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The plan

e Sign problem for QFTs at finite density
e Complexification and contour deformation
e Sampling method

e Case studies: real time correlators and Thirring
model in 2+1 dimensions

e Outlook



Motivation

e Physical models of interest require non-perturbative
calculations that have a sign problem:

e QCD at finite baryon density (RHIC, neutron star
structure, etc)

e Real time dynamics for strongly coupled QFT
e Strongly correlated electrons (Hubbard model, etc.)

e Complex path methods are likely to work for a large
class of problems.



Motivation
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Thermal QFT

e The partition function
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e The temperature is inversely proportional to the
Euclidean “time” extent

e Volume is controlled by the size in the spatial
direction and chemical potential by biasing the
hopping in “time” direction



Grand canonical partition function
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Monte-Carlo sampling

 QFT correlators are statistical averages
1
0) =5 [ Do Do

e Estimate using importance sampling
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e Stochastic errors decrease with sample size

_ \/ 0% - (©° 1
0'<0> = N X \/N




Sign problem

e When the partition function is not real direct
Monte-Carlo sampling is not possible

* The usual workaround involves rewezghting
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Sign problem

A sign problem appears when the phase average
is nearly zero (or zero): e ®1(®) | 4 e7¥51(#N) « N

* The cost of the calculation is inversely 1l
proportional to the phase average: N <e—i51(¢>>

* For example in QCD
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e In QCD the calculation cost increases
exponentially with the volume



QFT on the lattice

e The partition function is expressed as a path integral

e The fields are sampled on a grid; difterential operators
are replaced by finite difference ones
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* The partition function is a many-dimensional integral
over real variables

* The integrand has no singularity for both bosonic
and fermionic theories
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Contour deformation
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e Generalized Cauchy’s theorem
e Deformation in the field variable space (lattice geometry unchanged)
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Contour deformation
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Contour deformation
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Contour deformation
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Holomorphic gradient flow
and Lefschetz thimbles
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Holomorphic gradient flow
and Lefschetz thimbles
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Holomorphic gradient flow
and Lefschetz thimbles
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[.efschetz thimble

e 9(@122) (pea] plane) e 9(7:22)  (gaussian thimble)

S(z1,22) = 25 + x5 + 10ix1 + 20izs + iz122/3
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Complex Langevin vs contour
deformation

e Complex Langevin follows the
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| stochastic differential equation

-
= -
. -
-

z=-0,5(2)+n

Im z

0.0_—
e The process moves freely in the
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e Complex integration is constrained
1 1 . . . . .
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2 4 with the original integration contour

Gert Aarts, arXiv:1308.4811
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Basic idea
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Importance sampling

e Propose new x (parametrization space) P S

e Compute z(x), J(x) using the map (flow,
parametrization etc) and Seq(x)

Seri(x) = Sr(z(z)) — In |det J(x)|

e z(x) map can be expensive, for example

when defined by holomorphic flow.

e The Jacobian J(x) even more so. One
possibility is to use fast estimators.

e anisotropic proposals (skew proposals
with approximation of J7)

AA, G. Basar, and P. Bedaque, Monte Carlo algorithm for simulating fermions on Lefschetz thimbles, Phys. Rev. D93 (2016), no. 1 014504

AA, G. Basar, P. F. Bedaque, G. W. Ridgway, and N. C. Warrington, Fast estimator of Jacobians in the Monte Carlo integration on
Lefschetz thimbles, Phys. Rev. D93 (2016), no. 9 094514



Results

e finite density
e o+1 Thirring model (low)
e 1+1 Thirring model (flow, learnifold)
e 2+1 Thirring model (sign-optimized manifold)
e 3+1 G4 Bose gas (flow)
e 1+1 QED (low)
e real time
e 0+I anharmonic oscillator (flow)

o 1+1 (4 Bose gas (flow)
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Case study: real time physics

e Motivation: compute out-of-equilibrium correlators,
transport coefhicients non-perturbatively from first
principles

e Observables of interest are transport coefhicient such as
shear viscosity; conductivity, etc.

o At thermal equilibrium the observables are of the type

(O1()O0a(t)) = Tr[O1 (1) O2(t) p], p=ePH



Real time physics
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The worst sign problem
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The field variables attached to real t1me legs contribute a purely imaginary
factor to the action because exp(— = (¢pa1|exp(—iaH)|p,) produces a
contribution to the action S,, that is purely imaginary.
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The worst sign problem
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N=12 Np=4 a=0.2 A=4! dof=28

Real time physics (o+1D)

Complex Langevin only works for T<[3

Flow is required (from RN)

Jacobian is expensive and none of the

estimators work efficiently

Anisotropic proposals

Tangent space in wrong homology class
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AA, G. Basar, P. F. Bedaque, S. Vartak, and N. C. Warrington, Monte Carlo Study of Real Time Dynamics on the Lattice, Phys. Rev. Lett. 117 (2016), no. 8 081602

27



Re(T x(t)x(t"))

N
>
2
E
"
=
>~
Q
o'
o)

Im(T x(t)x(t"))

0 Im(T x(t)x(t"))

Ny=24 Ng=4 a=0.2 A=4! Tf,,=0.65

/0’0-°~ ¢




(0

1)D 8y

<
-

> A=05 < A




Sign optimized manifolds
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Since V) Z = 0 the sign average can

be optimized by minimizing / / ””” )\>O
the phase-quenched partition function

For a given ansatz z = f)(x) we can maximize (o) with respect
to A, using a stochastic gradient descent. For a well chosen ansatz,
the estimate for the gradient can be computed quickly.

Valog (o) = (VaS — Trlog J7'Vad)p o

Mori, Kashiwa & Ohnishi, arXiv:1705.05605 AA, Bedaque, Lamm & Lawrence, arXiv:1804.00697 Bursa & Kroyter, arXiv:1805.04941
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Massive Thirring model

Continuum action

2
5= /d?’az {lza (7.0, + pyo +m) P* 4 2?\7 %Wuwalza%wa}
F
At zero density the model still attracts interest
e For small number of flavors, Nr < (Ny)., the massless
model is expected to be chirally broken.
e For large number of flavors, Nr > (Ng)., chiral symmetry
is restored.
e Numerical determinations for (Nr). depend on the
discretization used.

We are interested in the finite density results: we will take the
model to be defined by the staggered discretization with Nr=2.
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Massive Thirring model

Lattice action after Hubbard-Stratonovich rewriting
e As are compact fields defined on links
e D is the staggered fermion discretization
e aruns from 1 to Ng/2

Okt = Z il (1 —cosA,(x)) + Z¢any m, p; A)Y® (y)

a:,ug

After integrating the fermionic fields the action is a function
of A’s

o A’s are real periodic fields: integration manifold S}

e after complexification (S; x R)"

1 1
Sttt = Np (Z 9—2 (1 —cosA,(x)) — 5 log det D(A))
T,
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Ansatz

e For large p the sign fluctuations can be
removed by shifting the A, in the imaginary
direction

e We propose then a map that only moves Ag(x)
in the complex plane (with correct periodicity)

e To keep the calculation of the Jacobian easy
we propose that the shift in the imaginary
direction for Ao(x) depend only on the value of
Ao(x) and not on any other variables. The map
A — A has only three parameters (As):

Ao = f(Ao), A1 =41, A =4y, det J = JI1 +if'(Ao(x))]
f(Ao) = AO T Z[)\O -+ )\1 COS AO i )\2 COS(QA())] ! 1
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Conclusions and outlook

e The basic idea is to use complexification and contour
deformation to eliminate or reduce the phase fluctuations of
the action.

e Holomorphic gradient flow generates a continuous family of
manifolds with improved sign average (with Lefschetz thimble
decomposition a limiting case).

e Thimbles and holomorphic low manifolds are only one
option. There is a large degree of freedom in choosing
complex deformations to address the numerical challenges
specific to the system of interest (with new challenges and
opportunities).

e These methods can be used to attack bosonic and fermionic
QFTs that have a sign problem.
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