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Introduction
Axiomatic formulations of quantum electrody-
namics (QED) depart from standard QFTs in var-
ious regards. One of them is the presence of
Krein spaces, also referred to as indefinite metric
‘Hilbert spaces’, in covariant gauges. While the
necessity of such spaces is often claimed, it is diffi-
cult to find a satisfactory justification in the liter-
ature, especially beyond the Gupta-Bleuler gauge
or in the presence of interaction. The aim of this
thesis was to provide a systematic treatment of
these matters in terms of two no-go theorems.

Axiomatic formulation of QED
A theory of QED1 is given by a Wightman
QFT including a hermitian antisymmetric 2-
tensor field F and a hermitian vector field J such
that Maxwell’s equations,

∂μFμν = Jν and ∂[μFνρ] = 0 (1)

hold. Free QED corresponds to Jν = 0.

Indefinite metric space as a state space
How can an indefinite metric space be a state
space?2 An indefinite metric ’Hilbert
space’ is a Hilbert space ℋ together with an ad-
ditional indefinite inner product 〈,〉. For such a
space the subspaces ℋ′ and ℋ′′ of states with non-
negative and zero ’norm’ give rise to an induced
physical Hilbert space ℋphys = ℋ′/ℋ′′. Taking ℋ as
a state space we get an induced theory on ℋphys

(of only physical fields) where the usual proba-
bilistic interpretation of states is recovered. A
gauge formulation of QED is then given by
any theory of a hermitian quantum field Aμ on
a state space with (in general indefinite) metric
(ℋ, 〈,〉) which induces a theory of QED on ℋphys by
Fμν = ∂[μAν]. If A transforms as a vector field, it
is considered as QED in a covariant gauge.

Common Physics lore
States with negative scalar square are referred to
as ghost states. These states occur generically
in gauge theories, in particular in QED, as a con-
sequence of the fact that the gauge fields propa-
gate not only physical degrees of freedom. In or-

der to resolve this issue gauge theories are usually
constructed for a specific choice of gauge. There
are two choices:
1. Modding out the non-physical degrees of free-

dom, usually breaking covariance and locality
of the gauge field; e.g. Coulomb and axial
gauge.

2. Insisting on locality and/or covariance, usu-
ally implying the existence of ghost states; e.g.
Gupta-Bleuler gauge.

Triviality of free QED without gauge-fixing
A gauge formulation of free QED in which A sat-
isfies �Aμ − ∂μ∂A = 0 and A is either covariant or
local leads to a trivial two-point function of F.[1]
Insisting on locality or covariance the equations
of motion of free QED thus have to be modified
or, in other words, a gauge has to be chosen. The
modification has to vanish on matrix elements
between physical states such that on the physical
subspace Maxwell’s equations are recovered.
.
Thesis’ Results
A: Every covariant gauge formulation of free QED on
a state space with a non-negative metric is trivial. Trivial
means that the two point function of Fμν vanishes:

〈Ω, Fμν()Fμν(y)Ω〉 = 0. (2)

B: In every covariant gauge formulation of QED on a state
space with a non-negative metric the Maxwell-tensor F can-
not create massless states from the vacuum. With ℋ(1) being
the space of massless states we have

〈ℋ(1), Fμν(·)Ω〉 = 0. (3)

Methods
We study a Lorentz-covariant tempered distribu-
tion Wμν transforming as a 1⊗ 1 tensor satisfying
the differential equation

�Wμν − λ∂μ∂ρWρν = 0, λ 6= 1. (4)

The most general such distribution is determined
up to four constants c,  = 1, ..,4: Ŵμν(p) =
θ(p0)
�

c1
�

ημνδ(p2) − λ
1−λpμpνδ

′(p2)
�

+ c2pμpνδ(p2)
�

+ c3
�

ημν�δ(p) − 4−λ
24(1−λ)pμpν�

2δ(p)
�

+ c4ημνδ(p)
This result applies to the two-point function of
a vector field satisfying �Aμ − λ∂μ∂A = 0, λ 6= 1,

which is the most general covariant second-order
PDE which is linear in the vector field A. Requir-
ing definiteness of the metric yields c1 = c3 = c4 =
0 as the corresponding terms are indefinite. Con-
sequently, the two-point function is of the form
Wμν = ∂μ∂νK for some K. Accordingly, A is a pure
gauge and the two-point function of F vanishes.

The second result of the thesis is an application
to the two-point function of the gauge field of the
interacting theory projected onto the subspace of
massless states.

Summary and current research
In conclusion we have found that a satisfactory
theory of (free or interacting) QED constructed
in terms of a gauge field transforming covariantly
as a vector field has to rely on a state space in
which zero and negative ’norm’ states are present.
A complementary result from the literature draws
the same implication for the case of a local gauge
field in the presence of local and charged fields.[2]
In total this implies a necessity to use indefinite
metric spaces for local or covariant gauge formu-
lations of QED.

Apart from well-known ways to evade the pres-
ence of negative ’norm’ states like Coulomb
and axial gauges, a quite recent approach de-
scribes QED in terms of a string-local poten-
tial Aμ(, e) =

∫∞
0 dsFμν( + se)eν, e spacelike.[3]

As this potential satisfies weakened conditions of
locality and covariance it might be constructed
on an ordinary state space. Its main advantage
is that it possibly is sufficiently localized to apply
adapted perturbative and renormalization meth-
ods.
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1Note that this definition here without further specification of J is very broad. But for the results no further specification of J is necessary.
2Reminder: Physical states need to have a non-negative ’norm’ for their probabilistic interpretation.


