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Hydrodynamics

Hydrodynamics gives insight into long-wavelength and long-time
behaviour of a system, e.g. sound modes.

The hydrodynamic equations are conservation equations.
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The World of Hydrodynamics
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Hydrodynamics in QFT

Relativistic hydrodynamics effectively describes small momentum
and small frequency fluctuations in QFT with finite temperature.

Conservation equations

∂µ ⟨Tµν⟩ = 0, ∂µ ⟨Jµ⟩ = 0.

One point functions of symmetry currents are expressed as
derivative expansions, e.g.1

⟨Tµν⟩ = εuµuν+p∆µν−η∆µα∆νβ

(
∂αuβ + ∂βuα − 2

d
ηαβ∂ρu

ρ

)
+O(∂2).

1Here we have assumed conformal invariance.
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Derivative Expansion

Ideal part:

⟨Tµν⟩ = εuµuν+p∆µν−η∆µα∆νβ

(
∂αuβ + ∂βuα − 2

d
ηαβ∂ρu

ρ

)
+O(∂2),

where

• uµ(t, x⃗): velocity of the fluid
• ε(T, µ): energy density
• p(T, µ): pressure
• η(T, µ): shear viscocity

and ∆µν = ηµν + uµuν is a projector.

Thermodynamics enters through the equation of state for p(T, µ).
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Derivative Expansion

Viscous part:

⟨Tµν⟩ = εuµuν+p∆µν−η∆µα∆νβ

(
∂αuβ + ∂βuα − 2

d
ηαβ∂ρu

ρ

)
+O(∂2),

where

• uµ(t, x⃗): velocity of the fluid
• ε(T, µ): energy density
• p(T, µ): pressure
• η(T, µ): shear viscocity

and ∆µν = ηµν + uµuν is a projector.

Determines fluid response to perturbation.
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Derivative Expansion

Truncation:

⟨Tµν⟩ = εuµuν+p∆µν−η∆µα∆νβ

(
∂αuβ + ∂βuα − 2

d
ηαβ∂ρu

ρ

)
+O(∂2),

where

• uµ(t, x⃗): velocity of the fluid
• ε(T, µ): energy density
• p(T, µ): pressure
• η(T, µ): shear viscocity

and ∆µν = ηµν + uµuν is a projector.

Terms beyond one derivative not well understood
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Constraints on Derivative Expansion

Form of derivative expansion is constrained by

• Equations of motion
• Frame choice
• Onsager relations
• Positivity of local entropy production

Finding consistent derivative expansions is very challenging – terms
can be, and have been, overlooked.

Holographic techniques discovered new transport phenomena, i.e.
the chiral vortical effect. [Erdmenger, Haack, Kaminski, Yarom, ’08], [Benerjee et. al, ’08]
[Son, Surowka, ’09], [Landsteiner, Megias, Melgar, Pena-Benitez, ’11], [Gooth et. al, ’17]
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Symmetries

Symmetries are often idealisations – the real world breaks them!

Explicit symmetry breaking:

• Global symmetry of QFT broken by external effects,
for example by external magnetic field

• Corresponding symmetry current no longer conserved
• Beyond the regime of hydrodynamics

Spontaneous symmetry breaking (SSB):
Ground state of QFT no longer invariant under global symmetry.

7



Spontaneous Symmetry Breaking: a Simple Example

SSB of continuous global symmetry:

• Vacuum state lives in ‘sombrero’ potential V ((ϕ∗ϕ)2)

• New massless degrees of freedom: Goldstone bosons
• Symmetry currents still conserved; hence suitable for
hydrodynamics.
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SSB of Translational Invariance

Consider spontaneous breaking of spatial translational invariance.

Why?
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SSB of Translational Invariance: Motivation

[Delacrétaz, Goutéraux, Hartnoll, Karlsson, ’16], [Keimer, Kivelson, Norman, Uchida, Zaanen, ’15]

Shift and broadening of peaks in optical conductivity of ‘strange
metals’ potentially explained using hydrodynamics with pseudo-SSB
of translations.
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SSB of Translational Invariance: Motivation

[Keimer, Kivelson, Norman, Uchida, Zaanen, ’15]

Strange metals believed to arise from quantum critical point (QCP).

Pseudo-SSB may be imprint of symmetry breaking of QCP, which
could also affect other phases.
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SSB of Translational Invariance: Motivation

Can holography shed light on these questions?

A first step is to study pure spontaneous symmetry breaking.
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SSB of Translational Invariance: Goldstone Mode

Consider spontaneous breaking of spatial translational invariance in
a (2 + 1)-dimensional QFT.

Goldstone bosons associated with this spontaneous breaking are the
phonons

Φ =

(
Φx

Φy

)
.

Since the phonons are massless fields, they will contribute to the
hydrodynamics.
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Phonon Contribution: Derivative Expansion

Derivative expansion of spatial components of conserved current
becomes2

⟨Tij⟩ = δij
[
p− (κ+G)∂ · ⟨Φ⟩

]
− 2G

[
∂(iΦj) − δij∂ · ⟨Φ⟩

]
− σij +O(∂2),

where ∂ · ⟨Φ⟩ is the divergence of the expectation value of Φ.

2We have chosen a frame where uµ = (1, 0, 0).
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Phonon Contribution: Derivative Expansion

Derivative expansion of spatial components of conserved current
becomes2

⟨Tij⟩ = δij
[
p− (κ+G)∂ · ⟨Φ⟩

]
− 2G

[
∂(iΦj) − δij∂ · ⟨Φ⟩

]
− σij +O(∂2),

where ∂ · ⟨Φ⟩ is the divergence of the expectation value of Φ.

Terms which appeared without spontaneous breaking; σij(t, x⃗) is the
viscous contribution.

2We have chosen a frame where uµ = (1, 0, 0).
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Phonon Contribution: Derivative Expansion

Derivative expansion of spatial components of conserved current
becomes2

⟨Tij⟩ = δij
[
p− (κ+G)∂ · ⟨Φ⟩

]
− 2G

[
∂(iΦj) − δij∂ · ⟨Φ⟩

]
− σij +O(∂2),

where ∂ · ⟨Φ⟩ is the divergence of the expectation value of Φ.

Additional contributions due to presence of Goldstone bosons Φi.

New coefficients:

• G(T, µ): shear elastic modulus
• κ(T, µ): bulk elastic modulus

2We have chosen a frame where uµ = (1, 0, 0).
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Phonon Contribution: Dynamics I

Additional dynamic equations for phonons: ‘Josephson relation’,

∂t ⟨Φi⟩ = ui.

Derivation:

• Hamiltonian density at finite velocity: H = H0 + uiT 0
i

• From Goldstone theorem: [Φi(x), T
0
j (y)] = iδijδ(x− y) + . . .

• Hence ∂t ⟨Φi⟩ = i ⟨[Φi, Ĥ]⟩ = . . . = ui.

As a consequence ∂µ ⟨Φi⟩ is zeroth order in derivatives.
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Phonon Contribution: Dynamics II

Derivative expansion of Josephson relation

∂t ⟨Φi⟩ = ui + . . . ,

where ellipsis denotes higher orders in derivatives.

Taking additional derivatives (curl and divergence) gives separate
equation for each ⟨Φi⟩:3

∂t(∂x ⟨Φy⟩) = ∂xuy +Gξy∂
2
x(∂x ⟨Φy⟩) + . . .

∂t(∂x ⟨Φx⟩) = ∂xux + (κ+G)ξx∂
2
x(∂x ⟨Φx⟩) + . . .

Note: ξi are new coefficients which relate to Goldstone diffusion.

3We assumed momentum in x-direction, with fluctuations in both spatial directions.
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Hydrodynamic Modes

The hydrodynamic equations decompose into two sectors,
transverse and parallel to momentum.

Solving set of equations in frequency space leads to hydrodynamic
modes.
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Modes of Transverse Sector

Pair of sound modes with dispersion relation

ω = ±cT k − iDT k
2,

and coefficients

• Speed of transverse sound: c2T = G
χππ

• Diffusion constant: DT = 1
2

(
Gξy +

η
χππ

)
where χππ is the momentum susceptibility, which relates velocity to
momentum via T 0

i = χππui.
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Modes of Longitudinal Sector I

1. Pair of sound modes with dispersion relation

ω = ±cLk − iDpk
2,

and coefficients

• Speed of longitudinal sound: c2L = ∂p
∂ε + κ+G

χππ

• Diffusion constant: Dp = 1
2

η
χππ

+ 1
2

(κ+G)2 ξx
κ+G+(∂p/∂ε)χππ

[Ammon, Baggioli, SG, Grieninger, ’19]
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Modes of Longitudinal Sector II

2. Diffusive mode with dispersion relation

ω = −iDΦk
2,

and diffusion constant

DΦ = (κ+G)
(∂p/∂ε) (ξx χππ)

(κ+G+ (∂p/∂ε)χππ)
.

[Ammon, Baggioli, SG, Grieninger, ’19]
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Holographic Duality

Conjectured duality between (d+ 1)-dimensional gravitational
theories in asymptotically Anti-de Sitter (AdS) spacetimes and
d-dimensional QFTs living on flat conformal boundary.

When QFT is strongly coupled, dual gravity description is weakly
coupled; and vice-versa.

Holography provides tool-set to study strongly coupled quantum
phenomena.
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Levels of Holography

Simplest case:

Pure AdS⇐⇒ Vacuum state of QFT in flat-space.
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Levels of Holography

Finite temperature:

Black hole in asymptotic AdS⇐⇒ QFT at finite temperature.
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Levels of Holography

Dynamics at finite temperature:

Pertubations of black hole (QNMs)⇐⇒ Poles of Green’s functions.

Poles of retarded Green’s functions are frequency modes of QFT.
Modes with zero frequency in limit of zero momentum correspond to
hydrodynamic modes!
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Translational Breaking in Holography: Our Model

Construct gravity model such that dual QFT has desired properties.

S =

∫
d4x

√
−g

[
R

2
+

3

ℓ2
−m2 V (X)

]
,

where gµν is a black hole metric; R is the Ricci scalar; ℓ is the radius
of curvature of AdS; and

V (X) = XN , X =
1

2
gµν∂µϕ

I∂νϕ
I ,

with scalar field ϕI = xI . [Alberte, Ammon, Jiménez-Alba, Baggioli, Pujolas, JHEP ’17]

Gives spacetime of Schwarzschild black hole in asymptotic AdS, with
massive graviton.

If N < 5/2: Translational symmetry of dual QFT is explicitly broken.
If N > 5/2: Dual QFT exhibits spontaneously broken translational

invariance. [Alberte, Ammon, Jiménez-Alba, Baggioli, Pujolas, PRL ’17]
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Method

1. Compute (numerically) QNMs of gravity theory
2. Identify hydrodynamic modes
3. Extract coefficients
4. Compare QNM results to hydrodynamic formulas
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Results: Transverse Sector

[Alberte, Ammon, Jiménez-Alba, Baggioli, Pujolas, PRL ’17]

Propagating mode of transverse sector:

ω = ±cT k − iDT k
2

Function of m/T , which is the dimensionless SSB scale.
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Results: Longitudinal Sector I

[Ammon, Baggioli, SG, Grieninger, JHEP ’19]

Propagating mode mode of longitudinal sector:

ω = ±cLk − iDpk
2

m/T = 0

m/T = 3.5

m/T = 12.6
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Speed of sound given by the slope; exponent N = 3.
28



Results: Longitudinal Sector II (Sound Diffusion)

[Ammon, Baggioli, SG, Grieninger, JHEP ’19]

Propagating mode of longitudinal sector:

ω = ±cLk − iDpk
2
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Made dimensionless by multiplication with temperature T ; N = 5.
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Results: Longitudinal Sector III (Diffusive Mode)

[Ammon, Baggioli, SG, Grieninger, JHEP ’19]

Diffusive mode of longitudinal sector

ω = −iDΦk
2
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Discrepancy between QNMs and hydrodynamic relation; N = 5.
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Potential Reasons for Discrepancy

What could be going on:

• Mistake?
• Missing thermodynamic relations?
• New hydrodynamic effect?
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Conclusion and Outlook

Hydrodynamics is interesting!
Symmetry breaking is hard!
Holography provides novel approach!

Future directions:

• Find reason behind discrepancy
• Investigate pseudo-spontaneous symmetry breaking
from first-principles

• Fluid/Gravity approach to derivative expansion
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Thank you for your attention!
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