WIs and Baryonic States in $\mathcal{N}=1$ SUSY Yang-Mills theory on the lattice

S. Ali¹, G. Bergner², H. Gerber¹, C. Lopez², I. Montvay³, G. Münster¹, S. Piemonte⁴, P. Scior⁵ ¹Institut für Theoretische Physik, Universität Münster, Germany; ²Institut für Theoretische Physik, Universität Jena, Germany; ³Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany; ⁴Institut für Theoretische Physik, Universität Regensburg, Germany; ⁵Fakultät für Physik, Universität Bielefeld, Germany

 $F_{\mu\nu} = -ig F^a_{\mu\nu} T^a = \partial_\mu A_\nu - \partial_\nu A_\mu + [A_\mu, A_\nu]$

- Covariant derivative in adjoint representation: $\mathcal{D}_{\mu}\lambda^{a} = \partial_{\mu}\lambda^{a} + g f_{abc}A^{b}_{\mu}\lambda^{c}, \qquad a = 1, \dots, N^{2}_{c} - 1,$
- Vector supermultiplet:

"Gluon" 1) Gauge field $A^a_\mu(x)$, 2) Majorana-spinor field $\lambda^a(x)$, $\overline{\lambda} = \lambda^T C$, "Gluino"

• **SUSY** transformations (on-shell):

$$\begin{split} \delta A^a_\mu &= -2g\overline{\lambda}^a \gamma_\mu \varepsilon \,, \\ \delta \lambda^a &= -\frac{\mathrm{i}}{q} \sigma_{\mu\nu} F^{\ a}_{\mu\nu} \varepsilon \end{split}$$

• In contrast to QCD: 1) λ is Majorana spinor field, " $N_f = \frac{1}{2}$ " 2) adjoint representation of $SU(N_c)$ • Gluino mass term $m_{\tilde{q}} \overline{\lambda}^a \lambda^a$ breaks SUSY softly

Motivation

- SYM: simplest model with SUSY and local gauge invariance
- Part of the supersymmetrically extended Standard Model
- Possible connection to ordinary QCD
- Similar to QCD:
 - 1) Asymptotic freedom
 - 2) Confinement

 $V_{ab,x\mu} = 2 \operatorname{Tr} \left(U_{x\mu}^{\dagger} T_a U_{x\mu} T_b \right)$, adjoint link variables We study gauge group SU(3).

Fermion integration

Fermionic action

$$S_f = \frac{1}{2}\overline{\lambda}Q\lambda = \frac{1}{2}\lambda M\lambda, \qquad M \equiv CQ$$

Pfaffian $\int [d\lambda] e^{-S_f} = Pf(M) = \pm \sqrt{\det Q}$

Effective gauge field action

$$S_{\text{eff}} = -\frac{\beta}{N_c} \sum_{p} \operatorname{Re} \operatorname{Tr} U_p - \frac{1}{2} \log \det Q[U]$$

Include sign Pf(M) in the observables.

Monte Carlo algorithm

- Chiral extrapolations are performed
- Mass gap between different states due to soft breaking of SUSY is observed
- Mass degenerate chiral supermultiplet is formed as expected from predictions
- Gauge group SU(3) is considered

Baryonic States

Baryonic correlation functions can be constructed from Rarita Schwinger field

$$W_{\mu}(x) = t_{abc} \lambda_a(x) \left(\lambda_b^T(x) C \gamma_{\mu} \lambda_c(x) \right).$$

• Baryonic states are not predicted by the effective actions

• Constructed from three gluino fields in analogy with QCD

• Consists of two parts; the sunset piece and the spectacle piece

• Stochastic estimator technique is used for spectacle piece

3) Numerical lattice simulation of bound states

Solution of non-perturbative Problems:

- Spontaneous breaking of chiral symmetry \leftrightarrow Gluino condensate
- Spectrum of bound states \rightarrow
- Confinement of static quarks
- Spontaneous breaking of SUSY?
- SUSY restoration on the lattice
- Check predictions from effective Lagrangeans (Veneziano, Yankielowicz . . .)

Spontaneous breaking of chiral symmetry

 $\mathsf{U}(1)_{\lambda}:\ \lambda' = \mathrm{e}^{-\mathrm{i}\varphi\gamma_{5}}\lambda\ , \overline{\lambda}' = \overline{\lambda}\,\mathrm{e}^{-\mathrm{i}\varphi\gamma_{5}}\leftrightarrow \mathsf{R}\text{-symmetry,}\ J_{\mu} = \overline{\lambda}\gamma_{\mu}\gamma_{5}\lambda$ Anomaly: $\partial^{\mu} J_{\mu} = \frac{N_c g^2}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} F^a_{\mu\nu} F^a_{\rho\sigma}$ breaks $U(1)_{\lambda} \to Z_{2Nc}$ Spontaneous breaking $Z_{2N_c} \rightarrow Z_2$ by Gluino condensate $<\lambda\lambda>\neq 0$ first order phase transition at $m_{\tilde{q}} = 0$ \leftrightarrow $N_c = 2: < \lambda \lambda > = \pm C \Lambda^3$

• Monte Carlo Simulation has been used to generate configurations. • Each configuration contains numerical values of link variables (U). • These configurations are used to compute correlation functions.

Sign Problem: monitoring of sign Pf(M)

• through spectral flow

• by calculation of real negative eigenvalues of Q with Arnoldi

Negative Pfaffians occur in our simulations near κ_c , but rarely. \rightarrow

SUSY Ward identities on lattice

Ward identity is the quantum version of Noether Theorem Renormalised SUSY WI on the lattice with non-zero gluino mass

 $\left\langle \left(\nabla_{\mu} S_{\mu}(x) \right) Q(y) \right\rangle + Z_T Z_S^{-1} \left\langle \left(\nabla_{\mu} T_{\mu}(x) \right) Q(y) \right\rangle$ $= m_S Z_S^{-1} \langle \chi(x) Q(y) \rangle + \langle X_S(x) Q(y) \rangle - \left\langle \frac{\delta Q}{\delta \bar{\varepsilon}(x)} \right\rangle.$

- Z_S and Z_T are renormalization coefficients
- $S_{\mu}(x)$ and $T_{\mu}(x)$ are the Super and the Mixing currents.
- $\bullet Q$ is an insertion operator.
- $\varepsilon(x)$ is the parameter of infinitesimal symmetry transformations.

- The lowest eigenvalues for the inverse of the Wilson-Dirac operator is used
- Computation of sunset piece is easy whereas the spectacle piece is rather challenging

• Preliminary results of correlation functions and the effective mass

Conclusion and Outlooks

- First order phase transition at $m_{\tilde{q}} = 0$
- Determination of the mass spectrum of light bound states
- Chiral supermultiplet is formed
- Baryonic states are investigated
- SUSY WIs are being analysed
- SUSY is restored
- More states in SYM theory can be formulated

 $Z_{2N_c} \rightarrow Z_2$ $<\lambda\lambda>\neq 0$ Supermultiplets

Spectrum of bound states

Expect colour neutral bound states of gluons and gluinos Predictions from effective Lagrangeans:

Chiral supermultiplet (Veneziano, Yankielowicz) • 0⁻ gluinoball a - $\eta' \sim \overline{\lambda}\gamma_5\lambda$ • 0⁺ gluinoball a - $f_0 \sim \overline{\lambda}\lambda$ • spin $\frac{1}{2}$ gluino-glueball $\sim \sigma_{\mu\nu} \operatorname{Tr} (F_{\mu\nu}\lambda)$ Generalization (Farrar, Gabadadze, Schwetz): additional chiral supermultiplet

• 0^- glueball

• 0^+ glueball

• gluino-glueball

possible mixing and Baryonic states

- $\left\langle \frac{\delta Q}{\delta \bar{\varepsilon}(x)} \right\rangle$ is contact term, which is zero if Q is localised at spacetime points different from x.
- $\langle X_S(x)Q(y) \rangle$ is introduced by the lattice regulator and vanishes in the continuum limit
- $m_S Z_S^{-1} \langle \chi(x) Q(y) \rangle$ is the mass term which break SUSY softly
- $am_S Z_S^{-1}$ is determine for each gauge ensemble
- Remnant gluino mass $\Delta(w_{0,\chi}m_SZ_S^{-1})$ in physical units is determined in the chiral limit
- The continuum extrapolation is performed, $\Delta(w_{0,\chi}m_SZ_S^{-1})$ is consistant with zero within error as expected from the theory

References

References

- [1] S. Ali, G. Bergner, H. Gerber, P. Giudice, I. Montvay, G. Münster, S. Piemonte and P. Scior, The light bound states of $\mathcal{N} = 1$ supersymmetric SU(3) Yang-Mills theory on the lattice, JHEP 1803 (2018) 113, [arXiv: 1801.08062 [hep-lat]]
- [2] S. Ali, G. Bergner, H. Gerber, S. Kuberski, I. Montvay, G. Münster, S. Piemonte, P. Scior, Variational analysis of low-lying states in supersymmetric Yang-Mills theory, JHEP 04 (2019) 150,[arXiv: 1901.02416 [hep-lat]].
- [3] S. Ali, G. Bergner, H. Gerber, I. Montvay, G. Münster, S. Piemonte and P. Scior, Numerical Results for the Lightest Bound States in $\mathcal{N} = 1$ Supersymmetric SU(3) Yang-Mills Theory, Phys. Rev. Lett. 122, 2216011 (2019), [arXiv: 1902.11127 [hep-lat]].
- [4] S. Ali, G. Bergner, H. Gerber, I. Montvay, G. Münster, S. Piemonte and P. Scior, Analysis of Ward identities in supersymmetric YangMills theory, Eur. Phys. J. C 78 (2018) 404, [arXiv: 1802.07067 [hep-lat]].

[5] S. Ali, G. Bergner, H. Gerber, C. Lopez, I. Montvay, G. Mnster, S. Piemonte, P. Scior, Baryonic states in supersymmetric Yang-Mills theory, PoS(LATTICE2018) 207, [arXiv: 1811.0229 [hep-lat]].