$\mathcal{N}=1$ SUPERSYMMETRIC SU(3) GAUGE THEORY WITH A TWIST

M. Steinhauser, A. Sternbeck, B. Wellegehausen, A. Wipf

MOTIVATION

- The standard model of particle physics is only an effective theory with unsolved problems
\Rightarrow Search for a more fundamental theory:
One possibility is the extension with supersymmetry
- Here we focus on the strong interaction sector and study an important building block of supersymmetric quantum chromodynamics (Super-QCD): 4-dimensional $\mathcal{N}=1$
Super-Yang-Mills theory (SYM) with gauge group SU(3)

THE THEORY

-The $\mathcal{N}=1$ SYM theory contains two fields:

- Gauge potential $A_{\mu}(x)$
- Majorana field $\lambda(x)$
both transforming in the adjoint representation
- They describe two members of the same super-multiplet:
- A gauge boson, called gluon
- Its fermionic superpartner, named gluino
- Supersymmetry transforms those fields into each other:

$$
\delta_{\epsilon} A_{\mu}=\mathrm{i} \bar{\epsilon} \gamma_{\mu} \lambda, \quad \delta_{\epsilon} \lambda=\mathrm{i} \Sigma_{\mu \nu} F^{\mu \nu} \epsilon
$$

- Continuum on-shell Lagrange density:

$$
\mathcal{L}_{\mathrm{SYM}}=\operatorname{tr}\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{\mathrm{i}}{2} \bar{\lambda} \not D \lambda-\frac{m_{\mathrm{g}}}{2} \bar{\lambda} \lambda\right)
$$

- Gluino mass term breaks supersymmetry softly

CHIRAL SYMMETRY

In comparison to QCD, the $\operatorname{SU}\left(N_{\mathrm{c}}\right)$ SYM theory possesses a different breaking pattern of chiral symmetry for $m_{g}=0$:

- Global chiral $\mathbf{U}(1)_{\mathrm{A}}$ symmetry: $\lambda \mapsto \mathrm{e}^{\mathrm{i} \alpha \gamma_{5}} \lambda$
- Due to the anomaly, only a $\mathbb{Z}_{2 N_{\mathrm{c}}}$ remnant symmetry $\lambda \mapsto \mathrm{e}^{2 \pi i n \gamma_{5} / 2 N_{\mathrm{c}}} \lambda$ with $n \in\left\{1, \ldots, 2 N_{\mathrm{c}}\right\}$ survives
- Gluino condensate $\langle\bar{\lambda} \lambda\rangle \neq 0$ leads to a spontaneous breaking of the remnant symmetry to a \mathbb{Z}_{2} symmetry \Rightarrow The theory contains N_{c} physically equivalent vacua

LATTICE FORMULATION

- Non-perturbative methods like lattice simulations are required to investigate the mass spectrum and confinement
Method of Curci \& Veneziano with Wilson fermions:
- Problem: supersymmetry is broken explicitly at finite lattice spacing $a \Rightarrow$ lattice artifact $\sim m_{\mathrm{g}}$
- Solution: add explicit gluino mass counter-term and fine-tune its bare mass m such that the gluino becomes massless in the continuum limit
- Problem: Due to confinement, the gluino can't be measured directly to find the correct mass parameter
- Solution: adjoint pion mass squared, $m_{\mathrm{a}-\pi}^{2} \propto m_{\mathrm{g}}$
* Not a physical particle
* Defined in a partially quenched approximation
- Fine-tuning to critical gluino mass $m_{\text {crit }} \Rightarrow$ in continuum limit: restoration of supersymmetry \& chiral symmetry

TWISTED DIRAC OPERATOR

-Wilson-Dirac operator with deformation resembling a twisted mass:

$$
\begin{aligned}
D_{\mathrm{W}}^{\mathrm{mtw}}(x, y) & =\left(4+m+\mathrm{i} \mu \gamma_{5}\right) \delta_{x, y}-\frac{1}{2} \sum_{\mu= \pm 1}^{ \pm 4}\left(\mathbb{1}-\gamma_{\mu}\right) \mathcal{V}_{\mu}(x) \delta_{x+\hat{\mu}, y} \\
& =\left(4+M \mathrm{e}^{\mathrm{i} \alpha \gamma_{5}}\right) \delta_{x, y}-\frac{1}{2} \sum_{\mu= \pm 1}^{ \pm 4}\left(\mathbb{1}-\gamma_{\mu}\right) \mathcal{V}_{\mu}(x) \delta_{x+\hat{\mu}, y}
\end{aligned}
$$

- Adjoint representation $\left[\mathcal{V}_{\mu}(x)\right]_{a b}=2 \operatorname{tr}\left[\mathcal{U}_{\mu}^{\dagger}(x) T_{a} \mathcal{U}_{\mu}(x) T_{b}\right]$
- Remnant $\mathbb{Z}_{2 N_{\mathrm{c}}}$ symmetry from the anomalous chiral U(1) A symmetry
4 Particular directions favored by gluino condensate
- Add parity-breaking mass μ resembling a twisted mass
\checkmark Possibility to get closer to chiral symmetry and supersymmetry at finite lattice spacing
- Mass term of Wilson-Dirac operator breaks chiral symme try explicitly and generates a condensate $\langle\bar{\lambda} \lambda\rangle$
- μ-mass leads to a condensate $\left\langle\bar{\lambda} \gamma_{5} \lambda\right\rangle$
- A breaking in this direction can be achieved by using a maximal twist, i. e. vary μ at fixed $m_{\text {crit }}$
- Interesting observables are the (unphysical) a- π and a-a mesons

Fig. 1: Parameter scan on a $8^{3} \times 16$ lattice with $\beta=5.4$. Top row: Mass of $\mathrm{a}-\pi$ (left), $\mathrm{a}-a$ (middle) and their subtracted quotient $m_{\mathrm{a}-\pi} / m_{\mathrm{a}-a}-$ zoomed to the region near the chiral point ($\left.m_{\text {crit }}, \mu_{\text {crit }}\right)=(-0.967,0)$ (right). Th colored lines mark the three directions summarized in the table below.
Bottom row: Mass of $\mathrm{a}-\pi$ and $\mathrm{a}-a$ for $\alpha=0^{\circ}$ (left), $\alpha=45^{\circ}$ (middle) and $\alpha=90^{2}$ (right) with extrapolations in the gluino mass m_{g} to the chiral point.
$\alpha=0^{\circ} \quad \mu=0 \quad m_{\mathrm{a}-\pi}>m_{\mathrm{a}-a}$ gray line
$\alpha=45^{\circ} \mu=m-m_{\text {crit }} m_{\mathrm{a}-\pi} \approx m_{\mathrm{a}-a}$ magenta line $\alpha=90^{\circ} m=m_{\text {crit }} \quad m_{\mathrm{a}-\pi}<m_{\mathrm{a}-a}$ orange line

LOW-ENERGY SPECTRUM

Fig. 2: The two lowest supermultiplets predicted by effective field theory

MESONIC CORRELATORS

Fig. 3: Measurement of the physical mesonic states a- η^{\prime} and a- f_{0} on a $8^{3} \times 16$ lattic at $\beta=5.0$ for twist angles $\alpha=0^{\circ}$ (left) and $\alpha=45^{\circ}$ (right). In comparison to Fig. 1 , these observables contains disconnected contributions.

Fig. 4: Measurement of the physical mesonic states $\mathrm{a}-\eta^{\prime}$ and $\mathrm{a}-f_{0}$ (left) and the gluino-glue (right) on a $16^{3} \times 32$ lattice at $\beta=5.0$ for twist angle $\alpha=45^{\circ}$.

PFAFFIAN

- After integrating out the Majorana fermions:

Pfaffian of the Dirac operator in the path integral
\Rightarrow rational hybrid Monte Carlo algorithm (RHMC)

- The Pfaffian is part of the Boltzmann weight in the func tional integral and hence should be positive to avoid a sign problem
- $\operatorname{Pf}\left(D_{\mathrm{W}}^{\mathrm{W}}\right) \in \mathbb{C}$ for the twisted Wilson-Dirac operator
- In the continuum theory $m \rightarrow m_{\text {crit, }} \mu \rightarrow 0, a \rightarrow 0$ the Pfaffian becomes real
- Numerical investigations reveal that at finite lattice spacing the phase of $\operatorname{Pf}\left(D_{\mathrm{W}}^{\mathrm{tW}}\right)=\left|\operatorname{Pf}\left(D_{\mathrm{W}}^{\mathrm{tW}}\right)\right| \cdot \mathrm{e}^{\mathrm{i} \alpha}$ is negligible

Fig. 5: Numerical values for the Pfaffian phase $\mathrm{e}^{\mathrm{i} \alpha}$ plotted as $1-\operatorname{Re}\left(\mathrm{e}^{\mathrm{i} \alpha}\right)$ for the parameters $m=-0.85, \mu=0.10, m_{\mathrm{a} \cdot \pi} \approx 0.70$ and various lattice sizes V

PUBLICATION

[1] M. Steinhauser, A. Sternbeck, B. Wellegehausen, and A. Wipf. " \mathcal{N} = 1 Supersymmetric $\operatorname{SU}(3)$ Gauge Theory - Pure Gauge sector with a twist". In: POS LATTICE2018 (2018), p. 211. arXiv: 1811.01785 [hep-lat]

