
Linear Response Theory 
• Dynamics in linear response theory: 
 
 
 
 

• In Fourier space, the time response is governed by 
the structure of                 in the complex     plane: 

The Quantum Ising Model 
• The quantum Ising Hamiltonian has the following 

phase diagram: 
 
 
 
 
 
 
 
 

• The full scaling Ising field theory Hamiltonian in 
presence of transverse and longitudinal 
perturbations has the form [1]:  
 
 
continuum limit:  
physical parameters: 

Matrix Product States 
• Matrix product states (MPS) are ansätze for the 

wave function of a many-body quantum state [2] 
which satisfy an Area law [3] by construction: 
 
 
graphical representation: 
 
 
 
 
 
 

• We use the TEBD algorithm (time-evolving block 
decimation [4]) to construct thermal states and 
perform real-time evolution. 
 

Expectation values are calculated as: 
 
 
for Pauli matrices 

CFT Results for Correlators 
• Two equivalent representations (zero momentum): 
 
 
 
 
 
 
(1+1)D CFT: 
 
+ govern relaxation behavior 
+ lowest decaying pole sets thermalization scale 
+ holographic interpretation as BH quasi normal modes [5] 

MPS Simulations 
• We simulate spin chains of size                      at zero 

momentum (operators             and           ) and 
compare to integrable free fermion results: 

The integrable QFT limit: MPS results 
• We use Prony’s method to represent the signal as a 

sum of complex exponentials, i.e. 
 
 
 
 
 
 
 
 
 

+ UV branch cut is approximated by vertical line of poles 
+ good agreement of first decaying thermodynamic pole with 
   analytical result  
+ second decaying pole                          partially identifiable 
+ uncertainty estimation from parameter variation in Prony and  
   time-shifted analysis window 
+ residues agree with analytical result (free fermions) in QFT limit 

The non-integrable QFT limit: 
MPS predictions 
• For non-integrable transverse and longitudinal 

perturbations at zero momentum, no movement of 
the leading decaying thermodynamic pole is visible:  
 
 
 
 
 
 
 
 
 

Meson studies 
• As a non-trivial cross-check in the non-integrable 

QFT regime, we identify meson / particle masses [6] 
of the perturbed Ising CFT and their decay rates [7] 
in different phases of the vacuum: 

From spin chains to real-time thermal field theory 
using tensor networks 
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Here, we use tensor network techniques to study real-time QFT dynamics at finite temperature. We explore thermal quantum quenches of the 1D 
Ising spin chain and its deformations, focusing on the IR regime in which the system is described by a (1+1)D QFT.  
       Our main interests are: (1) to evaluate numerically the structure of the retarded 2-point function from tensor network simulations, and 
                                             (2) compare to integrable results and make predictions in the non-integrable QFT regime

Motivation 
• The understanding of quantum many-body systems ab initio is one of the grand challenges in 

condensed matter and high-energy physics. 
• On the experimental side, heavy-ion collisions study collective phases of QCD matter. The aim is to 

elucidate mechanisms which govern equilibration to the quark-gluon plasma (QGP) from a non-
equilibrium initial state. 

• In holography, quasinormal modes (characteristic complex frequencies at which black holes (BHs) 
absorb matter) set the time scale for dissipation in dual quantum field theories (QFTs). Such studies 
help to understand equilibration in several classes of models of the QGP.
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Left: Comparison between the MPS simulations (solid) and exact results from

free fermions (black dotted) for the transverse response function at criticality.

We observe an excellent agreement for all lattice spacing values �J .
Right: Comparison of the transverse (solid) and longitudinal (dash-dotted) re-

sponse function from MPS simulations. Note that the longitudinal response is

oscillating on a much longer time scale.
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�Mh = 0.2, �Mḡ = 0

Extraction of the purely decaying thermodynamic poles in the continuum limit

�J ! 1, based on the analytical result (left) and MPS simulation (right).

Blue/green errorbars: first/second pole, Grey lines: analytical result

paramagneticferromagnetic

Extraction of the purely decaying first thermodynamic pole in the continuum

limit for the non-integrable case based on MPS simulations. The critical point

is approached from the ferromagnetic (left) and paramagnetic phase (right) for

fixed �Mh = 0.5 and di↵erent values of the integrability breaking �Mḡ.
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Frequency analysis from Prony for the non-integrable continuum limit:

Solid vertical lines mark the predictions of particle masses in [6]. Dashed vertical

lines mark a boundary excitation and the threshold 2M1 of the first multi-

particle state.

Left: Ferromagnetic phase. The stable frequencies near the real line correspond

to meson masses. The first 3 mesons are stable, while the finite imaginary parts

(i.e. decay rates) of the 4th and 5th meson match the calculation in [7].

Right: Paramagnetic phase. There are 2 stable and 1 unstable particle.

Summary 
• Tensor network techniques can be used to extract non-trivial 

real-time thermal field theory dynamics. 
• The Prony method can be used to numerically evaluate the 

structure of the retarded 2-point function in the complex 
frequency plane: 
  agreement with CFT result / free fermions in integrable regime 
  no movement of first decaying thermodynamic pole for non- 
  integrable perturbations 
  meson / particle masses match predictions from Ising CFT 

• The effect of non-zero momentum is not yet studied.
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