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The Yang-Mills gradient flow

® A gradient flow (curve of steepest descent) in a linear space M is a curve
v : R — M, such that for a functional S: M — R

7'(t) = =VS(y(t))
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® A gradient flow (curve of steepest descent) in a linear space M is a curve
v : R — M, such that for a functional S: M — R

7'(t) = =VS(y(t))

® For a Yang-Mills (YM) field A one defines the functional as the action

1 1
S() = [ glaaf = [ SIpaP

® And the gradient flow is given by the differential equations

OB, = D,Gu,, By
Ox =DuD"x, x|,_,=1: flow of fermion fields

|[,_o = Au: flow of gauge fields
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The Yang-Mills gradient flow

® A gradient flow (curve of steepest descent) in a linear space M is a curve
v : R — M, such that for a functional S: M — R

7'(t) = =VS(y(t))

® For a Yang-Mills (YM) field A one defines the functional as the action

1 1
S() = [ glaaf = [ SIpaP

® And the gradient flow is given by the differential equations

0B, =D,Gy., Bu|,_,=Au: flow of gauge fields
Ox =DuD"x, x|,_,=1: flow of fermion fields

® These evolve the fields to local minima of the action
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What does the flow imply for the quantum theory?
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The gradient flow in QFT

® The flow has a smoothening effect on the fields, which are Gaussian-like
smeared over an effective radius 7, = V8t

By(t,z) = /dDy Ki(x —y)Au(y) + non linear terms,

Koo = [ 2P v * (at leading ord
+(z) = (27r)De e (at leading order)

2
e ¢ " is UV cut-off for ¢ > 0. It remains at all orders in perturbation

theory [Liischer and Weisz,arXiv:1405.3180]
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The gradient flow in QFT Il

Q: Are the correlators of flowed fields renormalised?
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T radient flow in QFT I

Q: Are the correlators of flowed fields renormalised?

® D+1 dimensional QFT with flow time as spurious dimension
® t-propagator is the heat kernel K.
® BRS-Ward identities — no counter-terms for the gauge fieds

® Fermions get an extra multiplicative renormalisation
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The gradient flow in QFT Il

v" Monomials renormalise according to the field content
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The gradient flow in QFT Il

v" Monomials renormalise according to the field content

v Correlation functions of monomials of flowed bare fields are finite (almost)
without additional renormalisation

V" This method is regularisation-scheme independent — holds in the lattice!

v Facilitates computation of densities and currents, e.g. condensate,
supercurrent, energy-momentum tensor...

We used this to investigate the phase structure of SU(2) and SU(3) SYM
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Brief review of minimal SYM

1
4

0
3272

Ly =-F+ %X(zp + )N+ FF
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® Vector supermultiplet with one Yang-Mills field A and one Majorana
spinor A in the adjoint representation
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Brief review of minimal SYM

FF

1, 1 0
Lg = ZF + 5)\(¢ + o)A+ 3902

® Vector supermultiplet with one Yang-Mills field A and one Majorana
spinor A in the adjoint representation

® Only supersymmetric theory without scalars and thus similar to QCD

® Expected to have mass gap, confinement and spontaneous breaking of
chiral symmetry
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Brief review of minimal SYM

11/36

FF

_ L 1y 0
LE_4F +2A(1p+ )A+327r2

Vector supermultiplet with one Yang-Mills field A and one Majorana
spinor A in the adjoint representation

Only supersymmetric theory without scalars and thus similar to QCD

Expected to have mass gap, confinement and spontaneous breaking of
chiral symmetry

Low energy degrees of freedom: glueballs, meson-like states, baryon-like
(see Sajid Ali’'s poster)
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At zero temperature

Zy, Centre symmetry

% Not broken through adjoint fermions

* Polyakov loop (PL) vev vanishes
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At zero temperature

Zy, Centre symmetry

*

Not broken through adjoint fermions

*

Polyakov loop (PL) vev vanishes

Chiral symmetry

Anomaly free Zsn, symmetry

Condensate < A\ ># 0 = Zan, — Z»

® A domain wall interpolates NN. degenerated vacua

Chern-Simons theory on domain wall with deconfined quarks
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Thermal phase transitions

® At some T2°°: Phase transition to broken centre symmetry
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Thermal phase transitions

® At some T2°°: Phase transition to broken centre symmetry
® At some TX: Zan, symmetry restored, < A\ >— 0

* From 't Hooft anomaly matching: T9°° < TX
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Thermal phase transitions

® At some T2°°: Phase transition to broken centre symmetry
® At some TX: Zan, symmetry restored, < A\ >— 0

® From 't Hooft anomaly matching: T < TX

We computed the PL and the flowed condensate at different T°

— bound is saturated for SU(2). Evidence for SU(3)
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Computing the condensate

X Additive renormalisation constant needed because of the Wilsonian
fermion discretisation

(AR = Zn(B)((A\)B — bo).
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Computing the condensate

X Additive renormalisation constant needed because of the Wilsonian
fermion discretisation

(AR = Zn(B)((A\)B — bo).

® bg can be fixed so that the condensate vanishes at T'=0
® BUT!: Information at zero temperature lost

® One way out is to use chiral lattice fermions...

v Another way out is the gradient flow
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Gaugino condensate from the gradient flow

® No additive renormalisation constant necessary for the flowed condensate,
even with Wilson fermions
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Gaugino condensate from the gradient flow

® No additive renormalisation constant necessary for the flowed condensate,
even with Wilson fermions

® The flowed condensate is measured on the lattice through

Dirac propagator
(xe(@)) == (tr K(t,2;0,0) S(v,w)  K(t,2;0,w)"
| —

v,w diff eq kernel
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Gaugino condensate from the gradient flow

® No additive renormalisation constant necessary for the flowed condensate,
even with Wilson fermions

® The flowed condensate is measured on the lattice through

Dirac propagator
(xe(@)) == (tr K(t,2;0,0) S(v,w)  K(t,2;0,w)"
| —

v,w diff eq kernel

... The inversion and the fermion adjoint flow are the most expensive part
of the numerics
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Results: SU(2)
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Non-vanishing condensate at zero temperature in the chiral /
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supersymmetric limit
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Results: SU(2)
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® Deconfinement critical temperature coincides with peak of chiral
susceptibility

Deconfinement and chiral restoration phase transitions

occur at the same critical temperature 7' ~ 0.25
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How can we understand/explain this observation?

Mathematically (Witten, 97):

* studied configuration of branes in M-theory, which is in universality

class of N =1 SYM

* showed that (QCD strings <> fundamental strings) can end in
(domain walls <+ D-branes)
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How can we understand/explain this observation?

Qualitatively (Rey):
* Domain wall connects different 6-vacua
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How can we understand/explain this observation?

Qualitatively (Rey):
* Domain wall connects different #-vacua
* Confinement: Monopole cond. (6 = 0), dyons (6 # 0)
* Domain wall colour charged when dyons pass through — confining
string can end there

Wiese, Holland, Campos; 98:

* EFT of PL and condensate with SU(3)
* Witten's observation holds only if chiral restoration and
deconfinement occur simultaneously
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Preliminary results: SU(3
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Preliminary results: SU(3)
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Preliminary results: SU(3)
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Phases of a QFT

® Given a general QFT, it is interesting to study its behaviour at different
energy scales, i.e. its renormalisation group flow.
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Phases of a QFT

® Given a general QFT, it is interesting to study its behaviour at different
energy scales, i.e. its renormalisation group flow.

® IR phases:

I. Gapped, e.g 4d Yang-Mills (YM)

Il. Massless, e.g massless QCD

I1l. Conformal, e.g. theories with IR fixed point (FP)

IV. Non-trivially gapped, i.e. topological QFT, BPS states...

® For a YM theory with fermions, one has different scenarios depending on
Ny and Nc:
1. Small Ny: chiral symmetry breaking (IR massless)
2. N} < Ny < N}: Banks-Zaks (BZ) FP conformal window (IR
conformal)
3. Ny > N}: not asymptotically free
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Conformal window

infrared
fixed point

25 /36

walking

QCD-like

Camilo Lopez

g2

[Desy-Miinster collaboration]
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IR conformal phase

® Gauge invariant operators obtain an anomalous scaling dimension ~ as
they flow
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IR conformal phase

26 / 36

Gauge invariant operators obtain an anomalous scaling dimension ~ as
they flow
v freezes at the BZ fixed point
At the fixed point:

v Particle interpretation fails

v Observables: correlation functions, operator dimensions
Methods to compute observables: Lattice Monte Carlo (LMC), conformal
bootstrap, ...

Within LMC: take mass-deformed theory, i.e. away from the FP and
compute the anomalous dimensions from
v Mass spectrum of the theory
V" Monte Carlo renormalisation group techniques
v Spectral density of Dirac operator (mode number)
v Recently: Gradient flow and RG flow [Carosso, Hasenfratz and Neil,
PRL 121 no.20, 201601]
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IR conformal phase Il

Motivation to study the IR phase of QFT on the lattice
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IR conformal phase Il

27 /36

Motivation to study the IR phase of QFT on the lattice

In general, important to classify theories which become conformal at the IR
It is hard to analitically study non-susy theories.

Near conformal QFTs are important for phenomenology, e.g. technicolor
models

Being able to study RG flow through the GF opens up the possibility to
compute conformal data on the lattice
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Gradient flow vs RG flow

® GF similar to RG: smoothening of the fields <> elimination of high energy
modes
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® GF similar to RG: smoothening of the fields <> elimination of high energy
modes

® YM GF is however not a complete RG transformation:

X Lack of scale transformation (dilatation)
X Lack of normalisation of the fields
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Gradient flow vs RG flow

® GF similar to RG: smoothening of the fields <> elimination of high energy
modes

® YM GF is however not a complete RG transformation:
X Lack of scale transformation (dilatation)
X Lack of normalisation of the fields

® On the lattice:

v/ Consider correlators at long distances
v/ Include renormalisation of the fields by using an exact conserved
current (e.g. vector)
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Gradient flow vs RG flow

® GF similar to RG: smoothening of the fields <> elimination of high energy
modes

® YM GF is however not a complete RG transformation:

X Lack of scale transformation (dilatation)
X Lack of normalisation of the fields

® On the lattice:

v/ Consider correlators at long distances
v/ Include renormalisation of the fields by using an exact conserved
current (e.g. vector)

® GF allows for blocked fields without having to know the blocked action

[Carosso, Hasenfratz and Neil]
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GF and RG flow

® Gradient Flow: ¢ — ¢;. Supression of high momentum modes
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GF and RG flow

® Gradient Flow: ¢ — ¢;. Supression of high momentum modes

® RG Transformation:

a—ad =ba g—4q m — m/

(0(0)0(0)) g.m = b1 F70(O(0)O(20 /b)) g7,
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GF and RG flow

® Gradient Flow: ¢ — ¢;. Supression of high momentum modes

® RG Transformation:

a—ad=ba g—g¢g m — m/

(0(0)O(w0))g,m = b1 T70HO0)O(w0 /b)) g7,
® RHS: Monte Carlo RG (MCRG)
(O0)O(z0/b)) g ,m» = (Os(0)Ob(0/b)) g,m

Op=0(¢p)
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GF and RG flow

® Gradient Flow: ¢ — ¢;. Supression of high momentum modes

® RG Transformation:

a—ad=ba g—g¢g m — m/

(0(0)O(w0))g,m = b1 T70HO0)O(w0 /b)) g7,
® RHS: Monte Carlo RG (MCRG)
(O0)O(z0/b)) g ,m» = (Os(0)Ob(0/b)) g,m

Op=0(¢p)

* Relate blocked and flowed fields through ¢, (zs) = %"/, (ba) and
Vtoch
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GF and RG flow

® Gradient Flow: ¢ — ¢;. Supression of high momentum modes

® RG Transformation:

a—ad =ba g—g m —m/

(0(0)O(w0))g,m = b1 T70HO0)O(w0 /b)) g7,
® RHS: Monte Carlo RG (MCRG)
(O0)O(z0/b)) g ,m» = (Os(0)Ob(0/b)) g,m

Op=0(¢p)

* Relate blocked and flowed fields through ¢, (zs) = %"/, (ba) and
Vtoch

<Ot(0)0t(x0)> b2A0—2"OA¢7

= A; = d; + v (canonical + anomalous dim)
(0(0)O(z0))
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GF and RG flow I

® Get rid of A, through conserved operator V (v = 0)

_(00)0i(w0)) ([ VOV(0)) O™ o satae/adya
Ro(t:0) = (50)0(x0) (<V<o>vt(xo>>) L
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GF and RG flow I

® Get rid of A, through conserved operator V (v = 0)

_ 00)0u0)) ( VOVED "™ s srinse
Roltz0) = (i) v

® The mass anomalous dimension of the operator O can be then defined as

_log(Ro(t1)/Ro(tz2))
100 = e Vi va)
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Low energy adjoint QCD from GF

Q1: For which number of flavours is SU(2) adjoint QCD
(near-)conformal?

Q2: What is the value of the anomalous dimension?
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Low energy adjoint QCD from GF

Q1: For which number of flavours is SU(2) adjoint QCD
(near-)conformal?

Q2: What is the value of the anomalous dimension?

Compute RG flow of « with the GF:
YV = lattice vector current

O = pseudoscalar meson
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Q1: For which number of flavours is SU(2) adjoint QCD
(near-)conformal?

Q2: What is the value of the anomalous dimension?

Compute RG flow of « with the GF:
YV = lattice vector current

O = pseudoscalar meson

= Look for freezing of ~ in the RG flow
= Extrapolate ~y towards the deep IR
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Preliminary results
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Conclusions

® The gradient flow method as smoothing operator:

* Correlators of flowed composite local operators are renormalised
* This facilitates computation of densities and currents on the lattice
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® Chiral and center symmetries intertwined in super Yang-Mills theory

* SU(2): second order phase transition
* SU(3): first order phase transition

® Adjoint QCD with Ny =1,3/2,2 is at least near-conformal
® Ny =1 has large anomalous dimension — may be relevant for BSM
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