Antiheavy-antiheavy-light-light ($\bar{Q}\bar{Q}qq$) tetraquarks from lattice QCD

"SIFT 2024: Strongly Interacting Field Theories"

Marc Wagner

Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik

mwagner@th.physik.uni-frankfurt.de

http://itp.uni-frankfurt.de/~mwagner/

November 28, 2024

Why $\bar{Q}\bar{Q}qq$ tetraquarks?

- For almost 10 years several independent lattice QCD groups study the existence and properties of
 - $-\overline{b}\overline{b}ud$ tetraquarks (not discussed in this talk),
 - $b\bar{b}us$ tetraquarks (part 1 of this talk, straightforward [a deeply bound state]),
 - $\bar{b}\bar{c}ud$ tetraquarks (part 2 of this talk, difficult [scattering theory needed]).

Theoretical motivation:

- $-\ \bar{Q}\bar{Q}qq$ systems are systems of at least four quarks, because quark-antiquark anihilation is not possible.
 - \rightarrow Simpler to study than e.g. $\bar{Q}Q(\bar{q}q)$ or $\bar{q}q(\bar{q}q)$ tetraquarks.
- $-\overline{bbud}$ with $I(J^P) = 0(1^+)$ and \overline{bbus} with $J^P = 1^+$ are QCD-stable.
 - \rightarrow Very straightforward to study. (Just check, whether the ground state of the system is below the corresponding 2-meson threshold.)

Experimental motivation:

- Related $T_{cc}^+(\bar{c}\bar{c}ud)$ recently discovered by LHCb. [R. Aaij *et al.* [LHCb], Nature Commun. **13**, 3351 (2022) [arXiv:2109.01056]]
- $\bar{b}\bar{c}qq$ might "soon" be within experimental reach.

Why lattice QCD?

- Lattice QCD = full QCD (numerically with high performance computers) ... i.e. no assumptions, no approximations, etc. needed.
- A lattice QCD result, if generated in a technically sound and solid way, is a full QCD result and can be confronted with experiment in a direct and meaningful way.
- However, lattice QCD is technically difficult, in particular, when studying exotic hadrons, e.g. $\bar{Q}\bar{Q}qq$ tetraquarks.
 - → Often lattice QCD studies are not yet fully rigorous, i.e. certain assumptions are made, quark masses are unphysical, no continuum and/or infinite volume limit, no convincing separation and extraction of low-lying energy eigenstates, etc.
 - \rightarrow Important to read (at least some) technical details of lattice QCD papers, to be able to judge their quality.

Existing work and references (1)

- Summary of current status (only full lattice QCD results):
 - $\overline{b}\overline{b}ud$ with $I(J^P) = 0(1^+)$:
 - A QCD-stable tetraquark around 130 MeV below the BB^* threshold.
 - $\overline{b}\overline{b}us$ with $J^P = 1^+$: (part 1 of this talk)
 - A QCD-stable tetraquark around 90 MeV below the BB_s^* threshold.
 - * Masses of stable hadrons correspond to energy eigenvalues at infinite volume (for shallow bound states, it might be difficult to study this limit).
 - $\bar{b}\bar{c}ud$ with $I(J^P) = 0(0^+)$ and with $I(J^P) = 0(1^+)$: (part 2 of this talk) Contradictory results. The technically most advanced study points towards very shallow bound states, i.e. QCD-stable tetraquarks slightly below the BD and B^*D thresholds.
 - * Masses and decay widths of resonances/shallow bound states can be calculated from the volume dependence of the energy eigenvalues (difficult).
 - $\overline{b}\overline{b}ud$ with $I(J^P) = 0(1^-)$:

No full lattice QCD investigation yet. Antistatic-antistatic lattice QCD potentials and the Born-Oppenheimer approximation suggest the existence of a **tetraquark** resonance close to the B^*B^* threshold (which is not the lowest meson-meson threshold).

Existing work and references (2)

- This talk is mainly a summary of our recent works
 - [S. Meinel, M. Pflaumer, M. Wagner, Phys. Rev. D 106, 034507 (2022) [arXiv:2205.13982]] (bbus, bcud)
 - [C. Alexandrou, J. Finkenrath, T. Leontiou, S. Meinel, M. Pflaumer, M. Wagner, Phys. Rev. Lett. 132, 151902 (2024) [arXiv:2312.02925]] (bcud)
- Related lattice QCD works on $\bar{Q}\bar{Q}qq$ tetraquarks:
 - [A. Francis, R. J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. Lett. 118, 142001 (2017) [arXiv:1607.05214]] (*bbud*, *bbus*)
 - [A. Francis, R. J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. D 99, 054505 (2019) [arXiv:1810.10550]] (bcud)
 - [P. Junnarkar, N. Mathur, M. Padmanath, Phys. Rev. D **99**, 034507 (2019) [arXiv:1810.12285]] (*bbud*, *bbus*)
 - [L. Leskovec, S. Meinel, M. Pflaumer, M. Wagner, Phys. Rev. D 100, 014503 (2019) [arXiv:1904.04197]] (bbud)
 - [R. J. Hudspith, B. Colquhoun, A. Francis, R. Lewis, K. Maltman, Phys. Rev. D 102, 114506 (2020) [arXiv:2006.14294]] (bc
 ud)
 - [P. Mohanta, S. Basak, Phys. Rev. D 102, 094516 (2020) [arXiv:2008.11146]] (bbud)
 - [R. J. Hudspith, D. Mohler, Phys. Rev. D 107, 114510 (2023) [arXiv:2303.17295]] (bbud, bbus)
 - [T. Aoki, S. Aoki, T. Inoue, Phys. Rev. D 108, 054502 (2023) [arXiv:2306.03565]] (bbud)
 - [M. Padmanath, A. Radhakrishnan and N. Mathur, Phys. Rev. Lett. **132**, 20 (2024) [arXiv:2307.14128]] (*b̄cud*)
 - [C. Alexandrou, J. Finkenrath, T. Leontiou, S. Meinel, M. Pflaumer and M. Wagner, Phys. Rev. D 110, 054510 (2024) [arXiv:2404.03588]] (*bbud*, *bbus*)

Part 1:

Masses of QCD-stable $\bar{Q}\bar{Q}qq$ tetraquarks: eigenvalues of the QCD Hamiltonian (mainly $\bar{b}\bar{b}us$ with $J^P = 0^+$)

[S. Meinel, M. Pflaumer, M. Wagner, Phys. Rev. D 106, 034507 (2022) [arXiv:2205.13982]]

Basics of lattice hadron spectroscopy (1)

Masses of QCD-stable hadrons (e.g. the mass of a bbus tetraquark) correspond to low-lying energy eigenvalues E_n with matching quantum numbers (typically the ground state energy E₀) and are determined from the exponential decays of temporal correlation functions C_{jk}(t) of (hadron creation) operators O_j:

 $C_{jk}(t) = \langle \Omega | O_j^{\dagger}(t) O_k(0) | \Omega \rangle = \langle \Omega | O_j^{\dagger} | 0 \rangle \langle 0 | O_k | \Omega \rangle e^{-E_0 t} + \langle \Omega | O_j^{\dagger} | 1 \rangle \langle 1 | O_k | \Omega \rangle e^{-E_1 t} + \dots$

- $C_{jk}(t)$ can be computed with lattice QCD.
- The analytical expression on the right hand side is used to determine E_0 , E_1 , ...

Basics of lattice hadron spectroscopy (2)

- $C_{jk}(t) = \langle \Omega | O_j^{\dagger}(t) O_k(0) | \Omega \rangle = \langle \Omega | O_j^{\dagger} | 0 \rangle \langle 0 | O_k | \Omega \rangle e^{-E_0 t} + \langle \Omega | O_j^{\dagger} | 1 \rangle \langle 1 | O_k | \Omega \rangle e^{-E_1 t} + \dots$
- In principle one can use any operator O_j , which generates the same quantum numbers as the hadron of interest. (but then you have to compute $C_{ik}(t)$ precisely for very large t ...)
- In practice one needs operators with the following properties:
 - The operators have to generate large overlap to the low-lying energy eigenstates (not only the hadron of interest, but also multi-particle states of similar mass).
 - There must be at least one operator for each low-lying state.
 - The operators must not be too similar (ideally "they are almost orthogonal").

Otherwise it is questionable, whether an analysis correctly extracts E_0 , E_1 , ... from the correlation function $C_{jk}(t)$.

A major problem is that such analyses always provide numbers, but these might be wrong ... e.g. one could obtain $\approx (E_0 + E_1)/2$ instead of E_0 , if one does not use both bound state and scattering operators.

• We improve on existing lattice QCD studies by considering both local and scattering operators for $\bar{Q}\bar{Q}qq$ systems. This allows a more trustworthy and precise extraction of energy eigenvalues as well as to carry out scattering analyses.

Lattice setup

• Five ensembles of gauge link configurations generated with 2+1 quark flavors by the **RBC** and **UKQCD** collaboration. These have different volumes, different lattice spacings and different light quark masses.

ensemble	$N_s^3 \times N_t$	$a \; [fm]$	$m_{\pi} \; [{\rm MeV}]$
C00078	$48^3 \times 96$	0.1141(3)	139(1)
C005	$24^3 \times 64$	0.1106(3)	340(1)
C01	$24^3 \times 64$	0.1106(3)	431(1)
F004	$32^3 \times 64$	0.0828(3)	303(1)
F006	$32^3 \times 64$	0.0828(3)	360(1)

[Y. Aoki *et al.* [RBC and UKQCD], Phys. Rev. D **83**, 074508 (2011) [arXiv:1011.0892]] [T. Blum *et al.* [RBC and UKQCD], Phys. Rev. D **93**, 074505 (2016) [arXiv:1411.7017]]

- Domain-wall action for u, d and s quarks.
- NRQCD action for valence b quarks, anisotropic clover action for valence c quarks.
- Local operators (representing bound states) and scattering operators (representing meson-meson states).
- Scattering operators only at one end of the correlation functions, because we were using existing point-to-all-operators. (for scattering operators at both ends see 2404.03588)

$\overline{b}\overline{b}us$ with $J^P = 1^+$: operators

• Local operators (at the source and at the sink):

$$O_{1} = O_{[BB_{s}^{*}](0)} = \sum_{\mathbf{x}} \bar{b}\gamma_{5}u(\mathbf{x}) \,\bar{b}\gamma_{j}s(\mathbf{x}) \quad (BB_{s}^{*} \text{ bound state})$$

$$O_{2} = O_{[B^{*}B_{s}](0)} = \sum_{\mathbf{x}} \bar{b}\gamma_{j}u(\mathbf{x}) \,\bar{b}\gamma_{5}s(\mathbf{x}) \quad (B^{*}B_{s} \text{ bound state})$$

$$O_{3} = O_{[B^{*}B_{s}^{*}](0)} = \epsilon_{jkl} \sum_{\mathbf{x}} \bar{b}\gamma_{k}u(\mathbf{x}) \,\bar{b}\gamma_{l}s(\mathbf{x}) \quad (B^{*}B_{s}^{*} \text{ bound state})$$

$$O_{4} = O_{[Dd](0)} = \sum_{\mathbf{x}} \bar{b}^{a}\gamma_{j}\mathcal{C}\bar{b}^{b,T}(\mathbf{x}) \, u^{a,T}\mathcal{C}\gamma_{5}s^{b}(\mathbf{x}) \quad (\text{diquark-antidiquark})$$

• Scattering operators (only at the sink):

$$O_{5} = O_{B(0)B_{s}^{*}(0)} = \left(\sum_{\mathbf{x}} \bar{b}\gamma_{5}u(\mathbf{x})\right) \left(\sum_{\mathbf{y}} \bar{b}\gamma_{j}s(\mathbf{y})\right) \quad (BB_{s}^{*} \text{ 2-particle state})$$

$$O_{6} = O_{B^{*}(0)B_{s}(0)} = \left(\sum_{\mathbf{x}} \bar{b}\gamma_{j}u(\mathbf{x})\right) \left(\sum_{\mathbf{y}} \bar{b}\gamma_{5}s(\mathbf{y})\right) \quad (B^{*}B_{s} \text{ 2-particle state})$$

$$O_{7} = O_{B^{*}(0)B_{s}^{*}(0)} = \epsilon_{jkl} \left(\sum_{\mathbf{x}} \bar{b}\gamma_{k}u(\mathbf{x})\right) \left(\sum_{\mathbf{y}} \bar{b}\gamma_{l}s(\mathbf{y})\right) \quad (B^{*}B_{s}^{*} \text{ 2-particle state})$$

$\overline{b}\overline{b}us$ with $J^P = 1^+$: energy levels

- <u>Plot</u>: Energy levels $\Delta E_n = E_n E_B E_{B_s^*}$ for ensemble C01 obtained with various operator subsets and temporal fitting ranges.
- Only local operators $\rightarrow \Delta E_0 \approx 0 \text{ MeV}.$
- Local and scattering operators $\rightarrow \Delta E_0 \approx -100 \text{ MeV}$, $\Delta E_1 \approx 0 \text{ MeV}$. \rightarrow Ground state corresponds to a QCD-stable tetraquark.

$\overline{b}\overline{b}us$ with $J^P = 1^+$: final results

- Bottom plot: Overlaps of each operator to the lowest three energy eigenstates (O'_1 to O'_3 are linear combinations of O_1 to O_4 , O'_4 to O'_6 correspond to O_5 to O_7).
 - Roughly equal contributions to the ground state from a local BB_s^* / B^*B_s operator ("I = 0") ...
 - ... and a local $B^{\ast}B_{s}^{\ast}$ operator, ...
 - ... a smaller but still sizable contribution from a diquark-antidiquark operator.
- Right plot: Almost no light quark mass dependence. $\rightarrow \Delta E_0(m_{\pi,\text{phys}}) = (-86 \pm 22 \pm 10) \text{ MeV},$ $m_{\overline{bbus} \text{ tetraquark}}(m_{\pi,\text{phys}}) = (10609 \pm 22 \pm 10) \text{ MeV}.$

$\overline{b}\overline{b}us$ with $J^P = 1^+$: existing results

- Lattice QCD results from three independent groups (Francis et al., Junnarkar et al., our work) consistent within statistical errors.
- Strong discrepancies between non-lattice QCD results.

$\overline{b}\overline{c}ud$ with $I(J^P) = 0(0^+)$: operators

• Local operators (at the source and at the sink):

$$O_1 = O_{[BD](0)} = \sum_{\mathbf{x}} \bar{b}\gamma_5 u(\mathbf{x}) \, \bar{c}\gamma_5 d(\mathbf{x}) - (u \leftrightarrow d) \quad (BD \text{ bound state})$$
$$O_2 = O_{[Dd](0)} = \sum_{\mathbf{x}} \bar{b}^a \gamma_5 \mathcal{C} \bar{c}^{b,T}(\mathbf{x}) \, u^{a,T} \mathcal{C} \gamma_5 d^b(\mathbf{x}) - (u \leftrightarrow d) \quad (\text{diquark-antidiquark}).$$

• Scattering operators (only at the sink):

$$O_3 = O_{B(0)D(0)} = \left(\sum_{\mathbf{x}} \bar{b}\gamma_5 u(\mathbf{x})\right) \left(\sum_{\mathbf{y}} \bar{c}\gamma_5 d(\mathbf{y})\right) - (u \leftrightarrow d) \quad (BD \text{ 2-particle state}).$$

$\bar{b}\bar{c}ud$ with $I(J^P) = 0(1^+)$: operators

• Local operators (at the source and at the sink):

$$O_{1} = O_{[B^{*}D](0)} = \sum_{\mathbf{x}} \bar{b}\gamma_{j}u(\mathbf{x}) \bar{c}\gamma_{5}d(\mathbf{x}) - (u \leftrightarrow d) \quad (B^{*}D \text{ bound state})$$

$$O_{2} = O_{[BD^{*}](0)} = \sum_{\mathbf{x}} \bar{b}\gamma_{5}u(\mathbf{x}) \bar{c}\gamma_{j}d(\mathbf{x}) - (u \leftrightarrow d) \quad (BD^{*} \text{ bound state})$$

$$O_{3} = O_{[Dd](0)} = \sum_{\mathbf{x}} \bar{b}^{a}\gamma_{j}\mathcal{C}\bar{c}^{b,T}(\mathbf{x}) u^{a,T}\mathcal{C}\gamma_{5}d^{b}(\mathbf{x}) - (u \leftrightarrow d) \quad (\text{diquark-antidiquark}),$$

• Scattering operators (only at the sink):

$$O_{4} = O_{B^{*}(0)D(0)} = \left(\sum_{\mathbf{x}} \bar{b}\gamma_{j}u(\mathbf{x})\right) \left(\sum_{\mathbf{y}} \bar{c}\gamma_{5}d(\mathbf{y})\right) - (u \leftrightarrow d) \quad (B^{*}D \text{ 2-particle state})$$
$$O_{5} = O_{B(0)D^{*}(0)} = \left(\sum_{\mathbf{x}} \bar{b}\gamma_{5}u(\mathbf{x})\right) \left(\sum_{\mathbf{y}} \bar{c}\gamma_{j}d(\mathbf{y})\right) - (u \leftrightarrow d) \quad (BD^{*} \text{ 2-particle state}).$$

$\overline{b}\overline{c}ud$: energy levels

- Left plot: $I(J^P) = 0(0^+)$, energy levels $\Delta E_j = E_j E_B E_D$ for ensemble C01 obtained with various operator subsets and temporal fitting ranges.
- Right plot: $I(J^P) = 0(1^+)$, energy levels $\Delta E_j = E_j E_{B^*} E_D$ for ensemble C01 obtained with various operator subsets and temporal fitting ranges.
- Ground states always consistent with or above the lowest meson-meson thresholds.
 → No indication for the existence of a QCD-stable tetraquark.
 - \rightarrow Operator overlaps support this, i.e. suggest that the ground states are meson-meson scattering states.

$\bar{b}\bar{c}ud$: final results

- Left plot: $I(J^P) = 0(0^+)$, ensemble dependence of ground state energy.
- Right plot: $I(J^P) = 0(1^+)$, ensemble dependence of ground state energy.
- To exclude the existence of a shallow bound state with binding energy of only a few MeV, more precise data and an infinite volume extrapolation is needed.

Part 2:

Finite volume scattering analysis for $\overline{b}\overline{c}ud$ with $I(J^P) = 0(0^+)$ and $I(J^P) = 0(1^+)$

[C. Alexandrou, J. Finkenrath, T. Leontiou, S. Meinel, M. Pflaumer, M. Wagner, Phys. Rev. Lett. 132, 151902 (2024) [arXiv:2312.02925]]

$\bar{b}\bar{c}ud$, $I(J^P) = 0(0^+)$ and $0(1^+)$ (1)

- T_{cc} (cc̄ud with I(J^P) = 0(1⁺)): slightly below the DD* threshold, almost QCD-stable.
 (experiment)
- $\overline{b}\overline{b}ud$ with $I(J^P) = 0(1^+)$: $\approx 100 \text{ MeV}$ below the DD^* threshold, QCD-stable. (lattice QCD)
- What about $\overline{b}\overline{c}ud$ with $I(J^P) = 0(1^+)$ (and also $I(J^P) = 0(0^+)$)?
 - Physics might be somewhat different, because of non-identical heavy quark flavors.
 - Existing lattice studies contradictory or inconclusive.
 - [A. Francis, R. J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. D 99, 054505 (2019) [arXiv:1810.10550]] (hints for a bound state)
 - [R. J. Hudspith, B. Colquhoun, A. Francis, R. Lewis, K. Maltman, Phys. Rev. D 102, 114506 (2020) [arXiv:2006.14294]] (previous hints disappeared)
 - [S. Meinel, M. Pflaumer, M.W., Phys. Rev. D 106, 034507 (2022) [arXiv:2205.13982]] (no evidence for a bound state, a shallow bound state could not be ruled out [part 1 of this talk])
 - [M. Padmanath, A. Radhakrishnan, N. Mathur, Phys. Rev. Lett. **132**, 20 (2024) [arXiv:2307.14128]] (bound state ≈ 43 MeV below the BD^* threshold via Lüscher's method)
 - Expected to be close to the B^*D threshold.
 - \rightarrow Lattice QCD studies technically difficult.

$\bar{b}\bar{c}ud$, $I(J^P) = 0(0^+)$ and $0(1^+)$ (2)

- In the following a summary of
 - [C. Alexandrou, J. Finkenrath, T. Leontiou, S. Meinel, M. Pflaumer, M. Wagner, Phys. Rev. Lett. 132, 151902 (2024) [arXiv:2312.02925]]
 - $\bar{b}\bar{c}ud$ systems with $I(J^P) = 0(1^+)$ and $I(J^P) = 0(0^+)$.
 - Different lattice setup and substantially more advanced methods compared to previous work.
 - \rightarrow Local and scattering operators at the source and at the sink of correlation functions.
 - \rightarrow Application of Lüscher's finite-volume method to multiple excited states.
 - \rightarrow Reliable determination of the energy dependence of B-D and $B^*\text{-}D$ S-wave scattering amplitudes.

Lattice setup

- Gauge link configurations generated with N_f = 2 + 1 + 1 flavors of highly improved staggered (HISQ) quarks by the MILC collaboration.
 [A. Bazavov *et al.* [MILC], Phys. Rev. D 87, 054505 (2013) [arXiv:1212.4768]]
 - Two ensembles, which differ in the spatial volume:
 - * $a \approx 0.12 \, \mathrm{fm}.$
 - * $24^3\times 64$, i.e. spatial lattice extent $\approx 2.9\,{\rm fm}$,
 - $32^3 \times 64$, i.e. spatial lattice extent ≈ 3.8 fm.
 - * Pion mass $m_{\pi} \approx 220 \text{ MeV}.$
- Mixed-action setup tested and used by the PNDME collaboration for nucleon-structure computations.
 - [T. Bhattacharya et al. [PNDME], Phys. Rev. D 92, 094511 (2015) [arXiv:1506.06411]]
 - [R. Gupta, Y. C. Jang, B. Yoon, H. W. Lin, V. Cirigliano, T. Bhattacharya, Phys. Rev. D 98, 034503 (2018) [arXiv:1806.09006]]
 - Clover-improved Wilson action with HYP-smeared gauge links for the valence light and charm quarks.

$\bar{b}\bar{c}ud$, $I(J^P) = 0(0^+)$ and $0(1^+)$ (3)

- Black and gray data points: Lowest five finite-volume energy levels as functions of the spatial lattice extent L.
 - First lattice QCD study of $\bar{b}\bar{c}ud$ using both local operators ("tetraquark structure") and scattering operators ("meson-meson structure") at the source and at the sink.
 - Such a set of operators seem to be necessary to get correct and precise results for the low-lying finite-volume energy levels.
- Blue curves:

Noninteracting $B^{(*)}-D$ energy levels, $E = E_{B^{(*)}}(\mathbf{p}^2) + E_D(\mathbf{p}^2)$ with momenta **p** satisfying periodic boundary conditions.

- Significant downward shift of finitevolume energy levels compared to noninteracting energy levels ("a larger number of energy levels").
 - \rightarrow A hint for the existence of a pole in the scattering amplitude, i.e. a shallow bound state or a resonance.

$\bar{b}\bar{c}ud$, $I(J^P) = 0(0^+)$ and $0(1^+)$ (4)

 Rigorously investigate the existence of bound states or resonances by mapping the finite-volume energy levels E_n to infinite-volume S-wave B^(*)-D scattering phase shifts,

 $\cot \delta_0(k_n) = \frac{2Z_{00}(1; (k_n L/2\pi)^2)}{\pi^{1/2} k_n L}$

(Lüscher's method).

- Z_{00} : generalized zeta function.
- k_n : scattering momenta associated with energy levels E_n , calculated via $E_n = E_{B^{(*)}}(k_n^2) + E_D(k_n^2)$.
- Single-channel, single-partial-wave approach:

- \rightarrow Only extract the phase shifts for energy levels below the $B^*\text{-}D^*$ (J=0) and $B\text{-}D^*$ (J=1) thresholds.
- \rightarrow For J=1 exclude the second excitation, because it is strongly D-wave dominated. (use black points, exclude gray points)

$\bar{b}\bar{c}ud$, $I(J^P) = 0(0^+)$ and $0(1^+)$ (5)

- Blue data points:
 - Infinite-volume S-wave $B^{(*)}$ -D scattering phase shifts.
 - \rightarrow Data points / Lüscher's method valid above the left-hand cut associated with two-pion exchange and below the next threshold (B^*-D^* for J = 0 and $B-D^*$ for J = 1).
- Black curve:

Effective-range expansion (ERE) fit,

$$k \cot \delta_0(k) = \frac{1}{a_0} + \frac{1}{2}r_0k^2 + b_0k^4$$

• *S*-wave scattering amplitude:

$$T_0(k) = \frac{1}{\cot \delta_0(k) - i},$$

i.e. poles for $k \cot \delta_0(k) = ik$.

$\bar{b}\bar{c}ud$, $I(J^P) = 0(0^+)$ and $0(1^+)$ (6)

Bound states (1)

- Condition for poles in the scattering amplitude $k \cot \delta_0(k) = ik = \pm \sqrt{-k^2}$.
- For real energies, i.e. real k², the right-hand-side ik is real for k² ≤ 0 (plotted in red); intersections with k cot δ₀(k) correspond to poles below threshold, i.e. indicate bound states.
- \rightarrow A bound state for J = 0 at $-0.5^{+0.4}_{-1.5}$ MeV (88.5% bound state, 11.5% virtual bound state).
- \rightarrow A bound state for J = 1 at $-2.4^{+2.0}_{-0.7}$ MeV (97.7% bound state, 2.3% virtual bound state).

$\bar{b}\bar{c}ud$, $I(J^P) = 0(0^+)$ and $0(1^+)$ (7)

Bound states (2)

- Additional test of our prediction of shallow bound states:
 - ERE fits of order k^0 and order k^2 using only the three data points closest to threshold.
 - $\rightarrow\,$ Consistent results on the existence of shallow bound states and their masses.

 $\bar{b}\bar{c}ud$, $I(J^P) = 0(0^+)$ and $0(1^+)$ (8)

Resonances

- Poles in the scattering amplitude with real part of the energy above threshold, i.e. $\text{Re}(k^2) > 0$, and negative imaginary part indicate resonances.
- \rightarrow A resonance for J = 0 at 138(13) MeV, decay width 229(35) MeV.
- \rightarrow A resonance for J = 1 at 67(24) MeV, decay width 132(32) MeV.
 - These results on resonances should be treated with caution: The resonance poles lie outside the radius of convergence of the ERE, which is limited by the presence of a left-hand cut associated with two-pion exchange (position of the cut ≈ 18 MeV below threshold for both J = 0 and J = 1).

$\bar{b}\bar{c}ud$, $I(J^P) = 0(0^+)$ and $0(1^+)$ (9)

• S-wave cross section,

$$\sigma(k) = \frac{4\pi}{k^2} |T_0(k)|^2 \quad , \quad T_0(k) = \frac{1}{\cot \delta_0(k) - i}$$

with the ERE fit $k \cot \delta_0(k) = 1/a_0 + (r_0/2)k^2 + b_0k^4$.

- scattering rate = flux $\times \sigma(k) \propto k\sigma(k)$ (for nonrelativistic k).
- Sharp enhancements in the scattering rates close to the thresholds, because of the shallow bound states.
- At higher energies still enhanced, because of the broad resonances.

Existing work ... again

- Summary of current status (only full lattice QCD results):
 - $\overline{b}\overline{b}ud$ with $I(J^P) = 0(1^+)$:

A QCD-stable tetraquark around 130 MeV below the BB^* threshold.

 $- \overline{b}\overline{b}us$ with $J^P = 1^+$: (part 1 of this talk)

A QCD-stable tetraquark around 90 MeV below the BB_s^* threshold.

- * Masses of stable hadrons correspond to energy eigenvalues at infinite volume (for shallow bound states, it might be difficult to study this limit).
- $\bar{b}\bar{c}ud$ with $I(J^P) = 0(0^+)$ and with $I(J^P) = 0(1^+)$: (part 2 of this talk) Contradictory results. The technically most advanced study points towards very shallow bound states, i.e. QCD-stable tetraquarks slightly below the BD and B^*D thresholds.
 - * Masses and decay widths of resonances (or shallow bound states) can be calculated from the volume dependence of the energy eigenvalues (difficult).
- $\overline{b}\overline{b}ud$ with $I(J^P) = 0(1^-)$:

No full lattice QCD investigation yet. Antistatic-antistatic lattice QCD potentials and the Born-Oppenheimer approximation suggest the existence of a **tetraquark** resonance close to the B^*B^* threshold (which is not the lowest meson-meson threshold).