Asymptotically safe QED

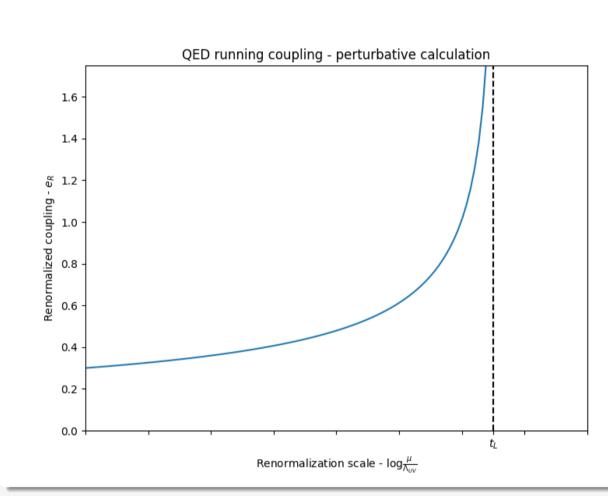
Jobst Ziebell, Holger Gies

1. Motivation

- Can QED be realized as a fundamental theory?
- QED suffers from a perturbative Landau pole (Landau'54)
- So far, non-perturbative studies have confirmed UV incompleteness (Gockeler et al '98, Gies and Jaeckel '05)
- \blacktriangleright Generic issue of gauge theories with U(1) factor eg. the SM
- Recent EFT study shows that a Pauli spin coupling term can screen the Landau pole (Djukanovic et al'18)
- Does a nonperturbative treatment of a Pauli term lead to an asymptotically safe theory?

2. Perturbative QED

Perturbative RG evolution of running coupling diverges at finite RG scale t_L (Landau'54)

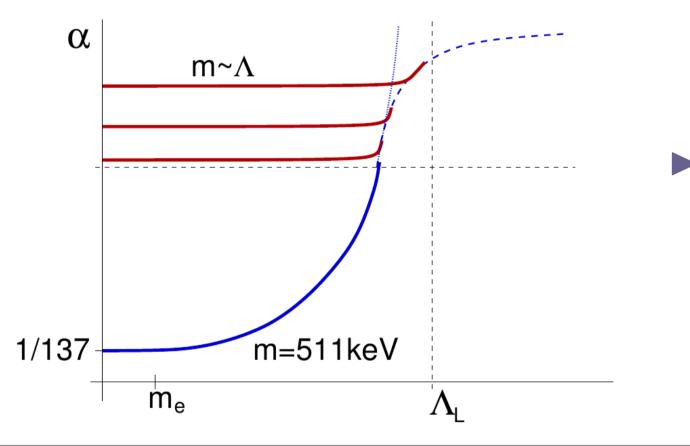


- Existence of Landau pole suggests non-fundamentality of QED
- \blacktriangleright Exploration of parameter regime $e \gg 1$ requires non-perturbative techniques

3. Chiral symmetry breaking prevents strong coupling completion

Assuming the presence of a UV fixed point beyond the Landau pole as well as no explicit chirality-breaking terms:

- large values of e lead to dynamical chiral symmetry breaking
- dynamical chiral symmetry breaking leads to heavy fermions for large values of e (Miransky'85)



QED with large values of e cannot be connected to perturbative QED (Gockeler et al '98, Gies and Jaeckel '05)

4. Strategy

- \blacktriangleright Include relevant, marginal parameters as well as irrelevant Pauli term $i\kappa\bar{\psi}\sigma_{\mu\nu}F^{\mu\nu}\psi$ \leftarrow unique U(1) invariant dimension 5 operator
 - \Rightarrow chiral symmetry broken
 - \Rightarrow include a mass term beyond the deep Euclidean region
- ► Use the truncation

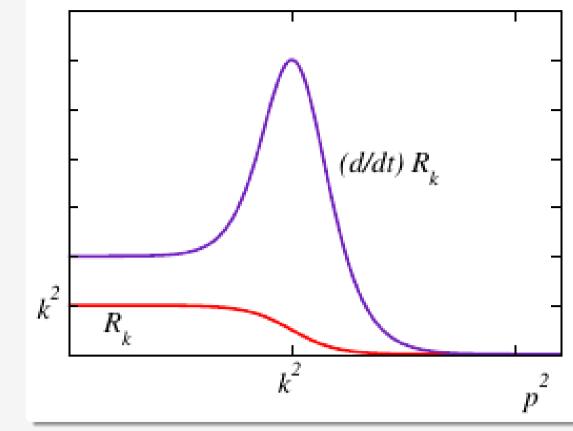
 $\Gamma_{k} = \bar{\psi} \left(i\partial \!\!\!/ - i\bar{m} + i\bar{\kappa}\sigma_{\mu\nu}F^{\mu\nu} + \bar{e}\gamma_{\mu}A^{\mu} \right) \psi$

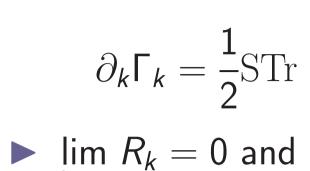
- \blacktriangleright Search for UV fixed points of dimensionless quantities e, κ and m
- Try to connect them to physical IR parameters

Theoretisch-Physikalisches-Institut, Friedrich-Schiller-Universität Jena

5. The exact (nonperturbative) renormalization group flow

- \blacktriangleright Employ cutoff function R_k to suppress fluctuations with high momentum modes $p^2 \gg k^2$.
- \blacktriangleright Obtain the Wetterich equation for the *effective average action* Γ_k (Wetterich'93)





model parameters.

6. A modified QED

The beta functions of e, κ, m in the Landau gauge and with the Litim regulator read

$$\begin{split} \partial_{t}e &= \frac{-1+7m^{2}+3m^{4}}{10\left(1+m^{2}\right)^{3}\pi^{2}}e^{\kappa^{2}} + \frac{5+9m^{2}}{10\left(1+m^{2}\right)^{3}\pi^{2}}e^{2\kappa}m + \frac{8+47m^{2}+56m^{4}+21m^{6}}{96\left(1+m^{2}\right)^{4}\pi^{2}}e^{3} + \dots \\ \partial_{t}\kappa &= \kappa + \frac{1-m^{2}}{96\left(1+m^{2}\right)^{3}\pi^{2}}me^{3} + \frac{8+11m^{2}+5m^{4}+3m^{6}}{24\left(1+m^{2}\right)^{4}\pi^{2}}e^{2\kappa} + \frac{-20+11m^{2}}{20\left(1+m^{2}\right)^{3}\pi^{2}}e^{\kappa^{2}}m \\ &+ \frac{\left(3+m^{2}\right)\left(-3+7m^{2}\right)}{15\left(1+m^{2}\right)^{3}\pi^{2}}\kappa^{3} + \dots \\ \partial_{t}m &= -m + \frac{2+4m^{2}}{5\left(1+m^{2}\right)^{2}\pi^{2}}\kappa^{2}m + \frac{9\left(-2+m^{2}\right)}{20\left(1+m^{2}\right)^{2}\pi^{2}}e^{\kappa} - \frac{6+m^{2}}{16\left(1+m^{2}\right)^{2}\pi^{2}}e^{2m} + \dots \end{split}$$

where ... represent NLO terms. For $\kappa = 0$, we recover the perturbative result for the QED beta function

$$\partial_t e = rac{e^3}{12\pi^2}$$

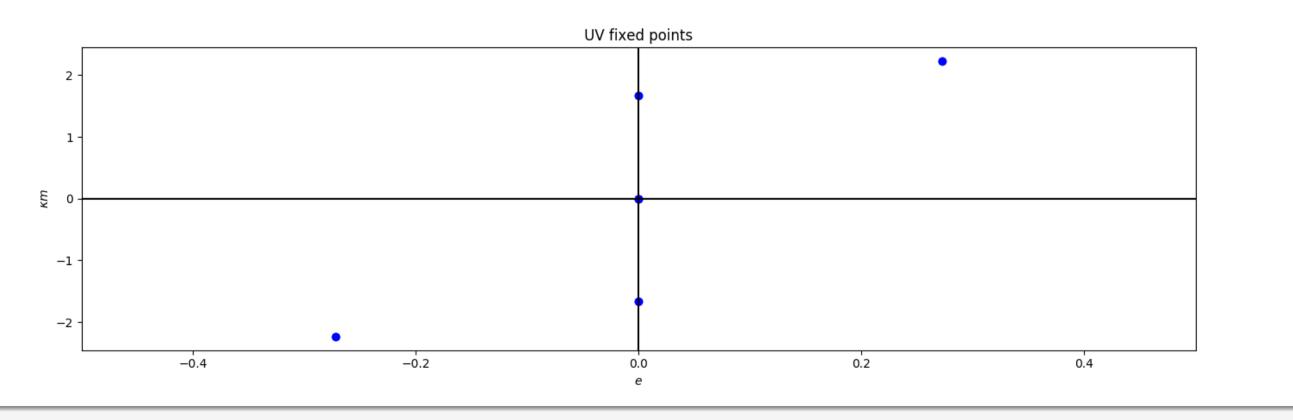
in the deep euclidean limit.

7. The UV fixed points

Including the NLO terms, we find several sets of UV fixed points with different dicrete symmetries

е	κ	т	symmetry group	$\textit{n}_{ m phys}$	$ heta_{ m max}$
0.272	5.72	0.390	$\mathbb{Z}_2 imes \mathbb{Z}_2$	1	3.33
0	5.09	0.328	$\mathbb{Z}_2 imes \mathbb{Z}_2$	2	3.10
15.6	0	0	\mathbb{Z}_2	2	13.7
0	3.82	0	\mathbb{Z}_2	3	2.25
0	0	0	—	1	1.00

where $n_{\rm phys}$ and $\theta_{\rm max}$ denote the number of physical parameters and the largest critical exponent respectively.

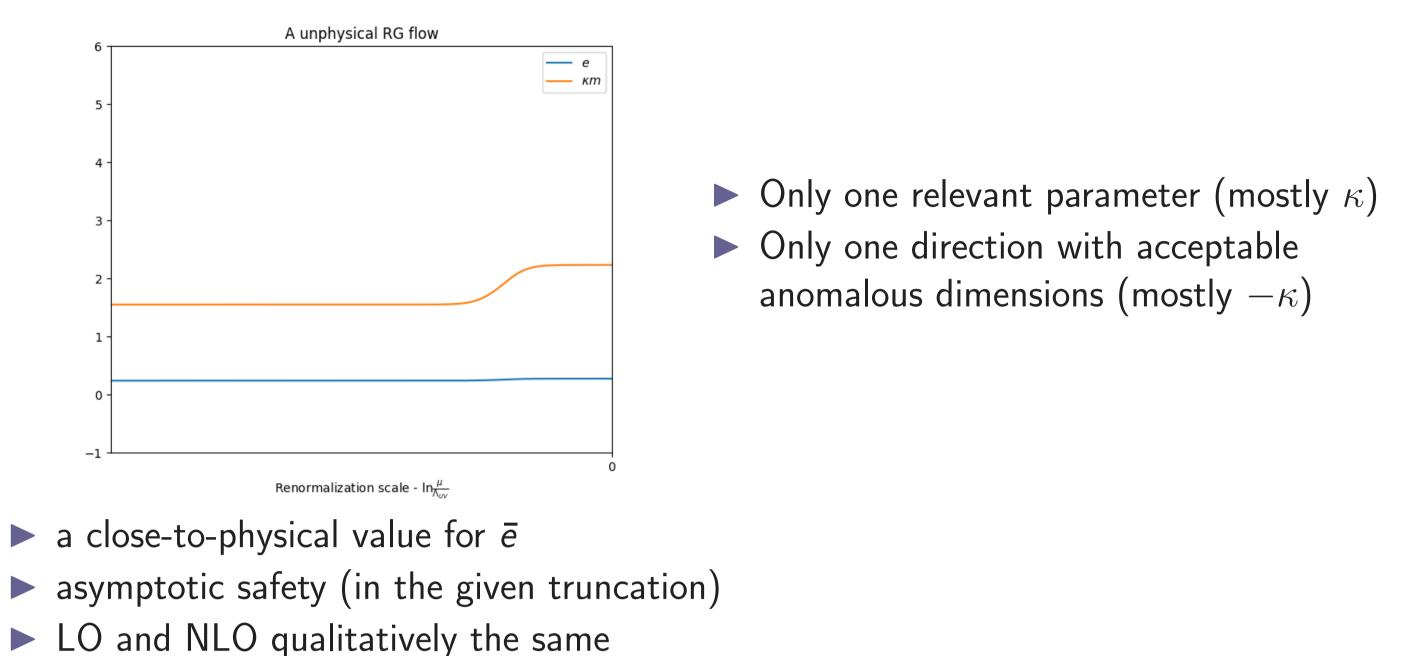


$$\left[\left(\partial_k R \right) \left(\Gamma_k^{(2)} + R_k \right)^{-1} \right]$$
$$\Gamma = \Gamma_0$$

Expansion in operator dimensions result in (regulator-dependent) beta functions of the

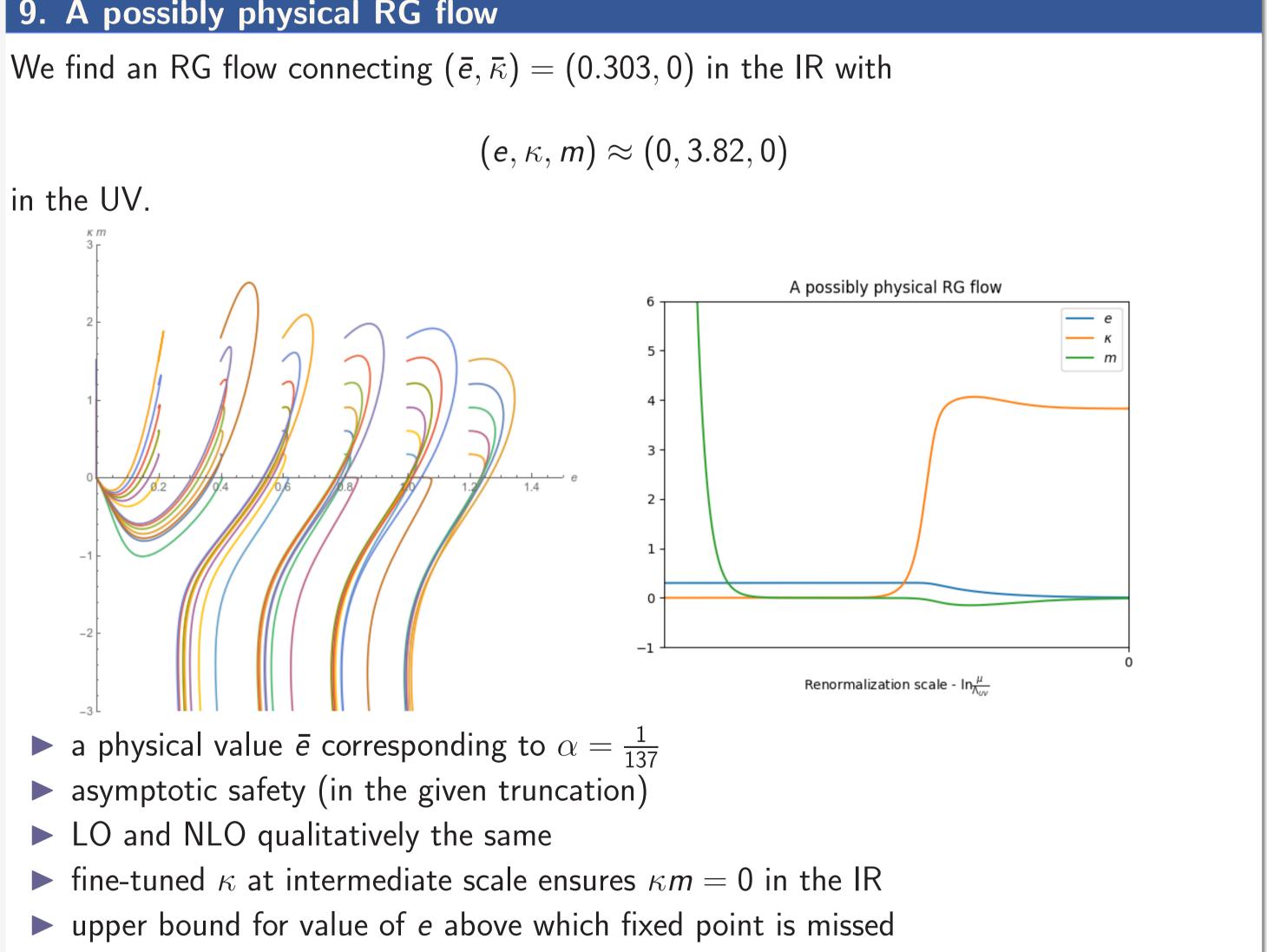
8. A maximally predictive trajectory

The fixed point $(e, \kappa, m) = (0.272, 5.72, 0.390)$ has a uniquely determined IR trajectory.



- ► IR is fully interacting $\bar{\kappa}, \bar{e}, \bar{m} \neq 0$
- $\blacktriangleright \implies$ large anomalous magnetic moment
- $\blacktriangleright \implies$ unphysical

9. A possibly physical RG flow



10. Conclusion and outlook

- Evidence for asymptotic safety of QED!
- Different fixed points corresponding to different universality classes
- Qualitative behaviour of fixed points is the same in LO and NLO
- Are there other physical RG flows?
- Can an asymptotically safe flow be embedded into the SM?

UNIVERSITÄT LEIPZIG

Fixed points feature UV completion within and beyond deep Euclidean region