

The melonic large-N limit: from SYK to tensor field theory

Sylvain Carrozza

Strongly-Interacting Field Theories Jena – November 7-9 2019

Leading-order Feynman diagrams in a variety of large-N theories:

Tensor models

Sachdev-Ye-Kitaev model

Structural glass / machine learning

Sylvain Carrozza

The melonic large-N limit

Three generic families of large N theories

Melonic regime \Rightarrow closed and often solvable systems of Schwinger-Dyson equations.

- Sachdev-Ye-Kitaev (SYK) model
- Tensor models / random tensors
- Tensor field theories
- Outlook

The SYK model

[Sachdev, Ye, Georges, Parcollet '90s...; Kitaev '15, Maldacena, Stanford, Polchinski, Rosenhaus...]

Sachdev-Ye-Kitaev model

Disordered system of N Majorana fermions ψ_{a} in d=0+1

$$H \sim J_{abcd} \psi_a \psi_b \psi_c \psi_d , \qquad \langle J_{abcd} \rangle = 0 , \quad \langle J_{abcd}^2 \rangle \sim \frac{\lambda^2}{N^3}$$

Interesting properties, for both condensed matter and high-energy physicists:

- solvable at large N
- emergent conformal symmetry at strong coupling
- $\bullet\,$ same symmetry breaking as in Jackiw-Teitelboim quantum gravity $\to\,$ toy-models of quantum black holes
- maximal quantum chaos

[Maldacena, Shenker, Stanford '15]

[Jevicki, Suzuki, Yoon '16...]

• Annealed partition function:

$$\langle \mathcal{Z} \rangle_{J} = \langle \int [\mathcal{D}\psi_{i}] e^{-S_{\mathrm{SYK}}[\psi]} \rangle_{J}, \qquad S_{\mathrm{SYK}} = \int \mathrm{d}t \left(\frac{1}{2} \psi_{a} \partial_{t} \psi_{a} - \frac{1}{4!} J_{abcd} \psi_{a} \psi_{b} \psi_{c} \psi_{d} \right)$$

• Collective bi-local field:

$$ilde{\mathcal{G}} := rac{1}{N} \sum_i \psi_i(t_1) \psi_i(t_2) \,, \qquad \langle \mathcal{Z}
angle_J = \int \mathcal{D} ilde{\mathcal{G}} \, \mathcal{D} ilde{\Sigma} \, \mathrm{e}^{- N \mathcal{S}_{\mathrm{eff}}[ilde{\mathcal{G}}, ilde{\Sigma}]} \,,$$

 $S_{\text{eff}}[\tilde{G},\tilde{\Sigma}] = \ln \operatorname{Pf}\left(\partial_t - \tilde{\Sigma}\right) - \frac{1}{2} \int \mathrm{d}t_1 \mathrm{d}t_2 \,\left(\tilde{\Sigma}(t_1, t_2)\tilde{G}(t_1, t_2) - \frac{\lambda^2}{4}\tilde{G}(t_1, t_2)^4\right)$

• Large-*N* physics from saddle-point \Rightarrow 2-point function:

$$G(t_1, t_2) = \frac{1}{N} \sum_i \langle \psi_i(t_1) \psi_i(t_2) \rangle$$

Sylvain Carrozza

$$G(t_1, t_2) = G_{\mathrm{free}}(t_1, t_2) + \lambda^2 \int \mathrm{d}t \mathrm{d}t' \ G_{\mathrm{free}}(t_1, t) \left[G(t, t')\right]^3 G(t', t_2)$$

• Infrared / strong-coupling limit ($\lambda | \omega | \gg 1$, or $\lambda \beta \gg 1$ if β finite):

$$\lambda^2 \int \mathrm{d}t \ G(t_1,t) \left[G(t,t_2)\right]^3 = -\delta(t_1-t_2)$$

• Emergent conformal invariance: reparametrization $t \mapsto f(t)$

$$G(t_1, t_2) \mapsto |f'(t_1)f'(t_2)|^{1/4}G(f(t_1), f(t_2))$$

• Conformal solution:

$$G(t_1, t_2) = -\left(rac{1}{4\pi\lambda^2}
ight)^{1/4} rac{\mathrm{sgn}(t_1 - t_2)}{|t_1 - t_2|^{2\Delta}}, \qquad \Delta = rac{1}{4}$$

$$G(t_1, t_2) = G_{\mathrm{free}}(t_1, t_2) + \lambda^2 \int \mathrm{d}t \mathrm{d}t' \ G_{\mathrm{free}}(t_1, t) \left[G(t, t')\right]^3 G(t', t_2)$$

- Spontaneous breaking to $SL(2,\mathbb{R}) \Rightarrow$ Goldstone modes $f \in Diff(\mathbb{R})/SL(2,\mathbb{R})$?
- $G_{\rm free}$ term \Rightarrow explicit breaking \Rightarrow non-zero Schwarzian effective action

$$S_{ ext{eff}}[f] \sim rac{1}{\lambda} \int \mathrm{d}t \left\{ f, t
ight\}$$

[Maldacena, Stanford '16]

 $\left(\{f,t\} = \frac{f^{\prime\prime\prime\prime}}{f^{\prime}} - \frac{3}{2} \left(\frac{f^{\prime\prime}}{f^{\prime}} \right)^2$ is the Schwarzian derivative)

- The Schwarzian action governs very interesting physics in
 - SYK \rightarrow maximal quantum chaos;
 - 2d quantum gravity \rightarrow non-trivial dynamics of asymptotic fields.
 - \Rightarrow near AdS₂ / near CFT₁ correspondence.

Jackiw-Teitelboim gravity

- Near-horizon geometry of near-extremal Reissner–Nordström BHs $\sim AdS_2 \times S_2$
- Near-horizon dynamics captured by 2d dilaton Jackiw-Teitelboim gravity

$$egin{aligned} S[g,\phi] &\sim -rac{S_0}{2\pi} \left[rac{1}{2} \int_{\mathcal{M}} \sqrt{g} R + \int_{\partial \mathcal{M}} \sqrt{h} K
ight] & ext{topological} \ &-rac{1}{2} \int_{\mathcal{M}} \sqrt{g} \phi \left(R + 2
ight) & ext{bulk} = ext{hyperbolic} \ &-\int_{\partial \mathcal{M}} \sqrt{h} \phi_b \left(K - 1
ight) & ext{"boundary graviton"} \end{aligned}$$

Euclidean solutions = cut-outs from the hyperbolic plane

- Non-trivial zero modes of bulk piece \Rightarrow Diff(S¹)/SL(2, R) symmetry.
- Explicit breaking by boundary \Rightarrow non-trivial boundary dynamics.
- Effective Schwarzian action:

$$S_{eff}[\tau] = -\gamma \int_0^eta \mathrm{d} u \{ an rac{ au(u)}{2}, u \}$$

 $\begin{bmatrix} Maldacena, Stanford, Yang '16... \end{bmatrix}$ ({f, t} = $\frac{f''}{f'} - \frac{3}{2} \left(\frac{f''}{f'}\right)^2$ is the Schwarzian derivative)

Boundary		<u>Bulk</u>
Strongly-coupled SYK-like QM	\longleftrightarrow	AdS_2 JT gravity
Conformal breaking	\longleftrightarrow	Boundary graviton
Conformal spectrum	\longleftrightarrow	Matter

Physical relevance: Near-horizon dynamics of near-extremal charged black holes.

Boundary		Bulk
Strongly-coupled SYK-like QM	\longleftrightarrow	AdS_2 JT gravity
Conformal breaking	\longleftrightarrow	Boundary graviton
Conformal spectrum	\longleftrightarrow	Matter

Physical relevance: Near-horizon dynamics of near-extremal charged black holes.

Sum over topologies with arbitrary number of boundaries can be performed explicitly:

JT quantum gravity \Leftrightarrow random matrix model

[Saad, Shenker, Stanford '19; Stanford, Witten '19]

Tensor models

Statistical approach to quantum gravity

1) Feynman expansion \leftrightarrow Weighted sum of discrete geometries

2) criticality \rightarrow continuum limit \rightarrow random geometry

Successful template. random matrices quantum gravity in d = 2.

[Ambjørn, Brézin, David, Durhuus, Fröhlich, Itzykson, Jónsson, Kazakov, Parisi, Zuber... '80s]

Higher dimensions. Motivated the theory of random tensors.

[Ambjørn, Durhuss, Jónsson '91; Boulatov '92; Ooguri '92; Freidel, Oriti, Gurau, Bonzom, Rivasseau... '10s]

Statistical approach to quantum gravity

1) Feynman expansion \leftrightarrow Weighted sum of discrete geometries

2) criticality \rightarrow continuum limit \rightarrow random geometry

Successful template. random matrices quantum gravity in d = 2. [Ambjørn, Brézin, David, Durhuus, Fröhlich, Itzykson, Jónsson, Kazakov, Parisi, Zuber... '80s]

Higher dimensions. Motivated the theory of random tensors.

[Ambjørn, Durhuss, Jónsson '91; Boulatov '92; Ooguri '92; Freidel, Oriti, Gurau, Bonzom, Rivasseau... '10s]

 $\begin{array}{ll} \mbox{Challenge. Continuum limit of melons} \rightarrow "branched polymers" (random continuous tree) \\ \mbox{$d_{\rm H}=2$ and $d_{\rm S}=4/3$} & [Ambjørn, Durhuus, Jonsson '90; Bialas, Burda '96; Gurau, Ryan '13] \\ & \mbox{How can we escape melonic universality in this set-up?} \end{array}$

FRG approach: [Eichhorn, Koslowski, Lumma, Peireira...]

• colored tensor models: 4 tensor fields, $O(N)^6$ symmetry

 $T^{(0)}_{abc} T^{(1)}_{dfa} T^{(2)}_{ebd} T^{(3)}_{cfe}$

• *uncolored* tensor models: 1 tensor field, $O(N)^3$ symmetry

 $T_{aeb}T_{cfb}T_{ced}T_{afd}$

• *irreducible* tensor models: 1 tensor field, O(N) symmetry

 $T_{aeb} T_{bfc} T_{ced} T_{dfa}$

• multi-matrix models, with large number of matrices

[Ferrari, Schaposnik Massolo, Valette, Rivasseau...]

 $\operatorname{Tr}(M^{(i)}M^{(j)}M^{(i)}M^{(j)})$

disordered systems: SYK, p-spin models...

 $J_{abcd} \psi_a \psi_b \psi_c \psi_d$

$$\mathcal{F}(\lambda) = \ln \int \mathrm{d}T \, \exp\left(-T_{abc}T_{abc} + \frac{\lambda}{N^{\alpha}} T_{aeb}T_{bfc}T_{ced}T_{dfa}\right)$$
$$=$$

$$\mathcal{F}(\lambda) = \ln \int \mathrm{d}T \, \exp\left(-T_{abc} T_{abc} + \frac{\lambda}{N^{\alpha}} \, T_{aeb} \, T_{bfc} \, T_{ced} \, T_{dfa}\right)$$

$$=$$

• <u>'90s</u>: T_{abc} symmetric tensor \rightarrow no useful large N expansion!

[Ambjørn, Durhuss, Jónsson '91; Boulatov '92; Ooguri '92]

$$\mathcal{F}(\lambda) = \ln \int \mathrm{d}T \, \exp\left(-T_{abc} T_{abc} + \frac{\lambda}{N^{3/2}} T_{aeb} T_{cfb} T_{ced} T_{afd}\right)$$
$$= \sum_{\omega \in \mathbb{N}/2} N^{3-\omega} \mathcal{F}_{\omega}(\lambda) = N^3 \left(\mathcal{F}_0(\lambda) + \frac{1}{\sqrt{N}} \mathcal{F}_{1/2}(\lambda) + \frac{1}{N} \mathcal{F}_1(\lambda) + \cdots\right)$$

• '90s:
$$T_{abc}$$
 symmetric tensor \rightarrow no useful large N expansion!
[Ambjørn, Durhuss, Jónsson '91; Boulatov '92; Ooguri '92]

• 2010 - 2015: solution assuming no permutation symmetry on the indices

 $ightarrow {
m O}(N)^3$ symmetry of the action

[Gurau '10; Bonzom, Rivasseau, Riello, ... SC, Tanasa '15]

$$\mathcal{F}(\lambda) = \ln \int \mathrm{d}T \, \exp\left(-T_{abc} T_{abc} + \frac{\lambda}{N^{3/2}} T_{aeb} T_{bfc} T_{ced} T_{dfa}\right)$$
$$= \sum_{\omega \in \mathbb{N}/2} N^{3-\omega} \mathcal{F}_{\omega}(\lambda) = N^3 \left(\mathcal{F}_0(\lambda) + \frac{1}{\sqrt{N}} \mathcal{F}_{1/2}(\lambda) + \frac{1}{N} \mathcal{F}_1(\lambda) + \cdots\right)$$

• '90s:
$$T_{abc}$$
 symmetric tensor \rightarrow no useful large N expansion!
[Ambjørn, Durhuss, Jónsson '91; Boulatov '92; Ooguri '92]

• 2010 – 2015: solution assuming **no** permutation symmetry on the indices $\rightarrow O(N)^3$ symmetry of the action

[Gurau '10; Bonzom, Rivasseau, Riello, ... SC, Tanasa '15]

• 2017 - 2019: tensors with (anti)-symmetrization of the indices finally understood!

 $\rightarrow O(N)$ symmetry of the action

[Benedetti, SC, Gurau, Kolanowski, Pozsgay...]

Melonic dominance in $O(N)^3$ models

$$\frac{\lambda}{N^{3/2}} T_{aeb} T_{cfb} T_{ced} T_{afd}$$

$$A(G) \sim N^{-\omega}$$
 with $\omega = 3 + \frac{3}{2}V - F$

Existence of the large N melonic limit

 $\omega \geq \mathbf{0}$

G leading order $\Leftrightarrow \omega = 0 \Leftrightarrow G$ is a melon diagram

Idea of proof: melons are "super-planar" i.e. they have planar jackets

$$\omega := g_{13} + g_{12} + g_{23} \in \frac{\mathbb{N}}{2}$$

$$g_{13} = 0$$

Melonic dominance in $O(N)^3$ models

$$\frac{\lambda}{N^{3/2}} T_{aeb} T_{cfb} T_{ced} T_{afd}$$

$$A(G) \sim N^{-\omega}$$
 with $\omega = 3 + \frac{3}{2}V - F$

Existence of the large N melonic limit

 $\omega \geq \mathbf{0}$

G leading order $\Leftrightarrow \omega = 0 \Leftrightarrow G$ is a melon diagram

Idea of proof: melons are "super-planar" i.e. they have planar jackets

$$\omega:=g_{13}+g_{12}+g_{23}\in rac{\mathbb{N}}{2}$$

Melonic dominance in $O(N)^3$ models

$$\frac{\lambda}{N^{3/2}} T_{aeb} T_{cfb} T_{ced} T_{afd}$$

$$A(G) \sim N^{-\omega}$$
 with $\omega = 3 + \frac{3}{2}V - F$

Existence of the large N melonic limit

 $\omega \geq \mathbf{0}$

G leading order $\Leftrightarrow \omega = 0 \Leftrightarrow G$ is a melon diagram

Idea of proof: melons are "super-planar" i.e. they have planar jackets

$$\omega := g_{13} + g_{12} + g_{23} \in \frac{\mathbb{N}}{2}$$

Conjecture (Klebanov–Tarnopolsky)

The large N expansion exists for O(N) symmetric traceless tensors.

#127

Evidence. Explicit numerical check of all diagrams up to order λ^8 .

[Klebanov, Tarnopolsky, JHEP '17]

12 12 12 12 12 12 12 12 12 12 12 12 D 0 #134 #135 #138 #137 #139 12 12 12 12 12 12 12 12 12 12 12 в II 141 #145 11146 12 12 12 12 12 12 12 12 12 12 12 #148 #149 #150 #152 #153 12 12 12 12 12 12 12 X 11 #155 12 12 12 12 12 12 12 11 11

Proof and further generalizations.

- O(N) symmetric traceless or antisymmetric
- \bigcirc O(N) mixed symmetric traceless
- Sp(N) irreducible

<u>Theorem</u>

The large N expansion exists for arbitrary **irreducible tensor representations**.

[Benedetti, SC, Gurau, Kolanowski, Commun. Math. Phys. '19] [SC, JHEP '18] [SC, Pozsgay, Nucl. Phys. B '19]

#132

The full connected 2-point function verifies: $\langle T_{a_1a_2a_3} T_{b_1b_2b_3} \rangle_c = \left(\underbrace{\mathcal{K}_0(\lambda)}_{\text{melons}} + O(1/\sqrt{N}) \right) \mathbf{P}_{a_1a_2a_3, b_1b_2b_3}$

- Holds whenever $T_{a_1a_2a_3}$ is irreducible.
- $K_0(\lambda)$ non-perturbative in λ :

$$K_0(\lambda) = 1 + \operatorname{cte} \lambda^2 K_0(\lambda)^4$$

• Sachdev-Ye-Kitaev model = disordered system of N Majorana fermions

[Sachdev, Ye, Georges, Parcollet '90s...; Kitaev '15, Maldacena, Stanford, Polchinski, Rosenhaus...]

/ \ ****

$$H_{\rm int} \sim J_{i_1 i_2 i_3 i_4} \psi_{i_1} \psi_{i_2} \psi_{i_3} \psi_{i_4} , \qquad \left\langle J_{i_1 i_2 i_3 i_4} \right\rangle \sim 0 , \quad \left\langle J_{i_1 i_2 i_3 i_4}^2 \right\rangle \sim \frac{J^2}{N^3}$$

- Many interesting properties:
 - solvable at large N
 - emergent conformal symmetry at strong coupling
 - $\bullet\,$ same symmetry breaking as in Jackiw-Teitelboim quantum gravity $\to\,$ toy-models of quantum black holes
 - maximal quantum chaos

• Sachdev-Ye-Kitaev model = disordered system of N Majorana fermions

[Sachdev, Ye, Georges, Parcollet '90s...; Kitaev '15, Maldacena, Stanford, Polchinski, Rosenhaus...]

$$H_{\rm int} \sim J_{i_1 i_2 i_3 i_4} \psi_{i_1} \psi_{i_2} \psi_{i_3} \psi_{i_4} , \qquad \left\langle J_{i_1 i_2 i_3 i_4} \right\rangle \sim 0 , \quad \left\langle J_{i_1 i_2 i_3 i_4}^2 \right\rangle \sim \frac{J^2}{N^3}$$

- Many interesting properties:
 - solvable at large N
 - emergent conformal symmetry at strong coupling
 - $\bullet\,$ same symmetry breaking as in Jackiw-Teitelboim quantum gravity $\to\,$ toy-models of quantum black holes
 - maximal quantum chaos
- Same melonic large *N* limit as tensor models

[Witten '16]

→ SYK-like quantum-mechanical models:

- same qualitative properties at large N and strong coupling;
- no disorder.
- \rightarrow New class of **QFTs** with solvable large N limits.

Tensor quantum mechanics of N^3 Majorana fermions:

[Klebanov, Tarnopolsky '16]

$$S = \int dt \left(\frac{\mathrm{i}}{2} \psi_{i_1 i_2 i_3} \partial_t \psi_{i_1 i_2 i_3} + \frac{\lambda}{4 N^{3/2}} \psi_{i_1 i_2 i_3} \psi_{i_4 i_5 i_3} \psi_{i_4 i_2 i_6} \psi_{i_1 i_5 i_6} \right)$$

Klebanov–Tarnopolsky model

Tensor quantum mechanics of N^3 Majorana fermions:

[Klebanov, Tarnopolsky '16]

$$S = \int dt \left(\frac{i}{2} \psi_{i_1 i_2 i_3} \partial_t \psi_{i_1 i_2 i_3} + \frac{\lambda}{4N^{3/2}} \psi_{i_1 i_2 i_3} \psi_{i_4 i_5 i_3} \psi_{i_4 i_2 i_6} \psi_{i_1 i_5 i_6} \right)$$

• Melonic dominance at large $N \Rightarrow$ closed Schwinger-Dyson equation: [SC, Tanasa '15]

Klebanov–Tarnopolsky model

Tensor quantum mechanics of N^3 Majorana fermions:

[Klebanov, Tarnopolsky '16]

$$S = \int dt \left(\frac{i}{2} \psi_{i_1 i_2 i_3} \partial_t \psi_{i_1 i_2 i_3} + \frac{\lambda}{4N^{3/2}} \psi_{i_1 i_2 i_3} \psi_{i_4 i_5 i_3} \psi_{i_4 i_2 i_6} \psi_{i_1 i_5 i_6} \right)$$

• Melonic dominance at large $N \Rightarrow$ closed Schwinger-Dyson equation: [SC, Tanasa '15]

• Same melonic equation as in SYK:

$$egin{aligned} &\langle \mathcal{T}(\psi_{m{a}_1m{a}_2m{a}_3}(t_1)\psi_{b_1b_2b_3}(t_1))
angle \equiv \mathcal{G}(t_1,t_2)\prod_{i=1}^3\delta_{m{a}_i,b_i}\ &\mathcal{G}(t_1,t_2) = \mathcal{G}_{ ext{free}}(t_1,t_2)+\lambda^2\int \mathrm{d}t\mathrm{d}t'\,\mathcal{G}_{ ext{free}}(t_1,t)\left[\mathcal{G}(t,t')
ight]^3\mathcal{G}(t',t_2) \end{aligned}$$

- SYK and SYK-like tensor models lead to similar IR physics:
 - near-conformality
 - chaos
 - conformal spectra from ladder diagrams
- Specificities of SYK-like tensor models:
 - no disorder \Rightarrow fully quantum
 - standard large N theory \Rightarrow gauging + natural generalizations to higher dimension
 - no simple collective path-integral formalism

(but see 2PI effective action: [Benedetti, Gurau '18])

• $\#\{\text{states}\} \sim \exp(\operatorname{cte} \times N^3) \Rightarrow \text{open numerical challenges}$

- SYK and SYK-like tensor models lead to similar IR physics:
 - near-conformality
 - chaos
 - conformal spectra from ladder diagrams
- Specificities of SYK-like tensor models:
 - no disorder \Rightarrow fully quantum
 - standard large N theory \Rightarrow gauging + natural generalizations to higher dimension
 - no simple collective path-integral formalism

(but see 2PI effective action: [Benedetti, Gurau '18]) • #{states} ~ exp(cte × N³) \Rightarrow open numerical challenges

Ν	Number of singlets	N	Number of singlets	
1	2	1	3	
2	36	2	39	
3	595 354 780	3	170 640	
Real $O(2N)^3$		Compl	Complex $USp(2N)$ symmetric	
(Klebanov-Tarnopolsky)		(SC-Pozsgay)	

Large-N tensor field theory

Unlike SYK, tensor models naturally fit in the framework of local quantum field theory.

Natural research programme:

Investigate the properties of melonic large N QFTs in $d \ge 2$.

Bosonic: [Giombi, Klebanov, Tarnopolsky '17 ; Giombi, Klebanov, Popov, Prakash, Tarnopolsky '18; Benedetti, Deleporte '18 ; Benedetti, Gurau, Harribey '19...]

Fermionic: [Prakash, Sinah '17; Benedetti, SC, Gurau, Sfondrini '17...]

Why it is interesting:

- only diagrams that proliferate are melons \Rightarrow non-perturbative analytic control (summable)
- melons are bi-local \Rightarrow anomalous dimensions \Rightarrow non-trivial CFTs and RG flows
- 4-point functions = sums of ladder diagrams \Rightarrow non-perturbative access to the spectrum

1st example: four-fermion theory, d = 2

Action

Tensorial Gross-Neveu model, with e.g. O(N) Majorana fermions.

$$S_{N} = \frac{1}{2} \int d^{2}x \ \psi_{i_{1}i_{2}i_{3}} \partial \phi_{i_{1}i_{2}i_{3}}$$
$$- \frac{\lambda_{0}}{4N^{3}} \int d^{2}x \bigotimes_{S}^{S} - \sum_{X=S,V,P} \frac{\lambda_{1}^{X}}{4N^{2}} \int d^{2}x \bigotimes_{X}^{X} - \sum_{X=S,V,P} \frac{\lambda_{2}^{X}}{4N^{3/2}} \int d^{2}x \bigotimes_{X}^{X}$$

Spinorial contractions with: **1** (S), γ_{μ} (V) or γ_{5} (P) insertions.

Action

Tensorial Gross-Neveu model, with e.g. O(N) Majorana fermions.

$$S_{N} = \frac{1}{2} \int d^{2}x \ \psi_{i_{1}i_{2}i_{3}} \partial \hspace{-0.1cm} \psi_{i_{1}i_{3}i_{3}} \partial \hspace{-0.1cm} \psi_{i_{1}i_{3}i_{3}i_{3}} \partial \hspace{-0.1cm} \psi_{i_{1}i_{3}i_{3}} \partial \hspace{-0.1$$

Spinorial contractions with: 1 (S), γ_{μ} (V) or γ_{5} (P) insertions.

•
$$\lambda_0 > 0, \ \lambda_1^S > 0, \ \lambda_2 = 0$$
:

- Tadpole diagrams \Rightarrow non-perturbative generation of mass in the IR
- Asymptotic freedom.

 $\ 2 \ \ \lambda_0 = \lambda_1^S = 0 \ \ \text{and} \ \ \lambda_2 \neq 0:$

- Melonic Schwinger-Dyson equation
- Free part still relevant at strong coupling \Rightarrow no IR conformal regime

• Large-*N* Schwinger-Dyson equations:

$$G^{-1}(x,x') = G_0^{-1}(x,x') - \Sigma(x,x'), \qquad \Sigma(x,x') = -(\lambda_0^S + \lambda_1^S) \text{Tr}[G(x,x)] \delta(x,x')$$

• Gap equation \rightarrow non-perturbative mass:

$$m = \Lambda \exp\left(-\frac{\pi}{\lambda_0^S + \lambda_1^S}\right)$$

• Callan-Symanzik \Rightarrow asymptotic freedom: $\beta_1^S = -2(\lambda_1^S)^2/\pi < 0$

- Same type of **bilocal** equation as in d = 1.
- Main difference: G_{free} cannot be neglected in the IR limit.
- Is there a non-trivial IR fixed point nonetheless?

Best we could achieve analytically:

perturbatively stable subsector with one effective coupling λ and

$$\beta_{\lambda} = \frac{3}{\pi^2} \lambda^3$$

Weakly interacting fixed point in $d = 2 - \varepsilon$

• Interesting feature in $d = 2 - \varepsilon$:

$$eta_{\lambda} = rac{3}{\pi^2} \lambda^3 \quad o \quad eta^{(arepsilon)} = -arepsilon \lambda + rac{3}{\pi^2} \lambda^3$$

 \rightarrow weakly interacting IR fixed point $\lambda^* \sim \sqrt{\varepsilon}$.

 \rightarrow analogous to Wilson-Fisher in bosonic $\varphi_{4-\varepsilon}^4.$

Conjecture: governs the near-conformal regime of SYK in the limit $\varepsilon \to 1$.

2nd example: bosonic theory, d = 3

[Benedetti, Gurau, Harribey '19]

Euclidean bosonic tensor field theory in d < 4:

$$\mathcal{L} = \frac{1}{2} \varphi_{abc} (-\Delta)^{\zeta} \varphi_{abc} + \frac{m^{2\zeta}}{2} \varphi_{abc} \varphi_{abc}$$
$$+ \frac{\lambda}{4N^{3/2}} \swarrow + \frac{\lambda_P}{4N^2} \swarrow + \frac{\lambda_D}{4N^3} \bigotimes$$

Infrared regime: Fix $\zeta = \frac{d}{4}$

[Gross, Rosenhaus '16] in d = 1

- large $N \rightarrow$ non-perturbative flow
- λ has a finite flow: $g = \lambda/Z^2$
- for the two other directions (g_1, g_2) : $\beta_{g_i} = \alpha_2^{(i)}(g) g_i^2 2\alpha_1^{(i)}(g) g_i + \alpha_0^{(i)}(g)$
- lines of fixed points parametrized by g.

[Benedetti, Gurau, Harribey '19]

Euclidean bosonic tensor field theory in d = 3:

$$\mathcal{L} = \frac{1}{2}\varphi_{abc}(-\Delta)^{\zeta}\varphi_{abc} + \frac{m^{2\zeta}}{2}\varphi_{abc}\varphi_{abc}$$
$$+ \frac{\lambda}{4N^{3/2}} \longrightarrow$$
$$+ \frac{\lambda_P}{4N^2} \longrightarrow + \frac{\lambda_D}{4N^3} \bigoplus$$

- $\lambda \in i\mathbb{R} \Rightarrow \exists$ one infrared attractive fixed point.
- Assuming conformal invariance, the melonic limit allows to compute the conformal data. [Benedetti, Gurau, Harribey, Suzuki '19]
 - Spectrum and OPE coefficients consistent with unitarity.
 - No local stress-tensor.

Glimpse of a new class of large N CFTs?

Outlook and summary

Melonic theories and glassy dynamics

[Facoetti, Biroli, Kurchan, Reichman '19]

$$E = \sum_{i_1 < \ldots < i_p} J_{i_1 \ldots i_p} q_{i_1} \ldots q_{i_p},$$

$$\sum_{i} q_i^2 = N$$

Glassy dynamics		SYK-like quantum model
Classical Langevin process	\longleftrightarrow	Quantum Hamiltonian
Dynamics of metastable states	\longleftrightarrow	Equilibrium partition function
Dynamical heterogeneity	\longleftrightarrow	Almost reparametrization invariance

Melonic theories and glassy dynamics

[Facoetti, Biroli, Kurchan, Reichman '19]

$$E = \sum_{i_1 < \ldots < i_p} J_{i_1 \ldots i_p} q_{i_1} \ldots q_{i_p}, \qquad \sum_i q_i^2 = N$$

Melonic flows for inference problems in theoretical machine learning:

spiked tensor model or tensor PCA

[Ben Arous, Montanari,... Biroli, Cammarota, Ros,... Krzakala, Zdeborova...]

D

Tensor T_{abc}

Melon diagrams

Tractable

- Third universal class of large N methods.
- Melon diagrams lie in a sweet spot: both tractable and rich!
- Research initially motivated by random geometry and quantum gravity...

... but led to a new and very active interface with AdS/CFT and strongly-coupled physics.

• Robust methods, domain of validity significantly enlarged recently:

 $\text{colored} \rightarrow \text{irreducible tensor models}$