Lattice investigation of an inhomogeneous phase of the 2+1-dimensional Gross-Neveu model in the limit of infinitely many flavors

Marc Winstel, Jonas Stoll, Marc Wagner

Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik http://th.physik.uni-frankfurt.de/~mwagner/

"SIFT 2019: Strongly-Interacting Field Theories", Jena

November 09, 2019

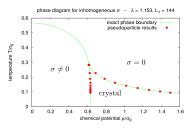
Introduction (1)

- Long-term goal: Compute the phase diagram of QCD.
 - Extremely difficult ...
 - ... e.g. "sign problem" in lattice QCD for chemical potential $\mu \neq 0$, computations very challenging/impossible.
- **QCD**-inspired models in the $N_f \to \infty$ limit:

```
QCD-inspired = symmetries similar as in QCD, e.g. chiral symmetry
N_f \rightarrow \infty limit = infinite number of flavors
```

• Inhomogeneous phases at large μ and small temperature T.

- inhomogeneous phase = phase with a spatially non-constant order parameter • Analytical results for the Gross-Neveu (GN) model in 1+1 dimensions.
- [O. Schnetz, M. Thies and K. Urlichs, Annals Phys. 314, 425 (2004) [hep-th/0402014]]
- Are there inhomogeneous phases in QCD?



Introduction (2)

- Project "Inhomogeneous phases at high density" of the CRC-TR 211 "Strong-interaction matter under extreme conditions" (universities of Bielefeld, Darmstadt, Frankfurt):
 - Goals:
 - Study the phase diagrams of various QCD-inspired models (GN, chiral GN, Nambu-Jona-Lasinio (NJL), ...) with particular focus on inhomogeneous phases.
 - Are there inhomogeneous phases in 2+1 or 3+1 dimensions?
 - Are there inhomogeneous phases with 2- or 3-dimensional modulations?
 - Determine the spatial modulation of the condensates (= order parameters) without using specific ansätze (e.g. no restriction to a chiral density wave).
 - Phase structure not only with respect to μ and T but also isospin and strangeness chemical potential μ_I , μ_S .
 - Are there inhomogeneous phases at finite N_f ?
 - Methods:
 - Lattice field theory.
 - * Lattice field theory computations in the $N_f \to \infty$ limit (this talk).
 - * Lattice field theory simulations at finite N_f (talk by Julian Lenz on Friday).
 - Functional Renormalization Group (poster by Martin Steil on Thursday).

Outline

- GN model in 2+1 dimensions
- - Discrete symmetry $\sigma \to -\sigma$ and fermion representation
 - Fermion discretization
 - Efficient computation of det(Q) and minimization of S_{eff}/N
 - Inhomogeneous phases and finite volume
- Numerical results, 1+1-dimensional GN model
- Numerical results, 2+1-dimensional GN model

GN model in 2+1 dimensions (1)

- At the moment we study the GN model 2+1 dimensions.
 - Do inhomogeneous phases exist in 2+1 dimensions?
 - Is the phase diagram in 2+1 dimensions similar to the analytically known phase diagram in 1+1 dimensions?
 - Are there inhomogeneous phases with 2-dimensional modulations?
- Action:

$$S = \int d^3x \left(\sum_{j=1}^{N_f} \frac{\bar{\psi}_j}{\left(\gamma_\nu \partial_\nu + \gamma_0 \mu \right) \psi_j} - \frac{g^2}{2} \left(\sum_{j=1}^{N_f} \frac{\bar{\psi}_j \psi_j}{\psi_j} \right)^2 \right).$$

After introducing a scalar field σ (= condensate) and performing the integration over fermionic fields

$$S_{\text{eff}} = N_f \left(\frac{1}{2\lambda} \int d^2x \, \sigma^2 - \ln \left(\det \left(\underbrace{\gamma_\nu \partial_\nu + \gamma_0 \mu + \sigma} \right) \right) \right)$$

$$Z = \int D\sigma e^{-S_{\text{eff}}},$$

where $\lambda = N g^2$.

GN model in 2+1 dimensions (2)

- $N \to \infty$: only "a single field configuration" important in $\int D\sigma e^{-S_{\text{eff}}}$ (minimum of $S_{\rm eff}/N$).
- For numerical treatment the degrees of freedom have to be reduced to a finite number → finite volume and discretization needed
 - For example lattice field theory.
 - There are other possibilities to discretize, e.g. finite mode discretization, discretization by piecewise polynomial functions, etc.

```
[M. Wagner, Phys. Rev. D 76, 076002 (2007) [arXiv:0704.3023]]
```

- Challenges, problems:
 - Discrete symmetry $\sigma \to -\sigma$ and fermion representation: 2-component irreducible versus 4-component reducible representation? ...
 - Fermion discretization: Fermion doubling problem? Explicit breaking of chiral symmetry? Unphysical zero modes? ...
 - Efficient computation of det(Q) and minimization of S_{eff}/N : After discretization, Q is a large matrix ...
 - Inhomogeneous phases and finite volume: Not just exponentially small corrections (size of the inhomogeneous structures versus size of the volume) ...

Discrete symmetry $\sigma \rightarrow -\sigma$ and fermion representation

- One can show $S_{\text{eff}}[+\sigma] = S_{\text{eff}}[-\sigma]$ (i.e. S_{eff} has a discrete symmetry).
- One can show $\sigma \propto \langle \sum_{i=1}^{N_f} \bar{\psi_i} \psi_i \rangle$.

1+1 dimensions:

• A possible irreducible 2×2 representation for the γ matrices is

$$\gamma_0 = \sigma_1$$
 , $\gamma_1 = \sigma_2$.

- $\sigma \neq 0$ would indicate spontaneous breaking of the symmetry $\psi_i \rightarrow \sigma_3 \psi_i$.
- Since σ_3 anticommutes with γ_0 and γ_1 , it is appropriate to define $\gamma_5 = \sigma_3$ and to interpret the symmetry as discrete chiral symmetry.

2+1 dimensions:

• A possible irreducible 2×2 representation for the γ matrices is

$$\gamma_0 = \sigma_1$$
 , $\gamma_1 = \sigma_2$, $\gamma_2 = \sigma_3$.

- It is impossible to find a corresponding appropriate γ_5 matrix, i.e. a matrix, which anticommutes with γ_0 , γ_1 and γ_2 .
- Consequently, a non-vanishing σ cannot be interpreted as a signal for chiral symmetry breaking.
- A possibility to retain the interpretation of σ as chiral order parameter is to use a reducible 4×4 representation.
- One can show that the phase diagrams for the irreducible 2×2 representation and the reducible 4×4 representation are identical.

Fermion discretization (1)

- Various discretizations tested.
- Expansion in a set of basis functions, e.g. plane waves,

$$\psi(\mathbf{x},t) \rightarrow \sum_{m_t,m_x} c_{m_t,m_x} e^{i(p_{m_t}t+p_{m_x}\mathbf{x})} , \quad \sigma(\mathbf{x}) \rightarrow \sum_{m_x} d_{m_x} e^{ip_{m_x}\mathbf{x}}$$

with $p_{m_t} = 2\pi (m_t - 1/2)/L_t$, $p_{m_x} = 2\pi m_x/L_x$, $d_{m_x} = (d_{-m_x})^*$.

[M. Wagner, Phys. Rev. D 76, 076002 (2007) [arXiv:0704.3023]]

- (-) Requires $\det(Q) = \det(Q^{\dagger})$, not the case e.g. for $\mu_I \neq 0$ or $\mu_s \neq 0$.
 - $\det(Q) \to \det(\langle f_n | Q | f_{n'} \rangle)$, where f_n are basis functions, e.g. $f_{m_t,m_x} = e^{i(\rho_{m_t}t + \rho_{m_x}x)}$.
 - Problem: span{f_n} ≠ span{Qf_n}, which causes artificially small eigenvalues or zero modes in ⟨f_n|Q|f_{n'}⟩ not present in Q.
 → Wrong and weird results.
 - Increasing the number of basis functions does not cure the problem.
 - Solution: $\ln(\det(Q)) \to (1/2) \ln(\det(Q^{\dagger}Q))$ (requires $\det(Q) = \det(Q^{\dagger})$).
- (-) Number of spatial modes in $\psi(x,t)$ should be larger than number of modes in $\sigma(x)$.
 - Q depends on $\sigma(x)$; basis functions representing $\psi(x,t)$ must be able to resolve more detail for an accurate approximation of $\det(Q)$.
- (+) No fermion doubling.
- (+) Resulting condensates $\sigma(x)$ are continuous functions. (When using lattice field theory, $\sigma(x)$ is represented by a set of points σ_x .)

Fermion discretization (2)

- Lattice discretization:
 - Naively discretized fermions.

$$\psi(x,t) \rightarrow \psi_{x,t}$$
 , $\partial_x \psi(x,t) \rightarrow \frac{\psi_{x+a,t} - \psi_{x-a,t}}{2a}$, ...

(x, t = 0, a, 2a, ...; a: lattice spacing).

- (-) Fermion doubling.
- Naively discretized with non-symmetric derivatives.
 - (-) No fermion doubling, but other severe problems.
- Staggered fermions.

[P. de Forcrand and U. Wenger, PoS LATTICE 2006, 152 (2006) [hep-lat/0610117]]

- (-) Fermion doubling still present.
- ...
- Most promising seems to be a combination of two approaches:
 - Plane wave expansion in t direction.
 - (+) Easy analytical simplifications possible, e.g. det(Q) factorizes.
 - Naive lattice discretization in x direction.
 - (+) Fermion doubling not a problem in the large-N limit (" $2 \times \infty = \infty$ ").

$$\psi(x,t) \rightarrow \psi_x(t) = \sum_m \psi_{x,m} e^{ip_m t} , \sigma(x) \rightarrow \sigma_x.$$

Efficient computation of det(Q) and ...

- $Q = \gamma_{\nu} \partial_{\nu} + \gamma_{0} \mu + \sigma$ is a large matrix, e.g. $\mathcal{O}(10^{5}) \times \mathcal{O}(10^{5})$ entries.
- Efficient computation of det(Q) and minimization of

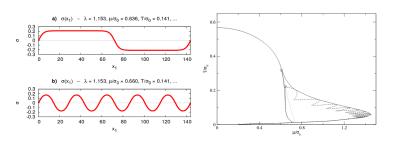
$$\frac{S_{\text{eff}}}{N_f} = \left(\frac{1}{2\lambda} \int d^2x \, \sigma^2 - \ln\left(\det(Q)\right)\right)$$

need

- preparatory analytical simplifications, e.g. to factorize det(Q),
- efficient algorithms and codes.
- Work in progress.
- Details are rather technical, beyond the scope of this presentation.

Inhomogeneous phases and finite volume (1)

- Periodic modulation of the inhomogeneous condensate, wave length λ depends on (μ, T) (left figure [for 1+1 dimensions]).
- Extent of the finite volume L typically fixed.
- If L is a multiple of λ , i.e. $L \approx n\lambda$, $n \in \mathbb{N}_+$
 - \rightarrow no particular problems with the finite volume, correct results.
- If $L \approx (n-1/2)\lambda$, $n \in \mathbb{N}_+$
 - → modulation of the inhomogeneous condensate does not fit into the finite volume, severely distorted results (see right figure, oscillating dashed line).



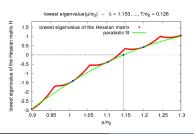
right figure [for 1+1 dimensions] from [P. de Forcrand and U. Wenger, PoS LATTICE 2006, 152 (2006) [hep-lat/0610117]]

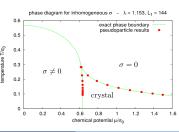
Inhomogeneous phases and finite volume (2)

- Infinite volume phase boundaries can be extracted from finite volume results.
- Phase boundary between inhomogeneous phase and restored phase:
 - Characterized by the appearance/disappearance of negative eigenvalues of the Hessian matrix

$$H_{xy} = \frac{\partial}{\partial \sigma_x} \frac{\partial}{\partial \sigma_y} S_{\text{eff}} \Big|_{\sigma=0}$$

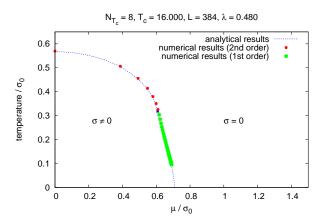
- Lowest eigenvalue of H as a function of μ oscillates in a finite volume (red curve in left figure):
 - Minima: $L \approx n\lambda$, $n \in \mathbb{N}_+$, identical to the infinite volume result.
 - Maxima: $L \approx (n-1/2)\lambda$, $n \in \mathbb{N}_+$, significantly different from the infinite volume result.
- Fitting a smooth curve (e.g. a 2nd order polynomial) from below (green curve in left figure [for 1+1 dimensions]) approximates the infinite volume result.





Numerical results, 1+1-dimensional GN model (1)

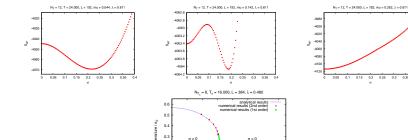
• Phase diagram with restriction to homogeneous condensate σ . (A Test of our method and implementation.)



analytical results first obtained in [U. Wolff, Phys. Lett. B 157, 303 (1985)]

Numerical results, 1+1-dimensional GN model (2)

- $S_{\rm eff}(\sigma)$ for homogeneous condensate σ .
 - Left: far inside the broken phase ($\mu/\sigma_0 = 0.20$, $T = T_c/3$).
 - Center: in the broken phase close to the 1st order phase boundary ($\mu/\sigma_0 = 0.65$, $T = T_c/3$).
 - Right: in the symmetric phase ($\mu/\sigma_0 = 1.20$, $T = T_c/3$).



0.2 0.1

 μ / σ_0

1.2

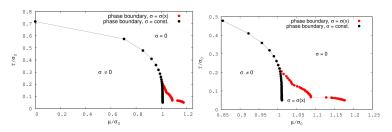
Numerical results, 2+1-dimensional GN model (1)

Phase diagram:

• Black dots: restriction to homogeneous condensate $\sigma = const$ (in agreement with available analytical results).

[K. Urlichs, PhD thsis, University of Erlangen-Nuremberg (2007)]

- Red dots: restriction to 1-dimensional modulations, $\sigma = \sigma(x)$.
 - Phase boundary via eigenvalues of the Hessian matrix ("stability analysis").
 - At finite volume, i.e. no extrapolation to infinite volume.

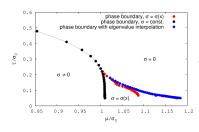


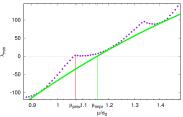
[M. Winstel, J. Stoll and M. Wagner, arXiv:1909.00064]

Numerical results, 2+1-dimensional GN model (2)

Phase diagram:

- Black dots: restriction to homogeneous condensate $\sigma = const.$
- Red dots: restriction to 1-dimensional modulations, $\sigma = \sigma(x)$.
 - Phase boundary via eigenvalues of the Hessian matrix ("stability analysis").
 - At finite volume, i.e. no extrapolation to infinite volume.
- Blue dots: restriction to 1-dimensional modulations, $\sigma = \sigma(x)$.
 - Phase boundary via eigenvalues of the Hessian matrix ("stability analysis").
 - Extrapolated to infinite volume (see right figure; smallest eigenvalue of the Hessian matrix as a function of μ at fixed T).

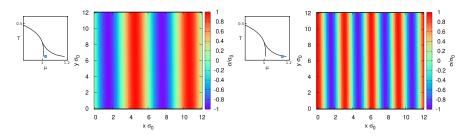




Numerical results, 2+1-dimensional GN model (3)

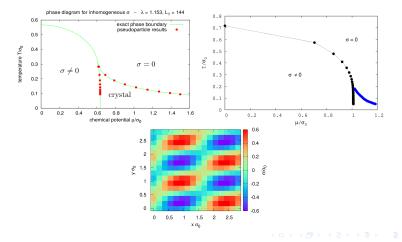
- Modulations of the condensate in the inhomogeneous phase at
 - $(\mu/\sigma_0, T/\sigma_0) = (1.025, 0.055)$ (left figure)
 - $(\mu/\sigma_0, T/\sigma_0) = (1.166, 0.055)$ (right figure) (restriction to 1-dimensional modulations, $\sigma = \sigma(x)$).

For increasing μ the wavelength decreases (as for the 1+1-dimensional GN model).



Numerical results, 2+1-dimensional GN model (4)

- Comparison of the phase diagram of the 1+1-dimensional (left figure) and the 2+1-dimensional (right figure) GN model.
 - Inhomogeneous phase in 2+1 dimensions smaller than for 1+1 dimensions.
 - Could become larger, when allowing 2-dimensional modulations, $\sigma = \sigma(x, y)$...?



Next steps

- Are there inhomogeneous phases with 2-dimensional modulations?
- Extend studies to 3+1 dimensions.
- Study the phase diagram of more realistic QCD-inspired models (chiral GN, Nambu-Jona-Lasinio (NJL), quark-meson model, ...) with particular focus on inhomogeneous phases.
 - \rightarrow Phase structure not only with respect to μ and T but also isospin and strangeness chemical potential μ_I , μ_S ...?
- Are there inhomogeneous phases at finite N_f ?
 - → Lattice field theory simulation of the path integral (talk by Julian Lenz on Friday).
 - [L. Pannullo, J. Lenz, M. Wagner, B. Wellegehausen and A. Wipf, arXiv:1902.11066]
 - [L. Pannullo, J. Lenz, M. Wagner, B. Wellegehausen and A. Wipf, arXiv:1909.11513]