) with the analogous results for a fundamental Gaussian pump with rescaled waist $w_0 \rightarrow w_{\mathcal{N}}$ (solid lines); see the inset for the respective focus profiles.

The signal photon numbers associated with the rescaled Gaussian pump are $N^{\text{tot}} \simeq 10.23 \ (N^{\text{tot}} \simeq 6.26), \ N_{\text{dis}}^{\perp} \simeq 0.11 \ (N_{\text{dis}}^{\perp} \simeq 0.02) \text{ for } \mathcal{N} = 1(\mathcal{N} = 2).$

Based on Phys. Rev. D 100, 033002 (2019).