$\mathcal{N}=1$ SUPERSYMMETRIC SU(3) GAUGE THEORY WITH A TWIST

M. Steinhauser, A. Sternbeck, B. Wellegehausen, A. Wipf

MOTIVATION

• The standard model of particle physics is only an effec-

TWISTED DIRAC OPERATOR

• Wilson-Dirac operator with deformation resembling a

MESONIC CORRELATORS

- tive theory with unsolved problems \Rightarrow Search for a more fundamental theory: One possibility is the **extension with supersymmetry**
- Here we focus on the strong interaction sector and study an important building block of supersymmetric quantum chromodynamics (Super-QCD): **4-dimensional** \mathcal{N} =**1** Super-Yang-Mills theory (SYM) with gauge group SU(3)

THE THEORY

- The $\mathcal{N} = 1$ SYM theory contains two **fields**:
- Gauge potential $A_{\mu}(x)$
- Majorana field $\lambda(x)$
- both transforming in the **adjoint representation**
- They describe two members of the same super-multiplet:
- A gauge boson, called **gluon**
- Its fermionic superpartner, named **gluino**
- Supersymmetry transforms those fields into each other:

 $\delta_{\epsilon}A_{\mu} = \mathbf{i}\bar{\epsilon}\gamma_{\mu}\lambda, \quad \delta_{\epsilon}\lambda = \mathbf{i}\Sigma_{\mu\nu}F^{\mu\nu}\epsilon$

- Continuum on-shell Lagrange density:
- $\mathcal{L}_{\text{SYM}} = \text{tr}\left(-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{\mathbf{i}}{2}\bar{\lambda}\not{D}\lambda \frac{m_{\text{g}}}{2}\bar{\lambda}\lambda\right)$

twisted mass:

$$\mathcal{D}_{\mathsf{W}}^{\mathsf{mtw}}(x,y) = (4+m+\mathsf{i}\mu\gamma_5)\delta_{x,y} - \frac{1}{2}\sum_{\mu=\pm 1}^{\pm 4} (1-\gamma_{\mu})\mathcal{V}_{\mu}(x)\,\delta_{x+\hat{\mu},y}$$
$$= (4+M\,\mathsf{e}^{\mathsf{i}\alpha\gamma_5}\,)\delta_{x,y} - \frac{1}{2}\sum_{\mu=\pm 1}^{\pm 4} (1-\gamma_{\mu})\mathcal{V}_{\mu}(x)\,\delta_{x+\hat{\mu},y}$$

- Adjoint representation $[\mathcal{V}_{\mu}(x)]_{ab} = 2 \operatorname{tr} \left[\mathcal{U}_{\mu}^{\dagger}(x) T_{a} \mathcal{U}_{\mu}(x) T_{b} \right]$ • **Remnant** $\mathbb{Z}_{2N_{c}}$ symmetry from the anomalous chiral U(1)_A symmetry

- ^L Particular directions favored by gluino condensate
- Add **parity-breaking mass** μ resembling a twisted mass ^L Possibility to get closer to chiral symmetry and supersymmetry at finite lattice spacing
- Mass term of Wilson-Dirac operator breaks chiral symmetry explicitly and generates a condensate $\langle \lambda \lambda \rangle$
- μ -mass leads to a condensate $\langle \lambda \gamma_5 \lambda \rangle$
- A breaking in this direction can be achieved by using a maximal twist, i. e. vary μ at fixed m_{crit}
- Interesting observables are the (unphysical) a- π and a-amesons

Fig. 3: Measurement of the physical mesonic states a- η' and a- f_0 on a $8^3 \times 16$ lattice at $\beta = 5.0$ for twist angles $\alpha = 0^{\circ}$ (left) and $\alpha = 45^{\circ}$ (right). In comparison to Fig. 1, these observables contains disconnected contributions.

Fig. 4: Measurement of the physical mesonic states a- η' and a- f_0 (left) and the gluino-glue (right) on a $16^3 \times 32$ lattice at $\beta = 5.0$ for twist angle $\alpha = 45^{\circ}$.

PFAFFIAN

• Gluino mass term breaks supersymmetry softly

CHIRAL SYMMETRY

- In comparison to QCD, the SU(N_c) SYM theory possesses a different **breaking pattern of chiral symmetry** for $m_q = 0$: • Global chiral U(1)_A symmetry: $\lambda \mapsto e^{i\alpha\gamma_5}\lambda$
- Due to the **anomaly**, only a $\mathbb{Z}_{2N_{c}}$ remnant symmetry $\lambda \mapsto e^{2\pi i n \gamma_5/2N_c} \lambda$ with $n \in \{1, \dots, 2N_c\}$ survives
- Gluino condensate $\langle \bar{\lambda} \lambda \rangle \neq 0$ leads to a **spontaneous breaking** of the remnant symmetry to a \mathbb{Z}_2 symmetry \Rightarrow The theory contains $N_{\rm c}$ physically equivalent vacua

LATTICE FORMULATION

- Non-perturbative methods like lattice simulations are required to investigate the mass spectrum and confinement
- Method of Curci & Veneziano with Wilson fermions:
- Problem: **supersymmetry** is **broken explicitly** at finite lattice spacing $a \Rightarrow$ lattice artifact $\sim m_{q}$ - Solution: add explicit gluino mass counter-term and **fine-tune** its bare mass m such that the gluino becomes massless in the continuum limit

Fig. 1: Parameter scan on a $8^3 \times 16$ lattice with $\beta = 5.4$. Top row: Mass of a- π (left), a-a (middle) and their subtracted quotient $m_{a-\pi}/m_{a-a}-1$ zoomed to the region near the chiral point $(m_{crit}, \mu_{crit}) = (-0.967, 0)$ (right). The colored lines mark the three directions summarized in the table below. Bottom row: Mass of a- π and a-a for $\alpha = 0^{\circ}$ (left), $\alpha = 45^{\circ}$ (middle) and $\alpha = 90^{\circ}$ (right) with extrapolations in the gluino mass m_q to the chiral point.

 $\alpha = 0^{\circ} \quad \mu = 0$ $m_{\mathsf{a} extsf{-}\pi} > m_{\mathsf{a} extsf{-}a} \,\,\, \mathsf{gray} \,\, \mathsf{line}$ $\alpha = 45^{\circ} \ \mu = m - m_{\text{crit}} \ m_{\text{a-}\pi} \approx m_{\text{a-}a}$ magenta line $m_{a-\pi} < m_{a-a}$ orange line $\alpha = 90^\circ \ m = m_{\rm crit}$

LOW-ENERGY SPECTRUM

- After integrating out the **Majorana fermions**: **Pfaffian** of the Dirac operator in the path integral \Rightarrow rational hybrid Monte Carlo algorithm (**RHMC**)
- The Pfaffian is part of the Boltzmann weight in the functional integral and hence should be positive to avoid a sign problem
- $Pf(D_W^{tw}) \in \mathbb{C}$ for the twisted Wilson-Dirac operator
- In the continuum theory $m \to m_{\text{crit}}, \mu \to 0$, $a \to 0$ the Pfaffian becomes real
- Numerical investigations reveal that at finite lattice spacing the phase of $Pf(D_W^{tw}) = |Pf(D_W^{tw})| \cdot e^{i\alpha}$ is negligible

Fig. 5: Numerical values for the Pfaffian phase $e^{i\alpha}$ plotted as $1 - \text{Re}(e^{i\alpha})$ for the parameters m = -0.85, $\mu = 0.10$, $m_{a-\pi} \approx 0.70$ and various lattice sizes V.

- Problem: Due to confinement, the gluino can't be measured directly to find the correct mass parameter
- Solution: adjoint pion mass squared, $m_{\mathsf{a}\text{-}\pi}^2 \propto m_{\mathsf{q}}$ * Not a physical particle
- * Defined in a partially quenched approximation
- Fine-tuning to critical gluino mass $m_{crit} \Rightarrow$ in **continuum limit: restoration** of supersymmetry & chiral symmetry

bosonic scalar 0^{++} gluinoball $f_0 \sim \bar{\lambda} \lambda$ $\sim F_{\mu\nu}\Sigma^{\mu\nu}\lambda$ majorana-type spin $\frac{1}{2}$ gluino-glueball bosonic pseudoscalar 0^{-+} gluinoball a- $\eta' \sim \bar{\lambda} \gamma_5 \lambda$ susy softly with SUSY broken mass SUSY mixing bosonic scalar 0^{++} glueball majorana-type spin $\frac{1}{2}$ gluino-glueball $^{\prime}$ bosonic pseudoscalar 0^{-+} glueball $m_{\mathbf{q}} \neq 0$ $m_{\rm q} = 0$ $m_{\mathbf{q}} = 0$

Fig. 2: The two lowest supermultiplets predicted by effective field theory.

PUBLICATION

[1] M. Steinhauser, A. Sternbeck, B. Wellegehausen, and A. Wipf. " $\mathcal{N} =$ Supersymmetric SU(3) Gauge Theory – Pure Gauge sector with a twist". In: PoS LATTICE2018 (2018), p. 211. arXiv: 1811.01785 [hep-lat].

