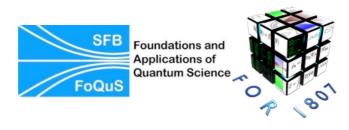


Energy Spectroscopy of Quantum Critical Systems

Andreas Läuchli Institute for Theoretical Physics University of Innsbruck, Austria

andreas.laeuchli@uibk.ac.at http://www.uibk.ac.at/th-physik/laeuchli-lab



Outline of this talk

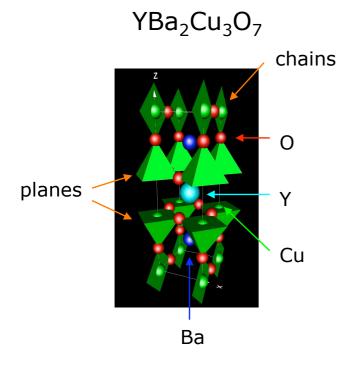
- Introduction: Quantum Many Body Systems / Spectroscopy
- Torus Energy Spectra and Quantum Critical Points?
- Spectrum of the standard 2+1D Ising transition
- Topological Phase Transitions
- Gross-Neveu-Yukawa fixed points
- Outlook

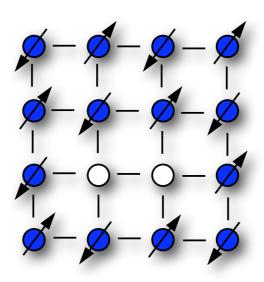
Outline of this talk

- Introduction: Quantum Many Body Systems / Spectroscopy
- Torus Energy Spectra and Quantum Critical Points?
- Spectrum of the standard 2+1D Ising transition
- Topological Phase Transitions
- Gross-Neveu-Yukawa fixed points
- Outlook

Quantum Matter: Strongly correlated electrons in solids

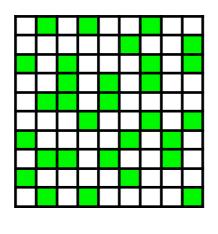
High Tc superconductors & Quantum Magnets

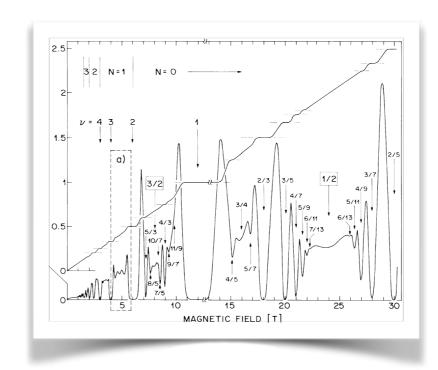




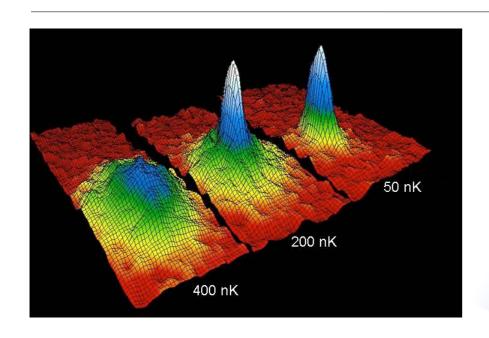
Fractional Quantum Hall Effect

$$\nu = 1/3$$



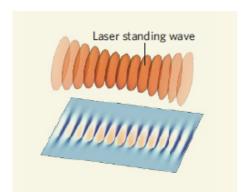


Quantum Matter: Ultracold atomic gases



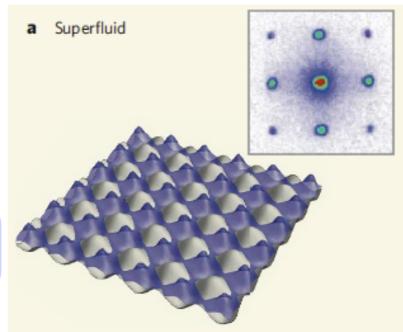
From weakly interacting Bose gases

to strongly interacting gases in optical lattices

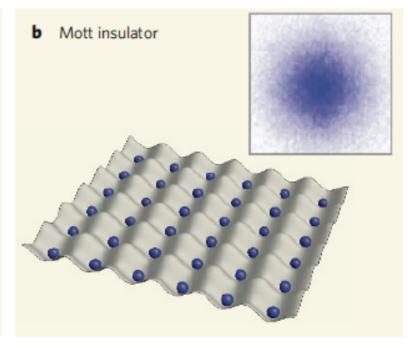


$$H = -J \sum_{\langle i,j \rangle} (b_i^{\dagger} b_j + h.c.) + \frac{U}{2} \sum_i n_i (n_i - 1)$$

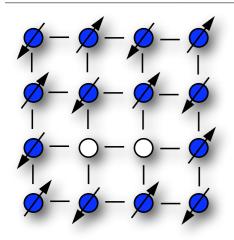
D. Jaksch et al., PRL (1998)

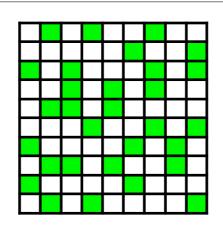


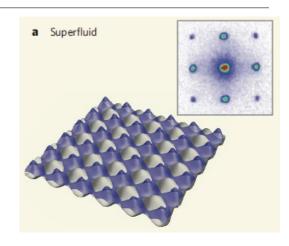
M. Greiner et al., Nature (2002)



Quantum Matter



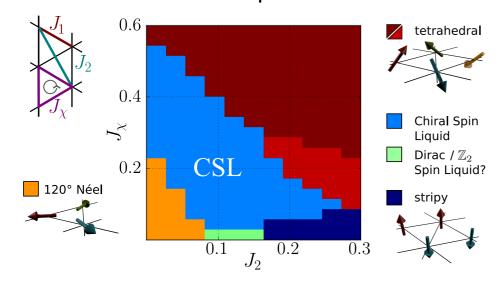




- We would like to understand phase diagrams of complex systems, but whose Hamiltonians are often reasonably well known.
- Quantum phase transitions occur. What is their universality class & field theoretical description?
- New tools welcome to diagnose/characterize QFTs at phase transitions

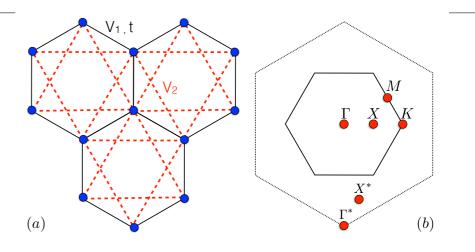
Example of Microscopic Condensed Matter Models

From microscopic models:



Phys. Rev. B. 95, 035141 (2017)

$$\mathcal{H} = J_1 \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} \vec{S}_i \cdot \vec{S}_j + J_2 \sum_{\langle i,j \rangle} \vec{S}_i \cdot (\vec{S}_j \times \vec{S}_k)$$



Phys. Rev. B 92, 085146 (2015)

$$\mathcal{H} = -t \sum_{\langle ij \rangle} (c_i^{\dagger} c_j + h.c.)$$

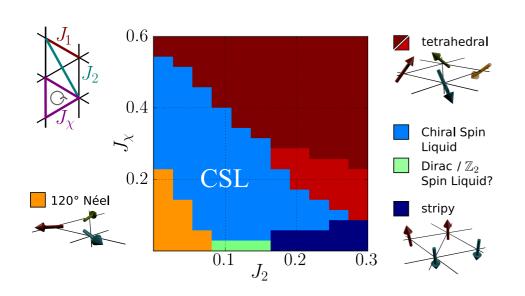
$$+ V_1 \sum_{\langle ij \rangle} (n_i - 1/2)(n_j - 1/2)$$

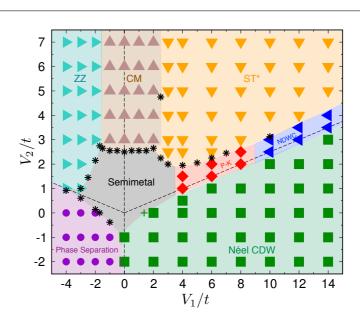
$$+ V_2 \sum_{\langle \langle ij \rangle \rangle} (n_i - 1/2)(n_j - 1/2)$$

To quantum phase transitions: Wilson Fisher CFTs, QED3, Gross Neveu, ...

-1 - e₀ -1.5 - - -2 -

Quantum Matter

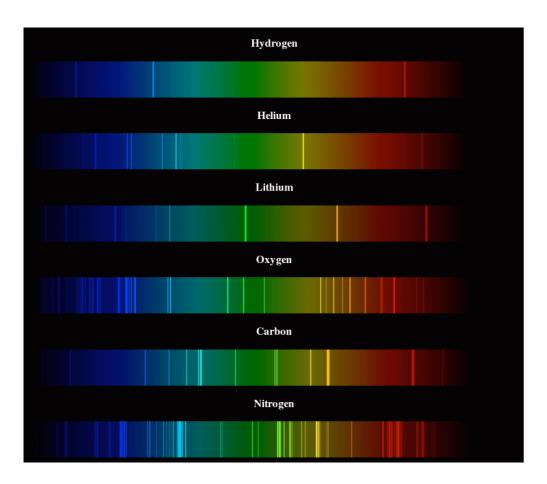


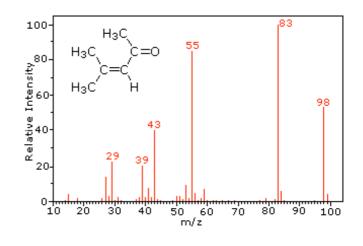


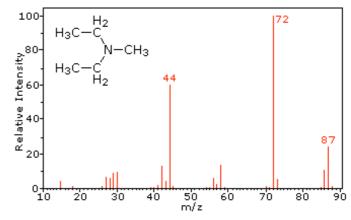
- Standard Approach: Simulate system on a computer, calculate correlation functions, order parameter, and determine critical exponents. Can work very well, but does not have to...
- Here want to investigate whether the Energy Spectrum of a quantum many body system at criticality reveals its universality class (Spectroscopy)?

Spectroscopy in other areas:

For example in optics and and mass spectroscopy one measures spectra, and then compares with a catalogue of known spectra to infer the nature of an "unknown" substance.







https://www2.chemistry.msu.edu

http://www.astro.rug.nl

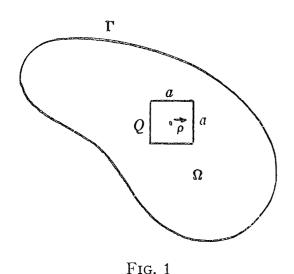
Can we do the same with Quantum Field Theories at Quantum Critical Points?

"Can one hear the shape of a drum"?

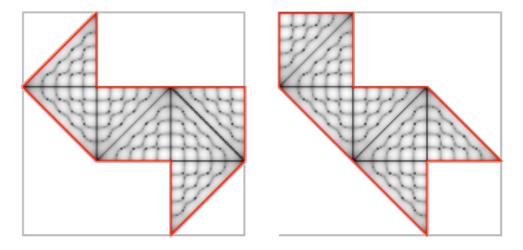
Can one infer the shape of a domain from the spectrum of the Laplacian ? (not unambiguously, there are non-congruent shapes with the same spectrum)

CAN ONE HEAR THE SHAPE OF A DRUM?

MARK KAC, The Rockefeller University, New York



Amer. Math. Monthly 73, 1-23, 1966.



http://mathworld.wolfram.com/IsospectralManifolds.html

We would ask a related, but somewhat different question: Given a shape, can we "hear" the nature of the (massless) field theory confined to this shape?

Exact Diagonalization: Main Idea

Solve the Schrödinger equation of a quantum many body system numerically

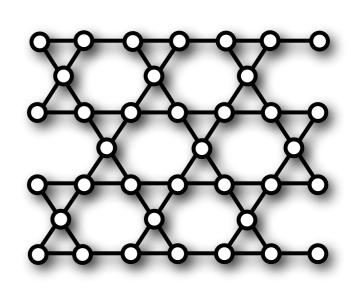
$$\mathcal{H}|\psi\rangle = E|\psi\rangle$$

- Sparse matrix, but for quantum many body systems the vector space dimension grows exponentially!
- But the amount of information one is able to extract is worth the effort:

Powerful Quantum Mechanics Toolbox

Hilbert space sizes

- The Hilbert space of a quantum many body system grows exponentially in general
- For N spin 1/2 particles, the complete Hilbert space has dim=2^N states
- 10 spins dim=1'024
- 20 spins dim=1'048'576
- 30 spins dim=1'073'741'824
- 40 spins dim=1'099'511'627'776
- 50 spins dim=1'125'899'906'842'624 ...
- The quantum mechanical wave function is a vector in this Hilbert (vector) space and we would like to know the ground state and a few other low lying eigenstates
- Current limit for S=1/2 spin models on regular lattice, 50 spins! (MPI + Supercomputer)
 actual dimension ~ 3 x 10¹¹.
 A. Wietek & AML, PRE 2018



 $|\uparrow\rangle \text{ or } |\downarrow\rangle$

Outline of this talk

- Introduction: Quantum Many Body Systems / Spectroscopy
- Torus Energy Spectra and Quantum Critical Points?
- Spectrum of the standard 2+1D Ising transition
- Topological Phase Transitions
- Gross-Neveu-Yukawa fixed points
- Outlook

Operator spectrum in conformal field theories

A local operator has a scaling dimension:

$$\mathcal{O}_i \to \Delta_i = \text{scaling dimension}$$

The scaling dimension determines the decay of the 2-point correlation function:

$$\langle \mathcal{O}_i(x)\mathcal{O}_i(0)\rangle = \frac{c}{|x|^{2\Delta_i}}$$

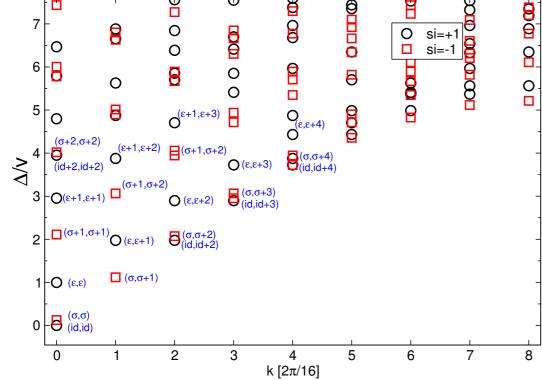
- It seems interesting and important to know the various fields with their corresponding scaling dimensions.
- Where can we find those in numerics?

A file experimental test of comornial invariance would be to measure the three-point function $\langle \sigma(x)\sigma(y)\varepsilon(z)\rangle$ on the lattice, to see if its functional form agrees with the one fixed by conformal symmetry [3]. We do not know if this has been done.

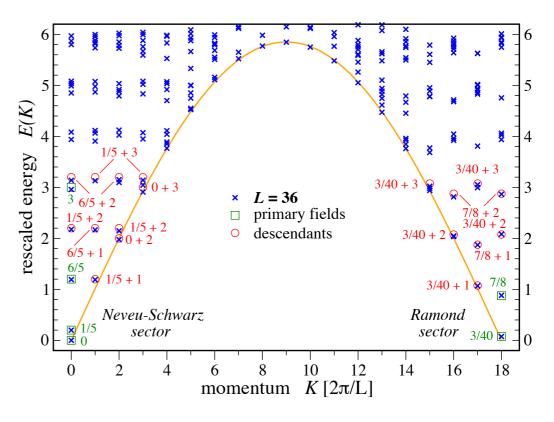
Using 3D conformal invariance, local operators can be classified into primaries and descendants [5]. The primaries² transform homogeneously under the finite-dimensional

1 Conforma Figure Form Representation of the size (1+1D) systems arrange into conformal towers! O(N) models in the large N limit [29,30].

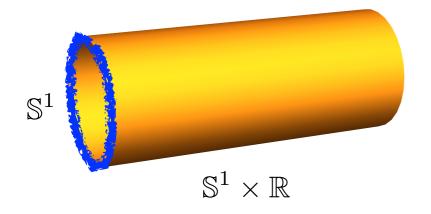




TFI chain L=16 2D Ising CFT Spectrum



A. Feiguin et al. PRL 2007 tricritical Ising CFT Spectrum in anyon chains



$$\mathbb{R}^2 \leftrightarrow \mathbb{S}^1 \times \mathbb{R}$$

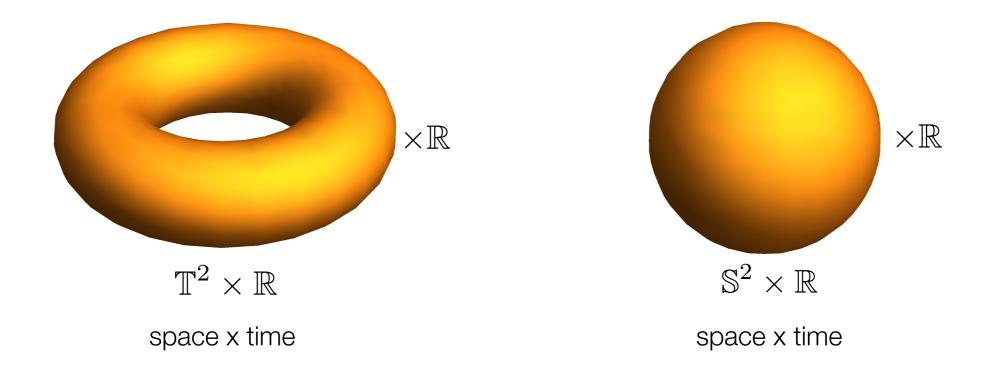
Spectrum of scaling dimensions of CFT maps to Hamiltonian spectrum on a circle.

Energy spectra and CFTs in more than 1+1D?

● In more than 1+1D, this relation does not hold for tori anymore, only for the sphere!

$$\mathbb{R}^d \leftrightarrow S^{d-1} \times \mathbb{R} \quad (\neq \mathbb{T}^{d-1} \times \mathbb{R}, \ d > 2)$$

First mapping: radial quantisation, can reveal scaling dimensions in higher d, but not easily accessible to numerics (although several efforts over the decades).

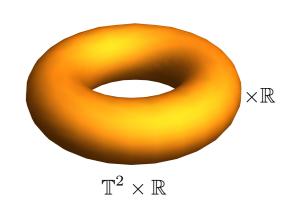


Energy spectra and CFT in more than 1+1D?

In more than 1+1D, this is not expected to hold anymore for tori!

$$\mathbb{R}^d \leftrightarrow S^{d-1} \times \mathbb{R} \quad (\neq \mathbb{T}^{d-1} \times \mathbb{R}, \ d > 2)$$

- First mapping: radial quantization, can reveal scaling dimension in higher d, but not easily accessible to numerics (although several efforts over the decades).
- What about energy spectra on tori, which are numerically accessible?
 - Is there a universal low-energy spectrum (and is it accessible numerically)?
 - How does it look like?



Outline of this talk

- Introduction: Quantum Many Body Systems / Spectroscopy
- Torus Energy Spectra and Quantum Critical Points?
- Spectrum of the standard 2+1D Ising transition
- Topological Phase Transitions
- M. Schuler, S. Whittsitt, L.-P. Henry, S. Sachdev & AML Phys. Rev. Lett. 2016
- S. Whittsitt, M. Schuler,, L.-P. Henry, AML & S. Sachdev Phys. Rev. B. 2017
- Gross-Neveu-Yukawa fixed points
- Outlook

2+1D "standard" Ising CFT

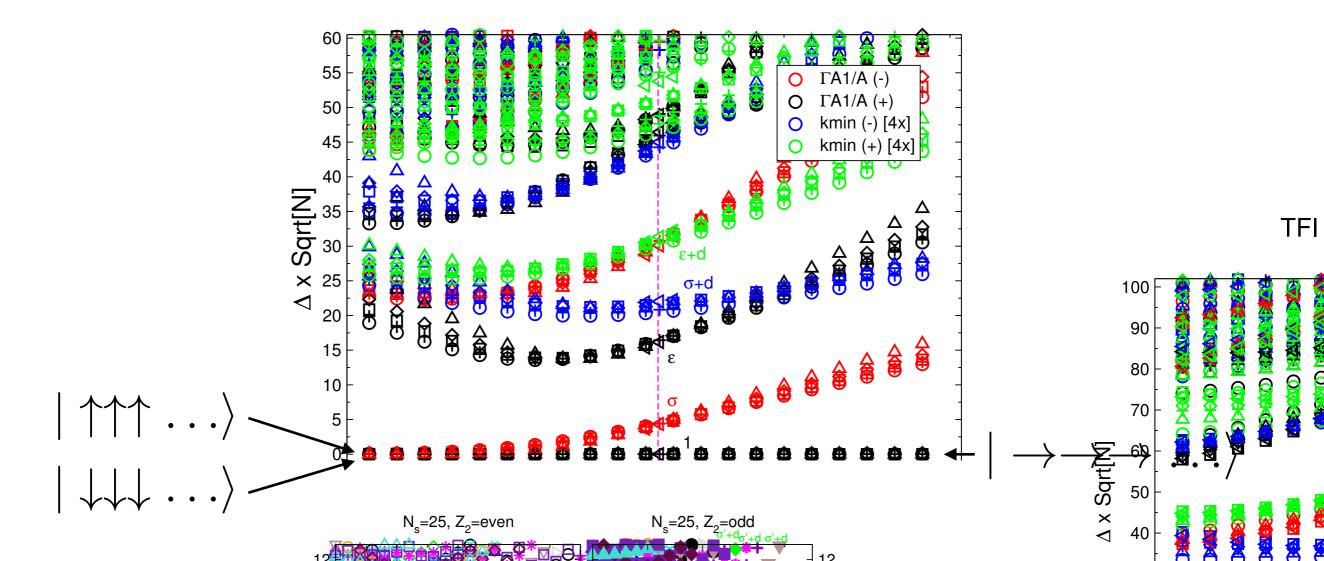
- We want to investigate the torus energy spectrum at a quantum critical point.
- While we do not expect to find the exact spectrum of scaling dimensions, the spectrum is still expected to be universal, i.e. UV cutoff independent.
- The spectrum could however depend on the IR-cutoff (shape of torus)
 (c.f. "hearing the shape of the drum")
- We start with a Z₂ symmetry breaking transition, and consider the transverse field Ising (TFI) model as a particular microscopic realization

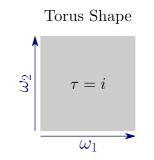
$$H_{\text{TFI}} = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z - h \sum_i \sigma_i^x$$

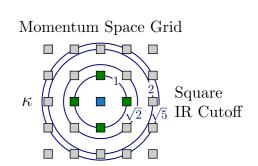
"Raw" energy spectrum across the transition

- \bullet small field: approx. 2-fold degeneracy due to Z_2 -symmetry breaking.
- large field: unique ground state in paramagnetic phase.

TFI Spectrum Square Lattice

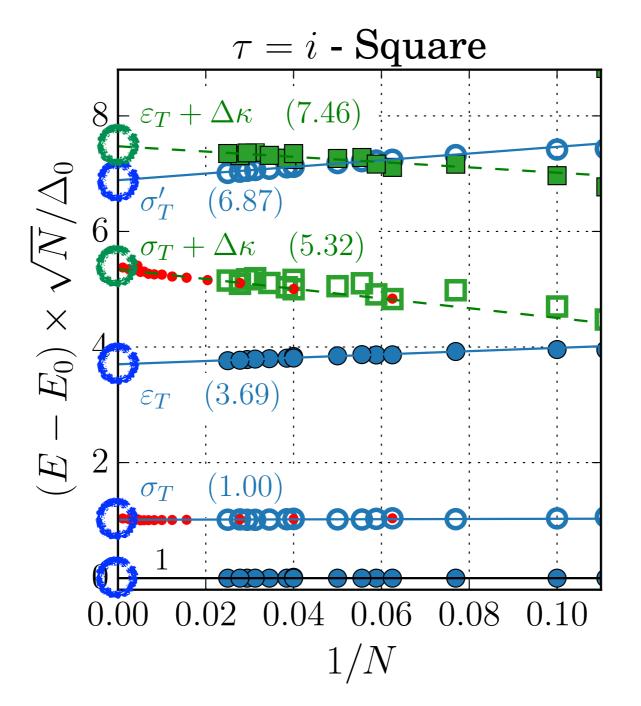


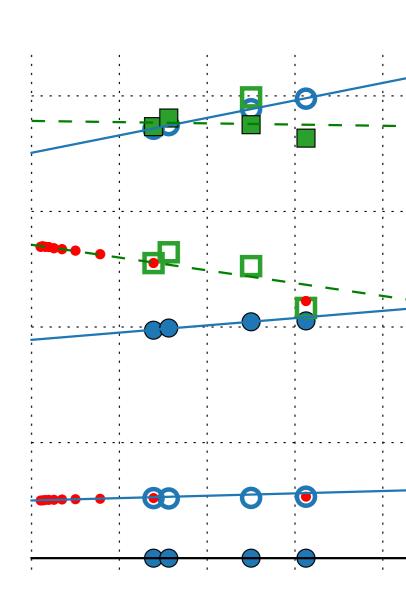


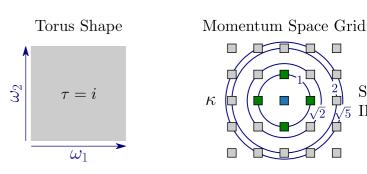


Detailed finite size scaling

Square lattice at critical transverse field h_c:





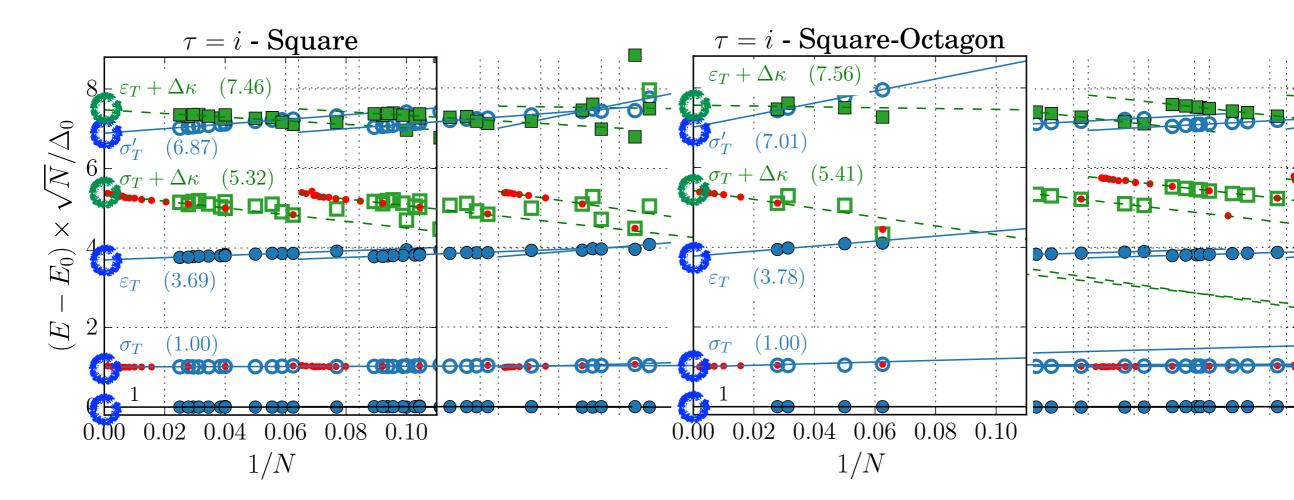


Square

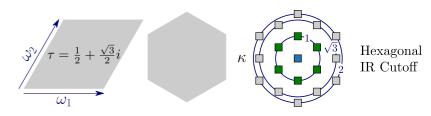
√5 IR Cutoff

Comparison with a different lattice

Square lattice and Square-Octagon lattice at their critical point:

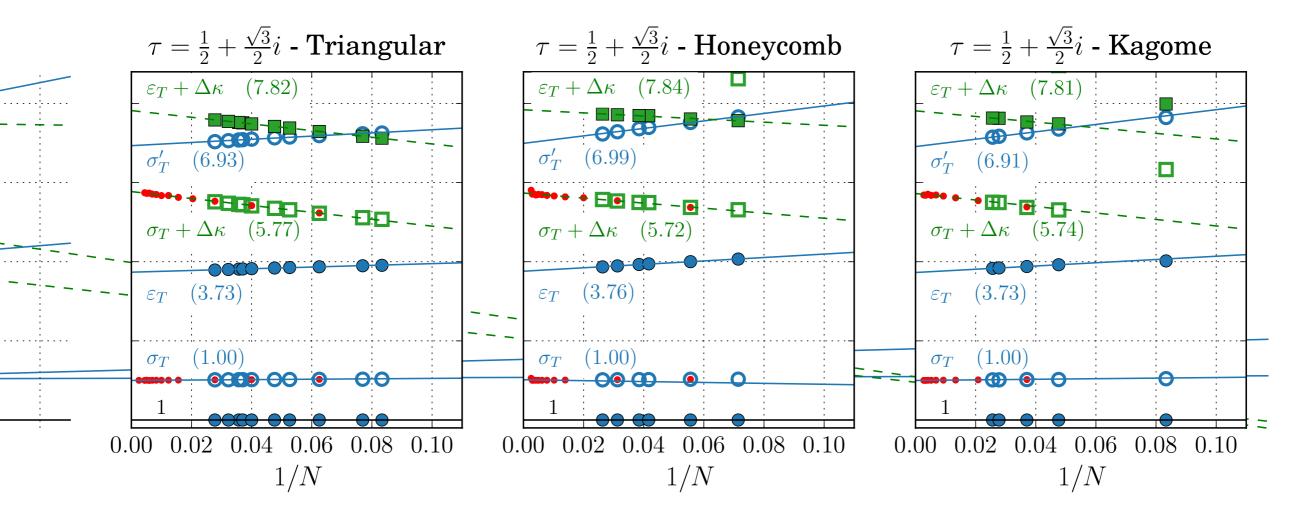


The spectra are identical after finite-size extrapolation!
This is thus the genuine 3D Ising CFT spectrum on a square torus!



Comparison with different modular parameter

Triangular, honeycomb and kagome lattice at their critical point:



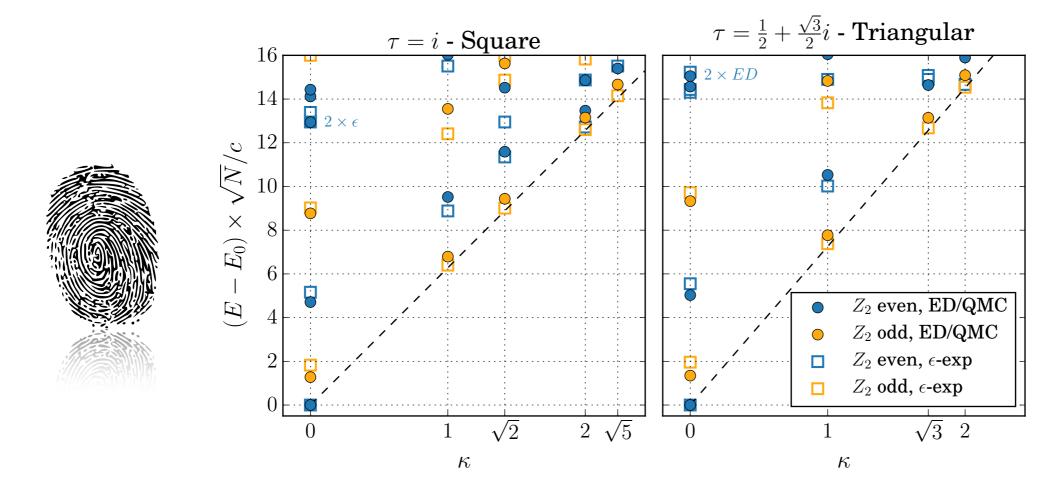
The spectra are identical after finite-size extrapolation!
This is thus the genuine Ising CFT spectrum on a hexagonal torus!

Analytical approach: (4-epsilon)-expansion

Work done by S. Withsett and S. Sachdev. Lowest non-trivial order in epsilon.

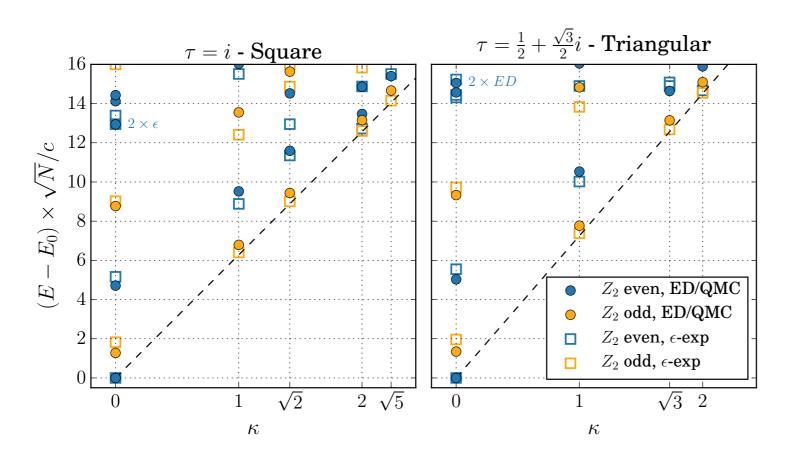
$$\mathcal{H} = \int d^d x \left[\frac{1}{2} \Pi^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{s}{2} \phi^2 + \frac{u}{4!} \phi^4 \right]$$

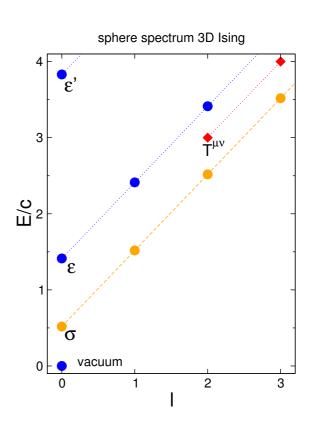
- Rather good agreement between analytics and numerics.
- Zero-mode is most important in (4-epsilon)-expansion, anharmonic oscillator.



Comparison between torus and sphere spectra

Torus spectra at low energy per sector resemble the spectrum on the sphere:

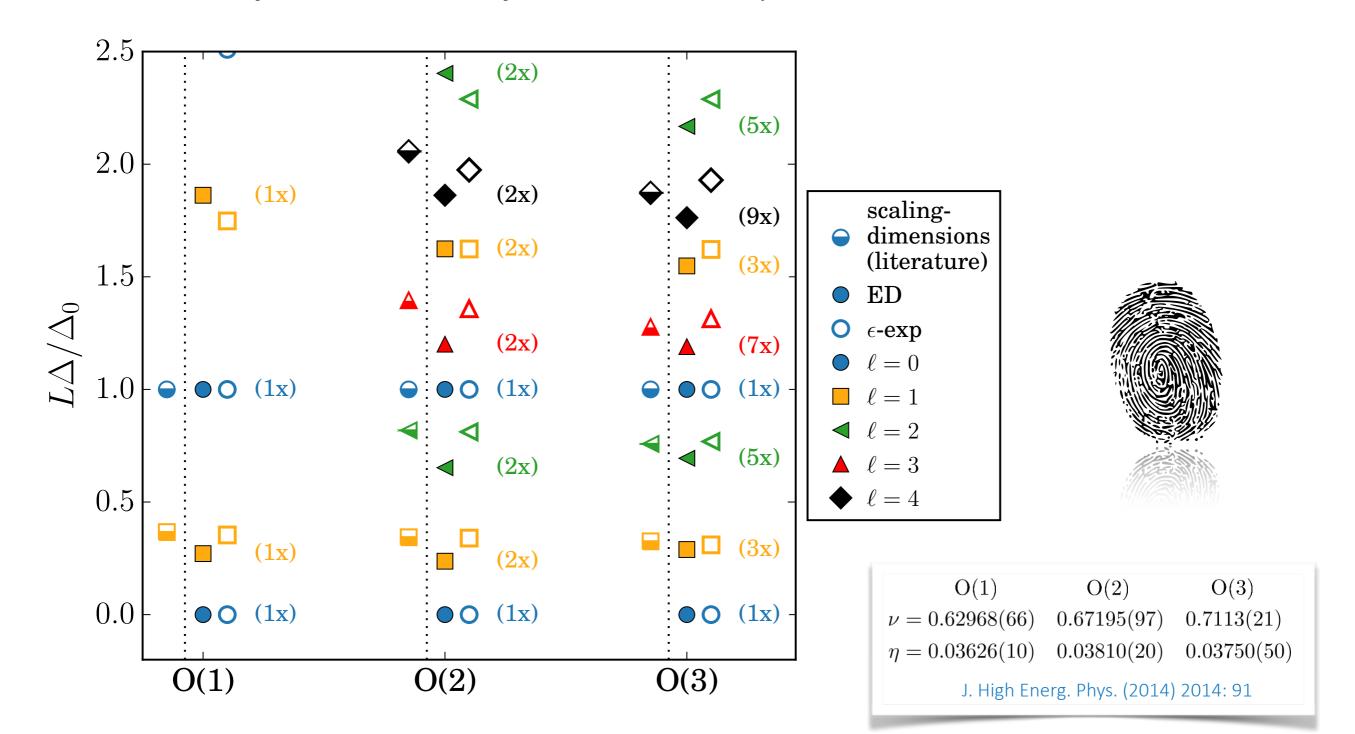




- We believe this handwaving resemblance might be more generally the case: "light states on the sphere have a light analogon on the torus"
- But likely no state operator correspondence on the torus.

Wilson-Fisher Z_2 / O(2) / O(3) Results

Universality classes differ by amount of multiplets and their size!



Outline of this talk

- Introduction: Quantum Many Body Systems / Spectroscopy
- Torus Energy Spectra and Quantum Critical Points?
- Spectrum of the standard 2+1D Ising transition
- Topological Phase Transitions

M. Schuler, S. Whittsitt, L.-P. Henry, S. Sachdev & AML Phys. Rev. Lett. 2016

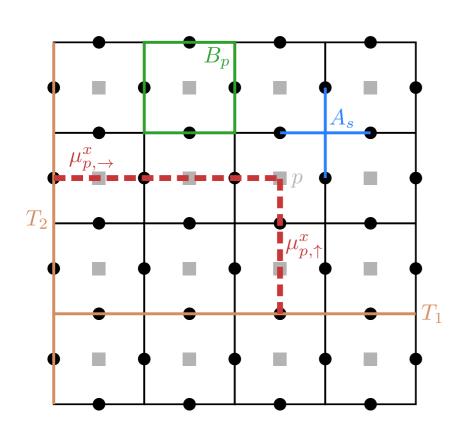
- Gross-Neveu-Yukawa fixed points
- Outlook

Confinement transition

- Z₂ spin liquids are among the simplest topological phases.
- The are phases with a four-fold ground state degeneracy on a torus, but the degeneracy is topological, and not related to symmetry breaking.
- One of the simplest incarnations of this phase appears in the Toric Code model by Kitaev.
- By an appropriate perturbation the topological phase ("deconfined") gives way to a simple paramagnetic phase ("confined"). The transition is a confinement transition and is expected to be in the 2+1D = 3D Ising universality class.
- Q: Is the torus spectrum at criticality identical to the symmetry breaking case?

Toric code in a magnetic field

- We study the following microscopic model (but results will be independent of specific model):
- Toric code with a longitudinal magnetic field (S. Trebst et al., J. Vidal et al, ...):



$$H = -J \sum_{s} A_{s} - J \sum_{p} B_{p} - h \sum_{i} \sigma_{i}^{x}$$
$$A_{s} = \prod_{i \in s} \sigma_{i}^{x}, \ B_{p} = \prod_{i \in p} \sigma_{i}^{z}$$

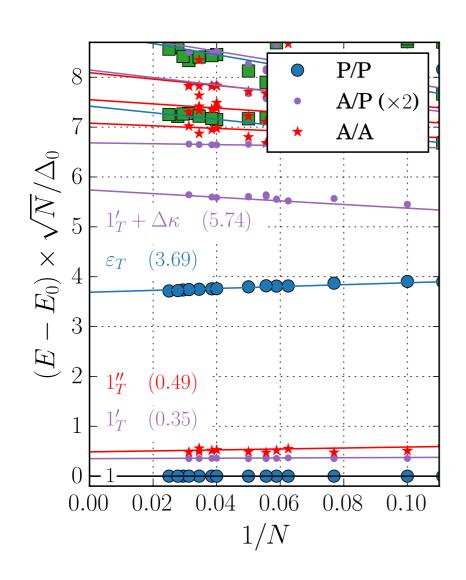
$$\mu^x_p = B_p$$

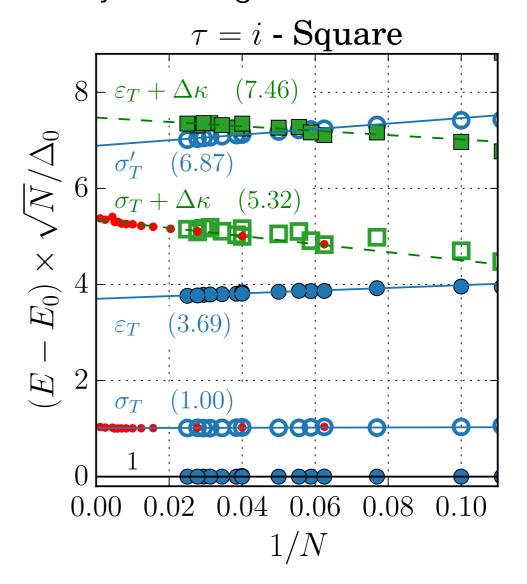
$$\mu^x_{p,\to(\uparrow)} = \prod_{i \in c_{p\to(\uparrow)}} \sigma^x_i$$
 TFI boundary conditions imposed by T₁,T₂ loops!

$$H_{TFI} = -h \sum_{\langle p,q \rangle} \mu_p^x \mu_q^x - J_p \sum_p \mu_q^z + const.$$

Numerics at criticality

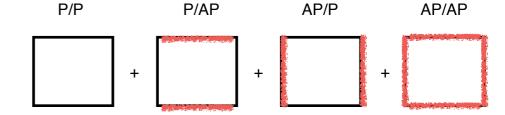
Left: data for the TC at criticality, Right: Symmetry breaking





The spectra at criticality do not agree! What is going on?

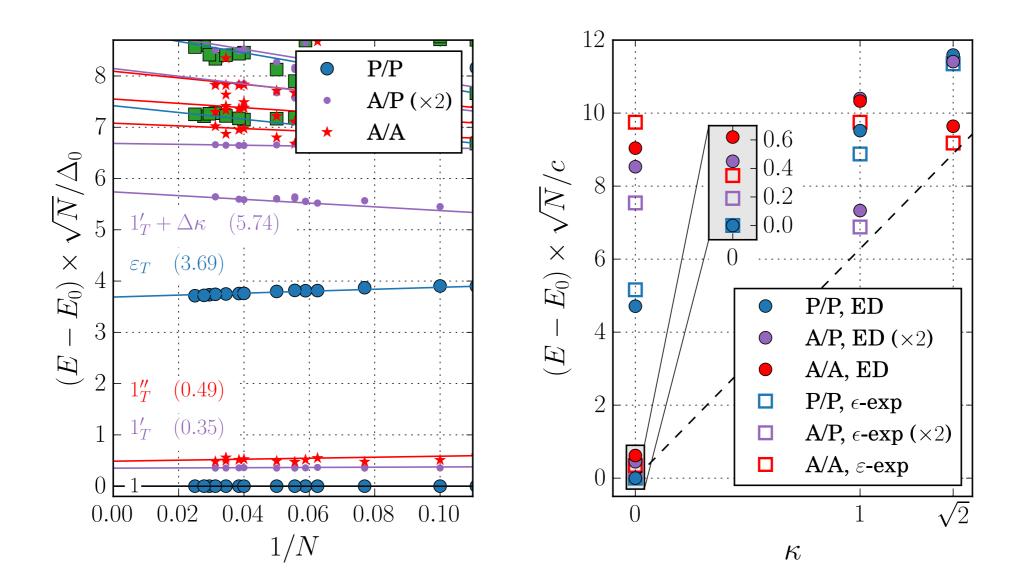
The Ising* transition



- The explanation is that the operator content of the two transitions are different:
- ullet In the Z_2 symmetry breaking case we have Z_2 even and odd levels and only one set of boundary conditions (fixed by the lattice model).
- In the confinement transition (Ising*), only Z₂ even levels are allowed, and for periodic boundary conditions in the Toric Code, four different boundary conditions of the CFT become simultaneously apparent.
- This can be understood at the microscopic level in the Toric Code Hamiltonian and is supported by general field theoretical considerations.
- In the Ising* case the magnetic sector is completely absent, and the torus energy spectrum reflects this fact.

The Ising* transition

- comparison between numerics and epsilon-expansion:
- At criticality the 4 "topological sectors" scale also as 1/L, but are much closer together than the next level above them.



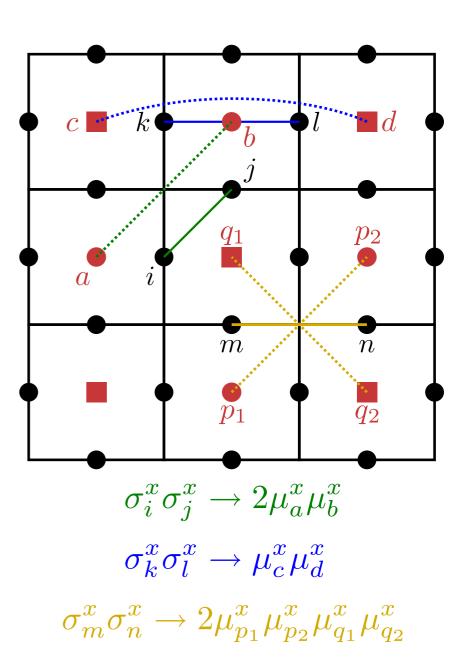
Toric code with Ising interactions

- Want to study a possible quantum phase transition between Z_2 topological order and spontaneous global Z_2 symmetry breaking.
- Toric code plus additional Ising interactions:

$$H = -J \sum_{s} A_{s} - J \sum_{p} B_{p}$$

$$-J_{I} \sum_{\langle i,j \rangle} \sigma_{i}^{x} \sigma_{j}^{x} - J_{I_{2}} \sum_{\langle \langle i,j \rangle \rangle} \sigma_{i}^{x} \sigma_{j}^{x}$$

$$A_{s} = \prod_{i \in s} \sigma_{i}^{x} \quad B_{p} = \prod_{i \in p} \sigma_{i}^{z}$$



Toric code with Ising interactions

Toric code plus additional Ising interactions:

$$H = -J \sum_{s} A_{s} - J \sum_{p} B_{p}$$

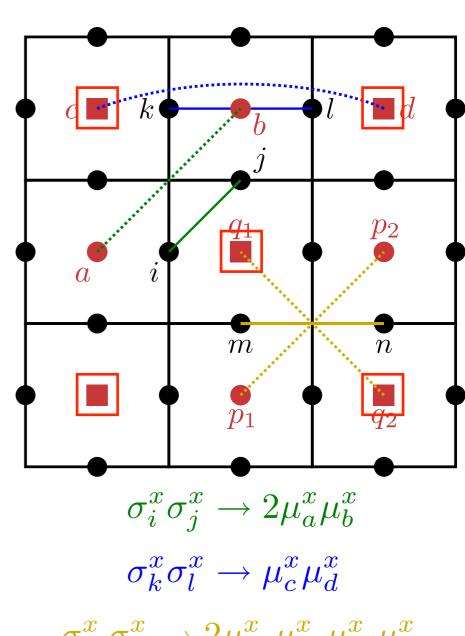
$$-J_{I} \sum_{\langle i,j \rangle} \sigma_{i}^{x} \sigma_{j}^{x} - J_{I_{2}} \sum_{\langle \langle i,j \rangle \rangle} \sigma_{i}^{x} \sigma_{j}^{x}$$

$$A_{s} = \prod_{i \in s} \sigma_{i}^{x} \quad B_{p} = \prod_{i \in p} \sigma_{i}^{z}$$

Maps onto a particular2+1D quantum Ashkin-Teller (AT) model:

$$H_{AT} = -J \sum_{i} \mu_{i}^{z} - 2J_{I} \sum_{\langle\langle i,j\rangle\rangle} \mu_{i}^{x} \mu_{j}^{x} - J_{I_{2}} \sum_{\langle\langle\langle i,j\rangle\rangle\rangle} \mu_{i}^{x} \mu_{j}^{x}$$
$$-2J_{I_{2}} \sum_{i} \mu_{i}^{x} \mu_{i+\hat{\mathbf{x}}}^{x} \mu_{i+\hat{\mathbf{y}}}^{x} \mu_{i+\hat{\mathbf{x}}+\hat{\mathbf{y}}}^{x}$$
(A6)

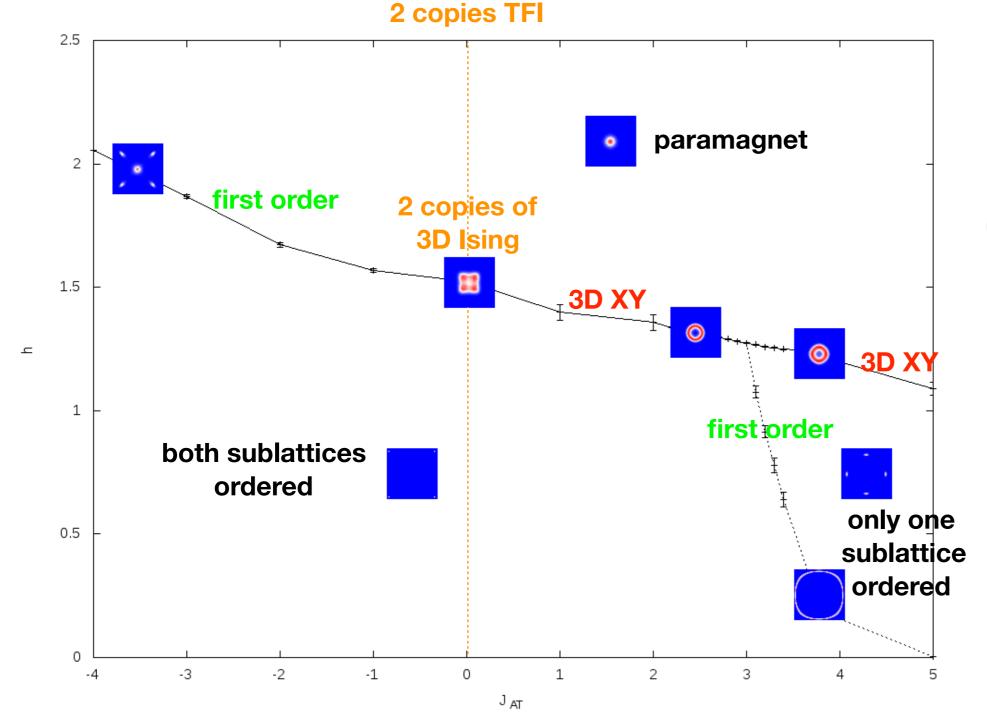
 This model has a two checkerboard lattice spatial structure, yielding the two AT-sublattices



$$\sigma_m^x \sigma_n^x \to 2\mu_{p_1}^x \mu_{p_2}^x \mu_{q_1}^x \mu_{q_2}^x$$

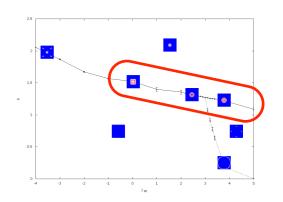
Phase diagram of the Quantum Ashkin-Teller model

Rather poorly studied in the past, so here we perform a new QMC study:

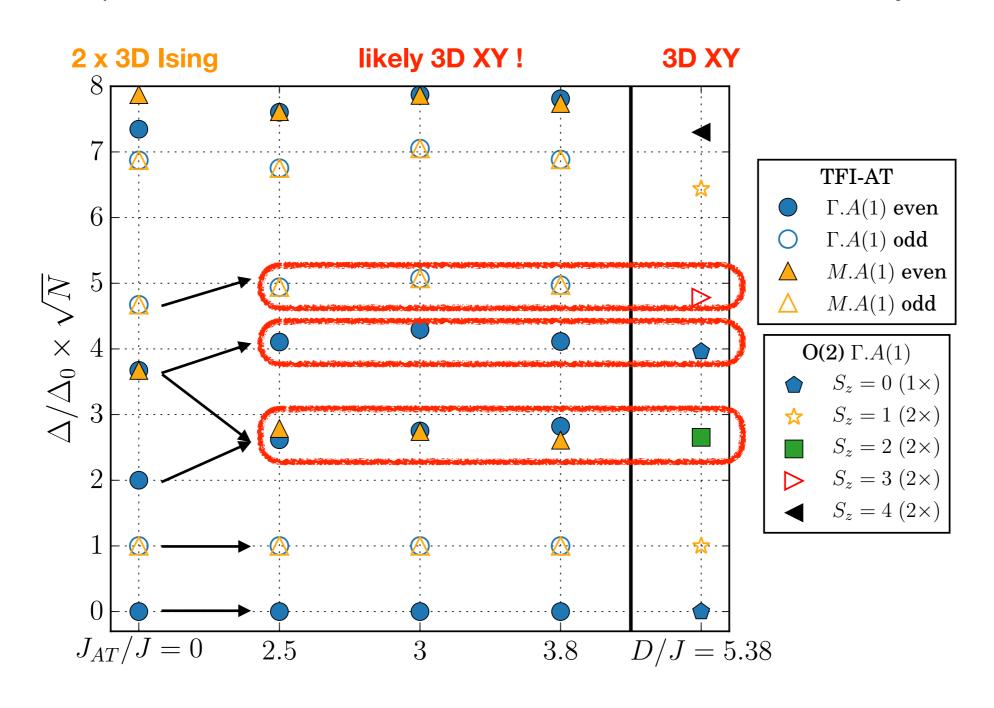


Phase structure in agreement with QFT results of N_c =2 ϕ^4 theory with cubic anisotropy.

Spectroscopy of QCP

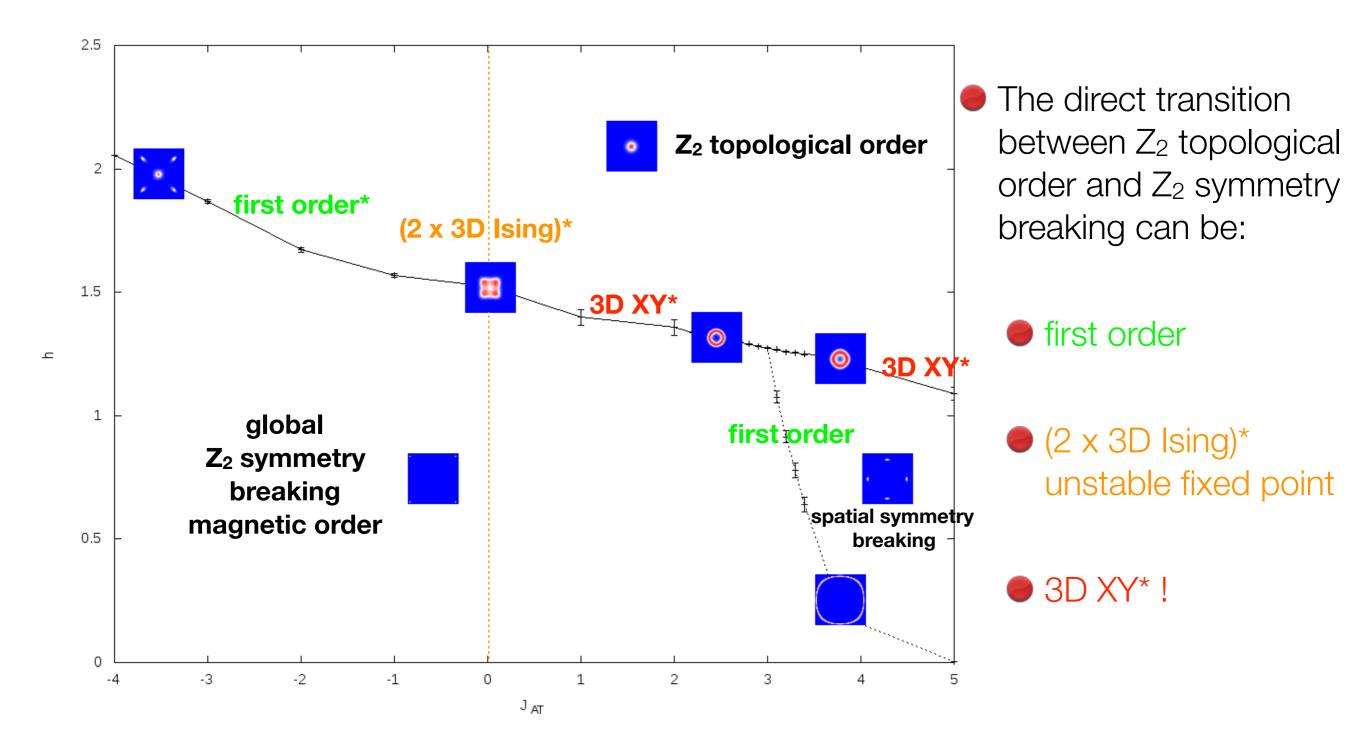


ED Torus Spectra in the Quantum Ashkin-Teller model at criticality:



Phase diagram of the Toric Code + Ising interactions

Translate the Ashkin-Teller results back to the Toric code + Ising:



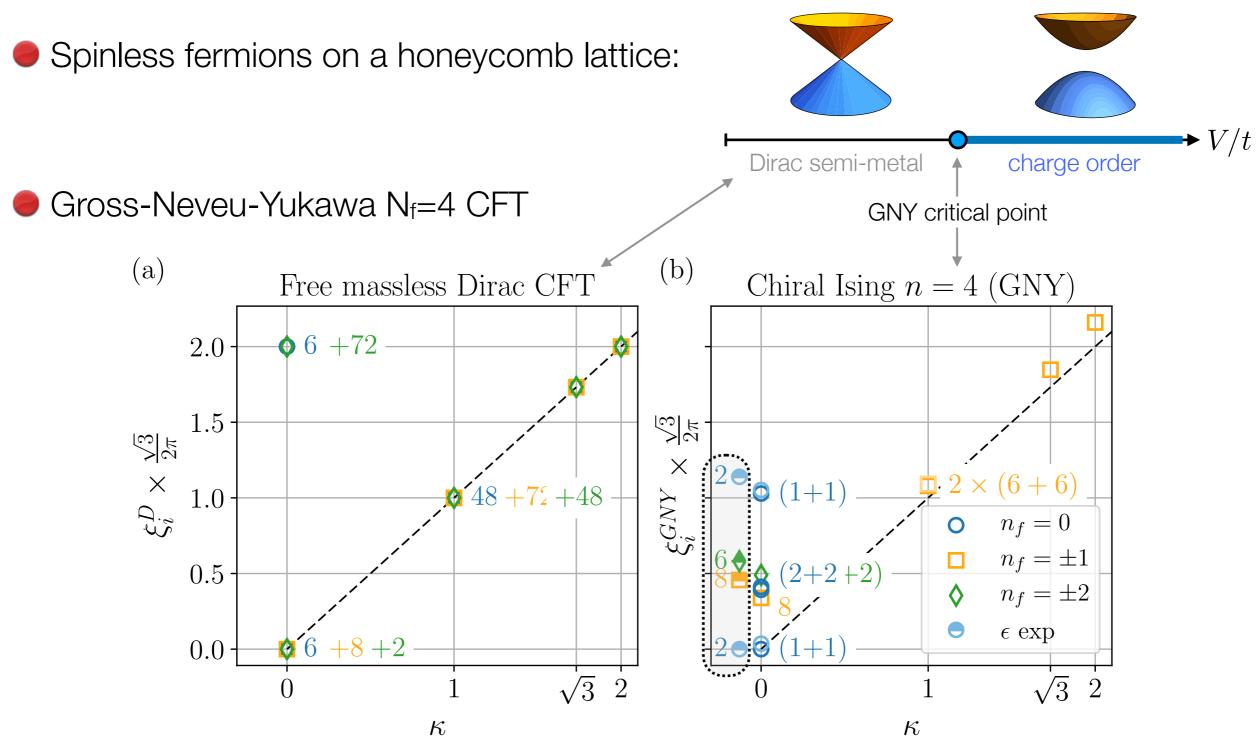
Outline of this talk

- Introduction: Quantum Many Body Systems / Spectroscopy
- Torus Energy Spectra and Quantum Critical Points?
- Spectrum of the standard 2+1D Ising transition
- Topological Phase Transitions
- Gross-Neveu-Yukawa fixed points

M. Schuler, S. Hesselmann, T.C. Lang, S. Wessel & AML arXiv:1907.05373

Outlook

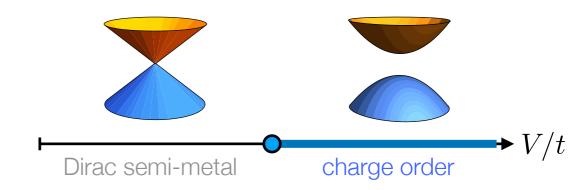
Gross-Neveu-Yukawa: Chiral Ising



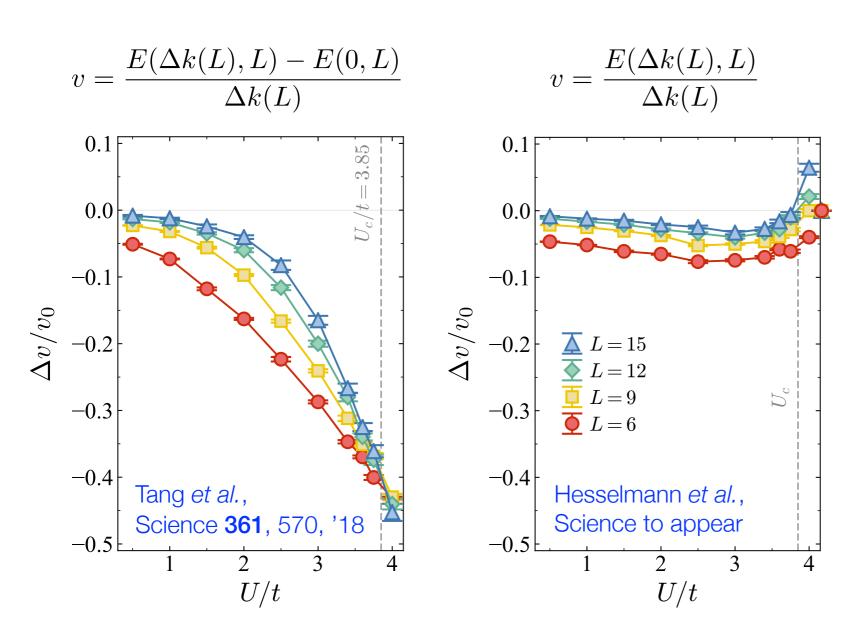
M. Schuler, S. Hesselmann, T.C. Lang, S. Wessel & AML arXiv:1907.05373

Gross-Neveu-Yukawa: Chiral Ising

Can one infer the "speed of light" from energy spectrum?

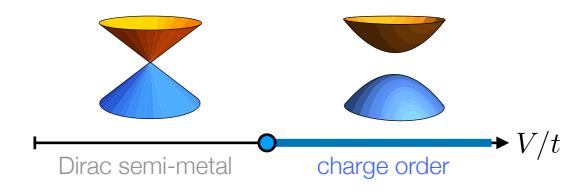


GNY critical point

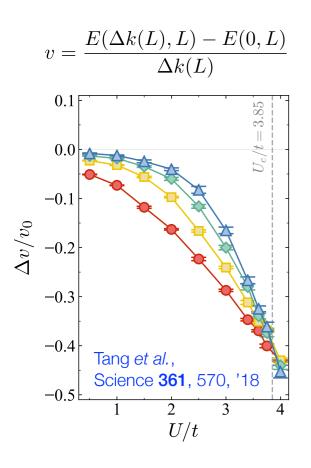


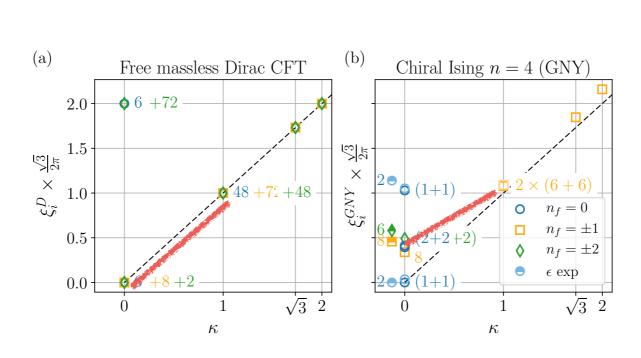
Gross-Neveu-Yukawa: Chiral Ising

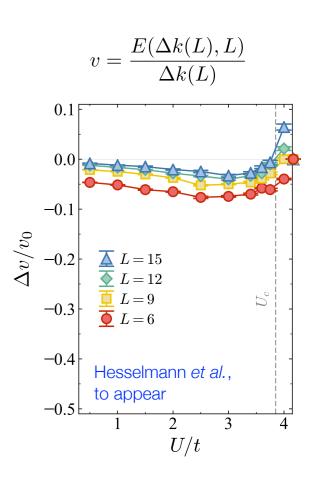
Can one infer the "speed of light" from energy spectrum?



GNY critical point







Outline of this talk

- Introduction: Quantum Many Body Systems / Spectroscopy
- Torus Energy Spectra and Quantum Critical Points?
- Spectrum of the standard 2+1D Ising transition
- Topological Phase Transitions
- Gross-Neveu-Yukawa fixed points
- Outlook

Experimental Prospects?

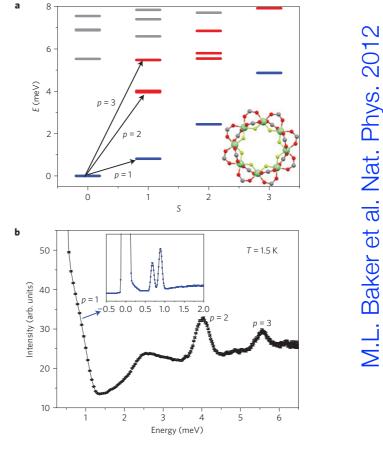
- In large, bulk materials, the many body energy spectrum is mostly extremely dense.
- In mesoscopic systems the finite energy spacing starts playing a role
- Our results show that the precise relative position of energy levels at the edge of the spectrum caries valuable information.
- Can one access some of this information using experimental probes?

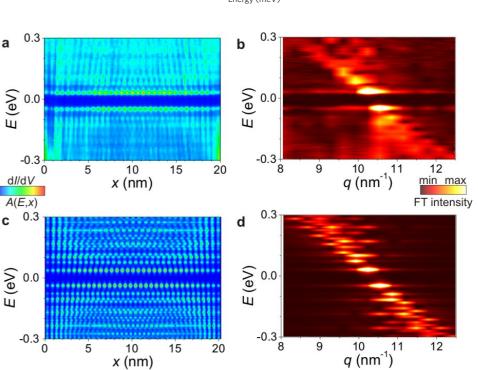
Experimental Prospects?

Some of the energy levels can be seen in some inelastic scattering experiments on mesoscopic samples.

in 1D, ring magnetic molecules provide a nice example of this approach.

New STM experiments on interacting 1D metals reveal spin-charge separation based on real-space LDOS measurements.

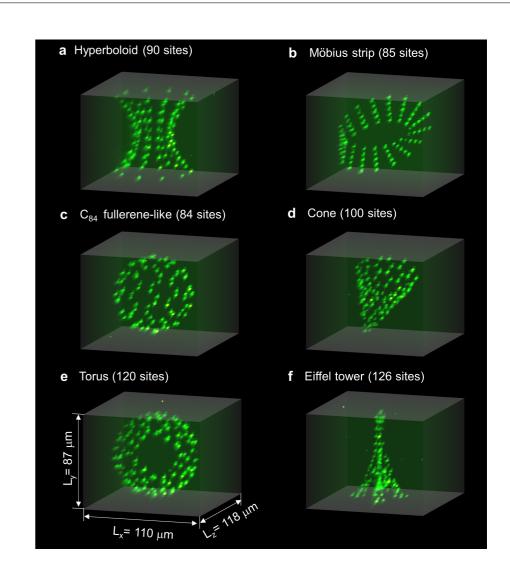




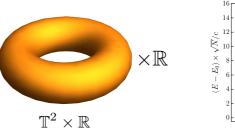
W. Jolie et al., Phys. Rev. X 2019

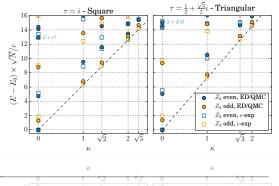
Experimental Prospects?

- In 2D tori are perhaps not readily available in condensed matter systems, but we plan to extend our analysis to systems with open boundaries, but the analysis might become involved.
- In synthetic (AMO) systems tori might become accessible for some Hamiltonians.



Conclusion / Outlook





- We have shown that the universal torus energy spectrum of the CFT describing quantum critical points is accessible numerically.
- The torus energy spectrum contains valuable information on the "operator content". It is e.g. able to discriminate the Ising from the Ising* universality class, and 2 x Ising from 3D XY
- We have results for O(2)/O(3) Wilson-Fisher fixed points and for several Gross-Neveu-Yukawa critical points.
- Results from CFT side ?
- Spectra for QED₃, Fermi surface + U(1) gauge field ?

Collaborators

University of Innsbruck

Michael Schuler
PhD Student
PostDoc > TU Wien

Louis-Paul Henry
PostDoc ➤ Hamburg

Harvard University

Seth Whitsitt
PhD Student

JQI Maryland

Subir Sachdev

Thank you for your attention!

