Exploring the phases of Yang-Mills theory with adjoint matter through the gradient flow

Camilo López

Friedrich Schiller University of Jena

with Georg Bergner and Stefano Piemonte

SIFT 2019, Jena

Camilo Lopez QFT phases from the gradient flow

- 1. The gradient flow: introduction
- 2. The gradient flow and renormalisation
- 3. Thermal super Yang-Mills
- 4. (Near) conformal field theories
- 5. Gradient flow and RG flow
- 6. Mass anomalous dimension of adjoint QCD

1. The gradient flow: introduction

- 2. The gradient flow and renormalisation
- 3. Thermal super Yang-Mills
- 4. (Near) conformal field theories
- 5. Gradient flow and RG flow
- 6. Mass anomalous dimension of adjoint QCD

• A gradient flow (curve of steepest descent) in a linear space M is a curve $\gamma : \mathbb{R} \to M$, such that for a functional $S : M \to \mathbb{R}$

$$\gamma'(t) = -\nabla S(\gamma(t))$$

• A gradient flow (curve of steepest descent) in a linear space M is a curve $\gamma : \mathbb{R} \to M$, such that for a functional $S : M \to \mathbb{R}$

$$\gamma'(t) = -\nabla S(\gamma(t))$$

• For a Yang-Mills (YM) field A one defines the functional as the action

$$S(A) = \int \frac{1}{2} |dA|^2 = \int \frac{1}{2} |F_A|^2$$

• A gradient flow (curve of steepest descent) in a linear space M is a curve $\gamma : \mathbb{R} \to M$, such that for a functional $S : M \to \mathbb{R}$

$$\gamma'(t) = -\nabla S(\gamma(t))$$

• For a Yang-Mills (YM) field A one defines the functional as the action

$$S(A) = \int \frac{1}{2} |dA|^2 = \int \frac{1}{2} |F_A|^2$$

And the gradient flow is given by the differential equations

 $\begin{array}{ll} \partial_t B_\mu = D_\nu G_{\nu\mu}, & B_\mu |_{t=0} = A_\mu \text{: flow of gauge fields} \\ \partial_t \chi = D_\mu D^\mu \chi, & \chi |_{t=0} = \psi \text{: flow of fermion fields} \end{array}$

• A gradient flow (curve of steepest descent) in a linear space M is a curve $\gamma: \mathbb{R} \to M$, such that for a functional $S: M \to \mathbb{R}$

$$\gamma'(t) = -\nabla S(\gamma(t))$$

• For a Yang-Mills (YM) field A one defines the functional as the action

$$S(A) = \int \frac{1}{2} |dA|^2 = \int \frac{1}{2} |F_A|^2$$

And the gradient flow is given by the differential equations

 $\begin{array}{ll} \partial_t B_\mu = D_\nu G_{\nu\mu}, \quad B_\mu |_{t=0} = A_\mu \text{: flow of gauge fields} \\ \partial_t \chi = D_\mu D^\mu \chi, \quad \chi |_{t=0} = \psi \text{: flow of fermion fields} \end{array}$

• These evolve the fields to local minima of the action

What does the flow imply for the quantum theory?

1. The gradient flow: introduction

- 2. The gradient flow and renormalisation
- 3. Thermal super Yang-Mills
- 4. (Near) conformal field theories
- 5. Gradient flow and RG flow
- 6. Mass anomalous dimension of adjoint QCD

• The flow has a smoothening effect on the fields, which are Gaussian-like smeared over an effective radius $r_t=\sqrt{8t}$

$$B_{\mu}(t,x) = \int d^{D}y \ K_{t}(x-y)A_{\mu}(y) + \text{non linear terms},$$
$$K_{t}(z) = \int \frac{d^{D}p}{(2\pi)^{D}} e^{ipz} e^{-tp^{2}} \quad (\text{at leading order})$$

• e^{-tp^2} is UV cut-off for t > 0. It remains at all orders in perturbation theory [Lüscher and Weisz,arXiv:1405.3180]

• D+1 dimensional QFT with flow time as spurious dimension

- D+1 dimensional QFT with flow time as spurious dimension
- t-propagator is the heat kernel K.

- D+1 dimensional QFT with flow time as spurious dimension
- t-propagator is the heat kernel K.
- BRS-Ward identities \rightarrow no counter-terms for the gauge fields

- D+1 dimensional QFT with flow time as spurious dimension
- t-propagator is the heat kernel K.
- BRS-Ward identities \rightarrow no counter-terms for the gauge fields
- Fermions get an extra multiplicative renormalisation

 $\checkmark\,$ Monomials renormalise according to the field content

- $\checkmark\,$ Monomials renormalise according to the field content
- ✓ Correlation functions of monomials of flowed bare fields are finite (almost) without additional renormalisation

- $\checkmark\,$ Monomials renormalise according to the field content
- ✓ Correlation functions of monomials of flowed bare fields are finite (almost) without additional renormalisation
- $\checkmark\,$ This method is regularisation-scheme independent $\rightarrow\,$ holds in the lattice!

- $\checkmark\,$ Monomials renormalise according to the field content
- ✓ Correlation functions of monomials of flowed bare fields are finite (almost) without additional renormalisation
- $\checkmark\,$ This method is regularisation-scheme independent \rightarrow holds in the lattice!
- ✓ Facilitates computation of densities and currents, e.g. condensate, supercurrent, energy-momentum tensor...

- $\checkmark\,$ Monomials renormalise according to the field content
- ✓ Correlation functions of monomials of flowed bare fields are finite (almost) without additional renormalisation
- $\checkmark\,$ This method is regularisation-scheme independent $\rightarrow\,$ holds in the lattice!
- ✓ Facilitates computation of densities and currents, e.g. condensate, supercurrent, energy-momentum tensor...

We used this to investigate the phase structure of SU(2) and SU(3) SYM

- 1. The gradient flow: introduction
- 2. The gradient flow and renormalisation
- 3. Thermal super Yang-Mills
- 4. (Near) conformal field theories
- 5. Gradient flow and RG flow
- 6. Mass anomalous dimension of adjoint QCD

$$\mathcal{L}_{\rm E} = \frac{1}{4}F^2 + \frac{1}{2}\bar{\lambda}(\not\!\!\!D + m_{\bar{g}})\lambda + \frac{\theta}{32\pi^2}\tilde{F}F$$

$$\mathcal{L}_{\rm E} = \frac{1}{4}F^2 + \frac{1}{2}\bar{\lambda}(\not\!\!\!D + m_{\tilde{g}})\lambda + \frac{\theta}{32\pi^2}\tilde{F}F$$

• Vector supermultiplet with one Yang-Mills field A and one Majorana spinor λ in the adjoint representation

$$\mathcal{L}_{\rm E} = \frac{1}{4}F^2 + \frac{1}{2}\bar{\lambda}(\not\!\!\!D + m_{\bar{g}})\lambda + \frac{\theta}{32\pi^2}\tilde{F}F$$

- Vector supermultiplet with one Yang-Mills field A and one Majorana spinor λ in the adjoint representation
- Only supersymmetric theory without scalars and thus similar to QCD

$$\mathcal{L}_{\rm E} = \frac{1}{4}F^2 + \frac{1}{2}\bar{\lambda}(\not\!\!\!D + m_{\bar{g}})\lambda + \frac{\theta}{32\pi^2}\tilde{F}F$$

- Vector supermultiplet with one Yang-Mills field A and one Majorana spinor λ in the adjoint representation
- Only supersymmetric theory without scalars and thus similar to QCD

 Expected to have mass gap, confinement and spontaneous breaking of chiral symmetry

$$\mathcal{L}_{\rm E} = \frac{1}{4}F^2 + \frac{1}{2}\bar{\lambda}(\not\!\!\!D + m_{\bar{g}})\lambda + \frac{\theta}{32\pi^2}\tilde{F}F$$

- Vector supermultiplet with one Yang-Mills field A and one Majorana spinor λ in the adjoint representation
- Only supersymmetric theory without scalars and thus similar to QCD

- Expected to have mass gap, confinement and spontaneous breaking of chiral symmetry
- Low energy degrees of freedom: glueballs, meson-like states, baryon-like (see Sajid Ali's poster)

Z_{N_c} Centre symmetry

- * Not broken through adjoint fermions
- * Polyakov loop (PL) vev vanishes

Z_{N_c} Centre symmetry

- * Not broken through adjoint fermions
- * Polyakov loop (PL) vev vanishes

Chiral symmetry

- Anomaly free Z_{2N_c} symmetry
- Condensate $\langle \bar{\lambda}\lambda \rangle \neq 0 \Rightarrow Z_{2N_c} \rightarrow Z_2$
- A domain wall interpolates N_c degenerated vacua
- · Chern-Simons theory on domain wall with deconfined quarks

• At some T_c^{dec} : Phase transition to broken centre symmetry

- At some T_c^{dec} : Phase transition to broken centre symmetry
- At some \mathbf{T}_c^{χ} : Z_{2N_c} symmetry restored, $< \bar{\lambda}\lambda > \rightarrow 0$

- At some T_c^{dec} : Phase transition to broken centre symmetry
- At some T^{χ}_{c} : $Z_{2N_{c}}$ symmetry restored, $< \bar{\lambda}\lambda > \rightarrow 0$
- From 't Hooft anomaly matching: $T_c^{dec} \leq T_c^{\chi}$

- At some T_c^{dec} : Phase transition to broken centre symmetry
- At some \mathbf{T}_{c}^{χ} : $Z_{2N_{c}}$ symmetry restored, $\langle \bar{\lambda}\lambda \rangle \rightarrow 0$
- From 't Hooft anomaly matching: $T_c^{dec} \leq T_c^{\chi}$

We computed the PL and the flowed condensate at different \boldsymbol{T}

 \rightarrow bound is saturated for SU(2). Evidence for SU(3)

$$\langle \lambda \lambda \rangle_{\mathrm{R}} = Z_{\lambda\lambda}(\beta)(\langle \lambda \lambda \rangle_{\mathrm{B}} - \mathbf{b_0}).$$

$$\langle \lambda \lambda \rangle_{\mathrm{R}} = Z_{\lambda\lambda}(\beta)(\langle \lambda \lambda \rangle_{\mathrm{B}} - \mathbf{b_0}).$$

• $\mathbf{b_0}$ can be fixed so that the condensate vanishes at T = 0

$$\langle \lambda \lambda \rangle_{\mathrm{R}} = Z_{\lambda \lambda}(\beta)(\langle \lambda \lambda \rangle_{\mathrm{B}} - \mathbf{b_0}).$$

- $\mathbf{b_0}$ can be fixed so that the condensate vanishes at T = 0
- BUT!: Information at zero temperature lost

$$\langle \lambda \lambda \rangle_{\mathrm{R}} = Z_{\lambda \lambda}(\beta) (\langle \lambda \lambda \rangle_{\mathrm{B}} - \mathbf{b_0}).$$

- $\mathbf{b_0}$ can be fixed so that the condensate vanishes at T = 0
- BUT!: Information at zero temperature lost
- One way out is to use chiral lattice fermions...

X Additive renormalisation constant needed because of the Wilsonian fermion discretisation

$$\langle \lambda \lambda \rangle_{\mathrm{R}} = Z_{\lambda \lambda}(\beta) (\langle \lambda \lambda \rangle_{\mathrm{B}} - \mathbf{b_0}).$$

- $\mathbf{b_0}$ can be fixed so that the condensate vanishes at T = 0
- BUT!: Information at zero temperature lost
- One way out is to use chiral lattice fermions...

$\checkmark\,$ Another way out is the gradient flow

Gaugino condensate from the gradient flow

• No additive renormalisation constant necessary for the flowed condensate, even with Wilson fermions

Gaugino condensate from the gradient flow

- No additive renormalisation constant necessary for the flowed condensate, even with Wilson fermions
- The flowed condensate is measured on the lattice through

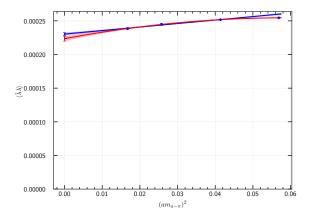
$$\langle \chi_t(x) \rangle = -\sum_{v,w} \left\langle \operatorname{tr} \left\{ \underbrace{K(t,x;0,v)}_{\text{diff eq kernel}} \overbrace{S(v,w)}^{\text{Dirac propagator}} K(t,x;0,w)^{\dagger} \right\} \right\rangle$$

Gaugino condensate from the gradient flow

- No additive renormalisation constant necessary for the flowed condensate, even with Wilson fermions
- The flowed condensate is measured on the lattice through

$$\langle \chi_t(x) \rangle = -\sum_{v,w} \left\langle \operatorname{tr} \left\{ \underbrace{K(t,x;0,v)}_{\text{diff eq kernel}} \overbrace{S(v,w)}^{\text{Dirac propagator}} K(t,x;0,w)^{\dagger} \right\} \right\rangle$$

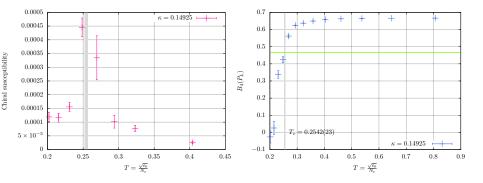
 $\ldots The inversion$ and the fermion adjoint flow are the most expensive part of the numerics



Non-vanishing condensate at zero temperature in the chiral / supersymmetric limit

Camilo Lopez QFT phases from the gradient flow

Results: SU(2)



 Deconfinement critical temperature coincides with peak of chiral susceptibility

Deconfinement and chiral restoration phase transitions occur at the same critical temperature $T\sim 0.25$

17 / 36

Mathematically (Witten, 97):

- * studied configuration of branes in M-theory, which is in universality class of ${\cal N}=1~{\rm SYM}$
- * showed that (QCD strings ↔ fundamental strings) can end in (domain walls ↔ D-branes)

* Domain wall connects different θ -vacua

- * Domain wall connects different θ -vacua
- * Confinement: Monopole cond. ($\theta = 0$), dyons ($\theta \neq 0$)

- * Domain wall connects different θ -vacua
- * Confinement: Monopole cond. ($\theta = 0$), dyons ($\theta \neq 0$)
- * Domain wall colour charged when dyons pass through \rightarrow confining string can end there

- * Domain wall connects different θ -vacua
- * Confinement: Monopole cond. ($\theta = 0$), dyons ($\theta \neq 0$)
- * Domain wall colour charged when dyons pass through \rightarrow confining string can end there

Wiese, Holland, Campos; 98:

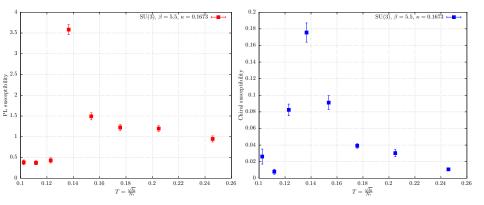
* EFT of PL and condensate with SU(3)

- * Domain wall connects different θ -vacua
- * Confinement: Monopole cond. ($\theta = 0$), dyons ($\theta \neq 0$)
- * Domain wall colour charged when dyons pass through \rightarrow confining string can end there

Wiese, Holland, Campos; 98:

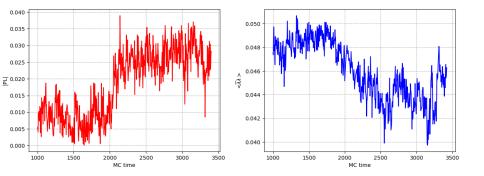
- * EFT of PL and condensate with SU(3)
- * Witten's observation holds only if chiral restoration and deconfinement occur simultaneously

Preliminary results: SU(3)



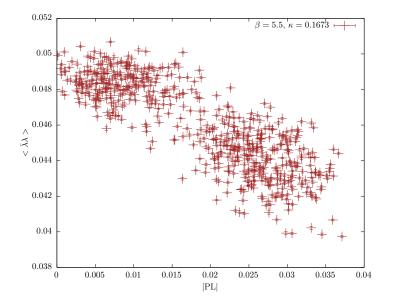
Camilo Lopez QFT phases from the gradient flow

Preliminary results: SU(3)



Camilo Lopez QFT phases from the gradient flow

Preliminary results: SU(3)



Camilo Lopez

QFT phases from the gradient flow

- 1. The gradient flow: introduction
- 2. The gradient flow and renormalisation
- 3. Thermal super Yang-Mills
- 4. (Near) conformal field theories
- 5. Gradient flow and RG flow
- 6. Mass anomalous dimension of adjoint QCD

• Given a general QFT, it is interesting to study its behaviour at different energy scales, i.e. its renormalisation group flow.

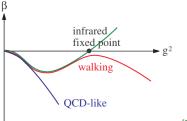
- Given a general QFT, it is interesting to study its behaviour at different energy scales, i.e. its renormalisation group flow.
- IR phases:

- Given a general QFT, it is interesting to study its behaviour at different energy scales, i.e. its renormalisation group flow.
- IR phases:
 - I. Gapped, e.g 4d Yang-Mills (YM)
 - II. Massless, e.g massless QCD
 - III. Conformal, e.g. theories with IR fixed point (FP)
 - IV. Non-trivially gapped, i.e. topological QFT, BPS states...

- Given a general QFT, it is interesting to study its behaviour at different energy scales, i.e. its renormalisation group flow.
- IR phases:
 - I. Gapped, e.g 4d Yang-Mills (YM)
 - II. Massless, e.g massless QCD
 - III. Conformal, e.g. theories with IR fixed point (FP)
 - IV. Non-trivially gapped, i.e. topological QFT, BPS states...
- For a YM theory with fermions, one has different scenarios depending on $N_{\it f}$ and $N_{\it c}$:

- Given a general QFT, it is interesting to study its behaviour at different energy scales, i.e. its renormalisation group flow.
- IR phases:
 - I. Gapped, e.g 4d Yang-Mills (YM)
 - II. Massless, e.g massless QCD
 - III. Conformal, e.g. theories with IR fixed point (FP)
 - IV. Non-trivially gapped, i.e. topological QFT, BPS states...
- For a YM theory with fermions, one has different scenarios depending on $N_{\it f}$ and $N_{\it c}$:
 - 1. Small N_f: chiral symmetry breaking (IR massless)
 - 2. $N_f^l < N_f < N_f^u$: Banks-Zaks (BZ) FP conformal window (IR conformal)
 - 3. $N_f > N_f^u$: not asymptotically free

Conformal window



[Desy-Münster collaboration]

- Gauge invariant operators obtain an anomalous scaling dimension γ as they flow

- Gauge invariant operators obtain an anomalous scaling dimension γ as they flow
- γ freezes at the BZ fixed point

- Gauge invariant operators obtain an anomalous scaling dimension γ as they flow
- γ freezes at the BZ fixed point
- At the fixed point:
 - ✓ Particle interpretation fails
 - ✓ Observables: correlation functions, operator dimensions

- Gauge invariant operators obtain an anomalous scaling dimension γ as they flow
- γ freezes at the BZ fixed point
- At the fixed point:
 - ✓ Particle interpretation fails
 - ✓ Observables: correlation functions, operator dimensions
- Methods to compute observables: Lattice Monte Carlo (LMC), conformal bootstrap, ...

- Gauge invariant operators obtain an anomalous scaling dimension γ as they flow
- γ freezes at the BZ fixed point
- At the fixed point:
 - ✓ Particle interpretation fails
 - $\checkmark\,$ Observables: correlation functions, operator dimensions
- Methods to compute observables: Lattice Monte Carlo (LMC), conformal bootstrap, ...
- Within LMC: take mass-deformed theory, i.e. away from the FP and compute the anomalous dimensions from
 - ✓ Mass spectrum of the theory
 - Monte Carlo renormalisation group techniques
 - Spectral density of Dirac operator (mode number)
 - ✓ Recently: Gradient flow and RG flow [Carosso, Hasenfratz and Neil, PRL 121 no.20, 201601]

• In general, important to classify theories which become conformal at the IR

- In general, important to classify theories which become conformal at the IR
- It is hard to analitically study non-susy theories.

- In general, important to classify theories which become conformal at the IR
- It is hard to analitically study non-susy theories.
- Near conformal QFTs are important for phenomenology, e.g. technicolor models

- In general, important to classify theories which become conformal at the IR
- It is hard to analitically study non-susy theories.
- Near conformal QFTs are important for phenomenology, e.g. technicolor models
- Being able to study RG flow through the GF opens up the possibility to compute conformal data on the lattice

- 1. The gradient flow: introduction
- 2. The gradient flow and renormalisation
- 3. Thermal super Yang-Mills
- 4. (Near) conformal field theories
- 5. Gradient flow and RG flow
- 6. Mass anomalous dimension of adjoint QCD

 GF similar to RG: smoothening of the fields ↔ elimination of high energy modes

- GF similar to RG: smoothening of the fields ↔ elimination of high energy modes
- YM GF is however not a complete RG transformation:
 - X Lack of scale transformation (dilatation)
 - X Lack of normalisation of the fields

- GF similar to RG: smoothening of the fields ↔ elimination of high energy modes
- YM GF is however not a complete RG transformation:
 - X Lack of scale transformation (dilatation)
 - X Lack of normalisation of the fields
- On the lattice:
 - ✓ Consider correlators at long distances
 - ✓ Include renormalisation of the fields by using an exact conserved current (e.g. vector)

- GF similar to RG: smoothening of the fields ↔ elimination of high energy modes
- YM GF is however not a complete RG transformation:
 - X Lack of scale transformation (dilatation)
 - X Lack of normalisation of the fields
- On the lattice:
 - ✓ Consider correlators at long distances
 - ✓ Include renormalisation of the fields by using an exact conserved current (e.g. vector)
- GF allows for blocked fields without having to know the blocked action

[Carosso, Hasenfratz and Neil]

• <u>Gradient Flow</u>: $\phi \rightarrow \phi_t$. Supression of high momentum modes

- <u>Gradient Flow</u>: $\phi \rightarrow \phi_t$. Supression of high momentum modes
- RG Transformation:

$$a \to a' = b a \qquad g \to g' \qquad m \to m'$$

$$\langle \mathcal{O}(0)\mathcal{O}(x_0)\rangle_{g,m} = b^{-2(d_{\mathcal{O}}+\gamma_{\mathcal{O}})} \langle \mathcal{O}(0)\mathcal{O}(x_0/b)\rangle_{g',m'}$$

- <u>Gradient Flow</u>: $\phi \rightarrow \phi_t$. Supression of high momentum modes
- <u>RG Transformation</u>:

$$a \to a' = b a \qquad g \to g' \qquad m \to m'$$

$$\langle \mathcal{O}(0)\mathcal{O}(x_0)\rangle_{g,m} = b^{-2(d_{\mathcal{O}}+\gamma_{\mathcal{O}})} \langle \mathcal{O}(0)\mathcal{O}(x_0/b)\rangle_{g',m'}$$

• RHS: Monte Carlo RG (MCRG)

$$\langle \mathcal{O}(0)\mathcal{O}(x_0/b)\rangle_{g',m'} = \underbrace{\langle \mathcal{O}_b(0)\mathcal{O}_b(x_0/b)\rangle_{g,m}}_{\mathcal{O}_b \equiv \mathcal{O}(\phi_b)}$$

- <u>Gradient Flow</u>: $\phi \rightarrow \phi_t$. Supression of high momentum modes
- <u>RG Transformation</u>:

$$a \to a' = b a \qquad g \to g' \qquad m \to m'$$

$$\langle \mathcal{O}(0)\mathcal{O}(x_0)\rangle_{g,m} = b^{-2(d_{\mathcal{O}}+\gamma_{\mathcal{O}})} \langle \mathcal{O}(0)\mathcal{O}(x_0/b)\rangle_{g',m'}$$

• RHS: Monte Carlo RG (MCRG)

$$\langle \mathcal{O}(0)\mathcal{O}(x_0/b)\rangle_{g',m'} = \underbrace{\langle \mathcal{O}_b(0)\mathcal{O}_b(x_0/b)\rangle_{g,m}}_{\mathcal{O}_b \equiv \mathcal{O}(\phi_b)}$$

- Relate blocked and flowed fields through $\phi_b(x_b)=b^{d_\phi+\eta/2}\phi_t(bx_b)$ and $\sqrt{t}\propto b$

- <u>Gradient Flow</u>: $\phi \rightarrow \phi_t$. Supression of high momentum modes
- <u>RG Transformation</u>:

$$a \to a' = b a \qquad g \to g' \qquad m \to m'$$

$$\langle \mathcal{O}(0)\mathcal{O}(x_0)\rangle_{g,m} = b^{-2(d_{\mathcal{O}}+\gamma_{\mathcal{O}})} \langle \mathcal{O}(0)\mathcal{O}(x_0/b)\rangle_{g',m'}$$

• RHS: Monte Carlo RG (MCRG)

$$\langle \mathcal{O}(0)\mathcal{O}(x_0/b) \rangle_{g',m'} = \underbrace{\langle \mathcal{O}_b(0)\mathcal{O}_b(x_0/b) \rangle_{g,m}}_{\mathcal{O}_b \equiv \mathcal{O}(\phi_b)}$$

• Relate blocked and flowed fields through $\phi_b(x_b) = b^{d_\phi + \eta/2} \phi_t(bx_b)$ and $\sqrt{t} \propto b$

$$\left(\frac{\langle \mathcal{O}_t(0)\mathcal{O}_t(x_0)\rangle}{\langle \mathcal{O}(0)\mathcal{O}(x_0)\rangle} = b^{2\Delta_{\mathcal{O}}-2n_{\mathcal{O}\Delta_{\phi}}}, \quad \Delta_i = d_i + \gamma_i \text{ (canonical + anomalous dim)}\right)$$

• Get rid of Δ_{ϕ} through conserved operator \mathcal{V} ($\gamma_{\mathcal{V}} = 0$)

$$\mathcal{R}_{\mathcal{O}}(t,x_0) = \frac{\langle \mathcal{O}(0)\mathcal{O}_t(x_0)\rangle}{\langle \mathcal{O}(0)\mathcal{O}(x_0)\rangle} \left(\frac{\langle \mathcal{V}(0)\mathcal{V}(x_0)\rangle}{\langle \mathcal{V}(0)\mathcal{V}_t(x_0)\rangle}\right)^{n_{\mathcal{O}}/n_{\mathcal{V}}} \propto t^{\gamma_{\mathcal{O}}/2 + d_{\mathcal{O}}/2 - d_{\mathcal{V}}/2}$$

• Get rid of Δ_{ϕ} through conserved operator \mathcal{V} ($\gamma_{\mathcal{V}} = 0$)

$$\mathcal{R}_{\mathcal{O}}(t,x_0) = \frac{\langle \mathcal{O}(0)\mathcal{O}_t(x_0)\rangle}{\langle \mathcal{O}(0)\mathcal{O}(x_0)\rangle} \left(\frac{\langle \mathcal{V}(0)\mathcal{V}(x_0)\rangle}{\langle \mathcal{V}(0)\mathcal{V}_t(x_0)\rangle}\right)^{n_{\mathcal{O}}/n_{\mathcal{V}}} \propto t^{\gamma_{\mathcal{O}}/2 + d_{\mathcal{O}}/2 - d_{\mathcal{V}}/2}$$

• The mass anomalous dimension of the operator ${\cal O}$ can be then defined as

$$\gamma_{\mathcal{O}}(\bar{t}) = \frac{\log(\mathcal{R}_{\mathcal{O}}(t_1)/\mathcal{R}_{\mathcal{O}}(t_2))}{\log\left(\sqrt{t_1}/\sqrt{t_2}\right)}$$

- 1. The gradient flow: introduction
- 2. The gradient flow and renormalisation
- 3. Thermal super Yang-Mills
- 4. (Near) conformal field theories
- 5. Gradient flow and RG flow
- 6. Mass anomalous dimension of adjoint QCD

Low energy adjoint QCD from GF

Q1: For which number of flavours is SU(2) adjoint QCD (near-)conformal?

Q2: What is the value of the anomalous dimension?

Low energy adjoint QCD from GF

Q1: For which number of flavours is SU(2) adjoint QCD (near-)conformal?

Q2: What is the value of the anomalous dimension?

Compute RG flow of γ with the GF:

 $\mathcal{V} = \mathsf{lattice} \ \mathsf{vector} \ \mathsf{current}$

 $\mathcal{O} = \mathsf{pseudoscalar} \mathsf{meson}$

Low energy adjoint QCD from GF

Q1: For which number of flavours is SU(2) adjoint QCD (near-)conformal?

Q2: What is the value of the anomalous dimension?

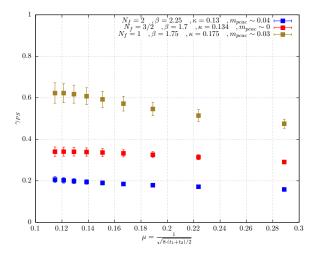
Compute RG flow of γ with the GF:

 $\mathcal{V} = \mathsf{lattice} \ \mathsf{vector} \ \mathsf{current}$

 $\mathcal{O} = \mathsf{pseudoscalar} \mathsf{meson}$

- \Rightarrow Look for freezing of γ in the RG flow
- \Rightarrow Extrapolate γ towards the deep IR

Preliminary results



- The gradient flow method as smoothing operator:
 - * Correlators of flowed composite local operators are renormalised
 - * This facilitates computation of densities and currents on the lattice

- The gradient flow method as smoothing operator:
 - * Correlators of flowed composite local operators are renormalised
 - * This facilitates computation of densities and currents on the lattice
- The gradient flow and RG flow:
 - * GF is part of RG transformation
 - * In principle possible to compute CFT data like anomalous dimensions on the lattice

- The gradient flow method as smoothing operator:
 - * Correlators of flowed composite local operators are renormalised
 - * This facilitates computation of densities and currents on the lattice
- The gradient flow and RG flow:
 - * GF is part of RG transformation
 - * In principle possible to compute CFT data like anomalous dimensions on the lattice

- Chiral and center symmetries intertwined in super Yang-Mills theory
 - * SU(2): second order phase transition
 - * SU(3): first order phase transition

- The gradient flow method as smoothing operator:
 - * Correlators of flowed composite local operators are renormalised
 - * This facilitates computation of densities and currents on the lattice
- The gradient flow and RG flow:
 - * GF is part of RG transformation
 - * In principle possible to compute CFT data like anomalous dimensions on the lattice

- Chiral and center symmetries intertwined in super Yang-Mills theory
 - * SU(2): second order phase transition
 - * SU(3): first order phase transition
- Adjoint QCD with $N_f = 1, 3/2, 2$ is at least near-conformal

- The gradient flow method as smoothing operator:
 - * Correlators of flowed composite local operators are renormalised
 - * This facilitates computation of densities and currents on the lattice
- The gradient flow and RG flow:
 - * GF is part of RG transformation
 - * In principle possible to compute CFT data like anomalous dimensions on the lattice

- Chiral and center symmetries intertwined in super Yang-Mills theory
 - * SU(2): second order phase transition
 - * SU(3): first order phase transition
- Adjoint QCD with $N_f = 1, 3/2, 2$ is at least near-conformal
- $N_f = 1$ has large anomalous dimension \rightarrow may be relevant for BSM