
Inhomogeneous chiral condensates in QCD-inspired
models via the FRG

Introduction

Chiral condensation in medium
A theoretical description of strongly interacting matter from first principles
using the theory of quantum chromodynamics (QCD) has proved difficult
especially at non-zero chemical potential µ and non-zero temperature T . In
the past decades chiral low-energy effective models of QCD have been used
to study the phase structure and properties of strongly interacting matter in
regimes, where computations from first principles overtax our computa-
tional abilities.

Mean-field (MF) studies of such models, including only fermionic quantum
fluctuations, predict inhomogeneous chiral condensation at low tempera-
tures and moderate densities, see Fig. 1. Those crystalline-like phases have
proven rather robust against model-extensions and variations of external
parameters. For an extensive review, see [1].
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Figure 1: MF phase diagram of
the quark-meson model in the chi-
ral limit, allowing for inhomoge-
neous condensation using Pauli-
Villars regularization. The shaded
area indicates the inhomogeneous
phase with the chiral density wave
as the spatial modulation. Figure
taken from [2].

Of the several open questions regarding those exotic phases, we are primar-
ily focused on the central question that concerns the stability of inhomoge-
neous chiral condensation against bosonic quantum fluctuations.

We are facing this question using the functional renormalization group
(FRG), which enables us to
• include bosonic/fermionic quantum fluctuations at non-zero µ and T ,

• study the stability of inhomogeneous chiral condensation against bosonic
quantum fluctuations.

Model and method

Quark-meson model and the FRG
As a chiral low-energy effective model of QCD we consider the two-flavor
quark-meson model, including constituent quarks ψ, three pseudo-scalar
pions ~π and one scalar field σ (with φ ≡ (σ, ~π))
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The shape and the minimum of the mesonic self-interaction potential U en-
codes chiral symmetry breaking, meson masses and the thermodynamics.

The FRG framework allows us to follow the scale evolution of U (and/or
other couplings). Here we restrict ourselves to the so called local potential
approximation (LPA) where we follow the RG scale (k) evolution of the
mesonic self interaction potential Uk only.

Using the exact renormalization group/Wetterich equation
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with our model and truncation we obtain the following diagrammatic evo-
lution equation for the potential Uk(ρ)
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where we evaluated the propagators on a constant homogeneous back-
ground

φ
homo.≡ (

√
2ρ,~0 ).

Numerical methods for flow equations
The RG scale evolution equation for Uk(ρ) constitutes a non-linear, partial
integro-differential equation (PDE) in the RG scale k and the field invariant
ρ. This PDE can be reformulated and interpreted as a convection-diffusion
equation [3, 4] by considering the flow of U ′k(ρ),

∂tu(t, x) + ∂x F [t, u(t, x)]︸ ︷︷ ︸
π ∼ convection

= ∂xQ[t, x, u(t, x), ∂xu(t, x)]︸ ︷︷ ︸
σ ∼ diffusion

+ ∂x S(t, x)︸ ︷︷ ︸
ψ ∼ source

,

where we introduced dimensionless variables using the UV initial scale Λ

t ≡ − ln

(
k

Λ

)
, x ≡ ρ

Λ2
, u(t, x) ≡

U ′k(ρ)

Λ2
.
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Figure 2: Exemplary vacuum RG scale/time evolution of the derivative of the mesonic po-
tential u(t, x) (left) and corresponding evolution of the approximate fluid velocity (∂uF )(x)
(right). The results shown were obtained using the O(x1) upwind scheme [5] on 400
equidistant cells in x ∈ [0, 0.025] for ’spatial’ discretization and CVODE’s [6] BDF im-
plicit ODE integrators for RG time evolution.

The formulation as a conservation equation strongly suggests the use of
established discretization schemes for the numerical solution. For their ro-
bustness and relative simplicity we decided to use first- [5] and second-
order [7] finite volume methods for ’spatial’ discretization.

The chiral density wave as an explicit inhomogeneous
condensate

The major challenge when working with inhomogeneous condensates in
MF and beyond is the computation of propagators – the inversion of the
two-point functions – on an inhomogeneous, mesonic background. An in-
clusion of inhomogeneous chiral condensates renders the fermionic and
bosonic two-point functions of the theory non-diagonal in momentum
space. Inverting such objects requires significant technical and computa-
tional effort.
The so called chiral density wave (CDW) is a very popular ansatz

φ(z)
CDW≡

√
2ρ (cos(~q · ~z ), 0, 0, sin(~q · ~z ))

for an inhomogeneous condensate in MF computations in the chiral limit
(c = 0). Using this specific condensate shape and its analytic properties we
were able to analytically diagonalize the fermionic and the bosonic two-
point functions by means of specifically engineered unitary transformations
UF and UB, e.g. for the fermionic part

UF (~z ) ≡ exp
(
− i

2
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)
.

Inserting those transformations for the CDW into the exact RG equation
yields equations containing only operators, which are diagonal in momen-
tum space, e.g. for the fermionic contribution
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After applying the unitary transformations UF and UB we were able to
use standard FRG techniques to derive analytical flow equations for the
CDW.

Renormalization group consistent mean-field results

Using the fermionic part of the LPA flow equation for the CDW we per-
formed a renormalization group consistent MF calculation in the chiral
limit using the spatial exponential regulator:

• RG consistent UV completion of the initial condition: ΓΛ′ → ΓΛ [8],

• Consistent parameter fitting: including fermionic vacuum fluctuations in
the mesonic two-point functions when fitting the renormalized pion de-
cay constant f r

π and the sigma pole mass mp
σ in vacuum [2].
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Figure 3: Inhomogeneous window at zero temperature using f r
π = 88 MeV,

mp
σ = 625 MeV, mp

π = 0 MeV and M = 300 MeV. Upper panel: no-sea/standard MF ap-
proximation including no fermionic vacuum fluctuations realized with Λ′ = 0 GeV. Lower
panel: MF computation including all fermionic vacuum fluctuations below Λ′ = 2 GeV.
Both RG consistent MF computations use an asymptotically large – compared to µ and T
– UV initial scale of Λ = 5 GeV.

Stability analysis of the homogeneous phase
With an advanced Ginzburg-Landau stability analysis of the homogeneous
phase, the phase boundary to a phase with inhomogeneous chiral conden-
sation can be detected. This analysis is based on the momentum-dependent
mesonic two-point functions extracted from the RG flows. This approach
does not rely on specific ansatz functions and was frequently employed
in MF studies [1, 9]. In the FRG framework the idea of such a stability
analysis was brought forward in [10, 11, 12]. Results shall be presented
elsewhere.

Summary
Study of inhomogeneous chiral condensation using the FRG:
• Finite volume methods for FRG flow equations in medium

• Stability analysis of the homogeneous phase

• FRG computation incorporating the CDW condensate

In preparation
•Numerical solution of the full LPA flow eq. for the CDW

• Studying inhomogeneous chiral condensation in lower-
dimensional models incorporating various field content

• Calculations beyond the LPA truncation
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