Cosmological Scattering Potentials and their Quantum Simulation

theory

Álvaro Parra-López Mireia Tolosa Simeón Stefan Floerchinger Christian Schmidt

experiment

Marius Sparn

Studienstiftung des deutschen Volkes

Elinor Kath Nikolas Liebster Helmut Strobel Markus Oberthaler

RTG Spring Combo 2024 Christian Schmidt

Cosmological Particle Production

Quantum Simulation

of QFT

in Curved Space

Analogue Quantum Simulation of Kinematics in Curved Spacetime

Horizons Hawking Radiation	Black Hole Spacetimes
Class. Fluids	
Weinfurtner et al. (2011)	
Bose-Einstein-Condensate (BEC)	
Lahav et al. (2010) Steinhauer (2016)	de Nova et al. (2019)
Optical Fibre	
Philbin et al. (2008) Choudhary et al.	(2012) Jaquet (2018)
Microcavity Polaritons	
Nguyen et al. (2015) Jacquet et.al (202	(2) New avenues for fermionic field
Superfluid 3-He Človečko et al. (2019)	Simeón et.al (2023)
	Haller, Meng et.al (2023)

BEC

Hung et al. (2012) | Eckel et al. (2018) | Tajik et al. (2023) 2+1 dim: Viermann et al. (2022), Simeón et al. (2022)

False Vacuum Decay

BEC

Berti et al.(2023), Cominoti et al. (2023) | Jenkins et.al(2024)

Rotating Spacetimes Black Hole Superradiance acetimes **Class.** Fluids Torres et al. (2017) | Cromb et.al (2020) **Photon Superfluid** 9) Vocke et al. (2017) **Microcavity Polaritons** (8)Falque et al. (2023) | Delhom et al. (2023) **Superfluid 4-He** s for fermionic fields: Svancara et al. (2023) ón et.al (2023)

Cosmological Particle Production

Trapped Ions Wittemer et al. (2018)

Laser Pulse Steinhauer et al. (2022)

Dynamical Casimir effect

BEC Jaskula et.al (2011) **Superconducting Circuit** Wilson et.al (2011)

Quantum Simulation of Scalar Field in Curved Spacetime

Effective action for weakly interacting BECs

$$\Gamma[\Phi] = \int \mathrm{d}t \,\mathrm{d}^D x \left\{ \hbar \Phi^*(t, \mathbf{x}) \left[\mathrm{i} \frac{\partial}{\partial t} - V(t, \mathbf{x}) \right] \Phi(t, \mathbf{x}) - \frac{\hbar^2}{2m} \nabla \Phi^*(t, \mathbf{x}) \nabla \Phi(t, \mathbf{x}) - \frac{\lambda(t)}{2} \left[\Phi^*(t, \mathbf{x}) \Phi(t, \mathbf{x}) \right]^2 \right\}$$

1. Expand to 2nd order in **fluctuations**

$$\Phi(t, \mathbf{x}) = e^{iS_0(t, \mathbf{x})} \left(\sqrt{n_0(t, \mathbf{x})} + \frac{1}{\sqrt{2}} [\phi_1(t, \mathbf{x}) + i\phi_2(t, \mathbf{x})] \right) \quad \text{[Simeon et al.(2022)]}$$

2. Evaluate background on Gross-Pitaevskii equation (in hydrodynamic form)

$$\partial_t n_0 +
abla (n_0 oldsymbol{v}) = 0$$

3. Employ acoustic approximation

$$\hbar\partial_t S_0 + V + \lambda n_0 + rac{\hbar^2}{2m} igg[(
abla S_0)^2 - rac{
abla^2 \sqrt{n_0}}{n_0} igg] = 0$$

Neglect quantum pressure

$$q=rac{\hbar^2}{2m}rac{
abla^2\sqrt{n_0}}{n_0}$$

$$r \sqrt{g} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$$

Acoustic FLRW-Spacetime

BEC as stationary background

$$oldsymbol{v}(t,oldsymbol{x})=(oldsymbol{\hbar}/m)
abla S_0(t,x)=0$$

$$n_0(\mathbf{x}) = \bar{n}_0 \left[1 + \frac{\kappa}{4}r^2\right]^2$$

FLRW line-element

Analogue Cosmological Particle Production

Density-Contrast

$$\delta_c(t,u,arphi) = \sqrt{rac{n_0(u)}{ar{n}_0^3}} \left[n(t,u,arphi) - n_0(u)
ight] ~~ \sim \partial_t \phi + \mathcal{O}(\phi^2)$$

$$\langle \delta_c(t,u,arphi) \delta_c(t,u',arphi')
angle = rac{oldsymbol{\hbar}^2 m}{\lambda_f^2 ar{n}_0^3} \langle \dot{\phi}(t,u,arphi) \dot{\phi}(t,u',arphi')
angle$$

Quasi-particle occupancies measurable through full density-contrast correlations

Power Spectrum

$$\frac{1}{2}\left\langle 0\right|\left\{ \dot{\phi}(t,x),\dot{\phi}(t,x')\right\}\left|0\right\rangle_{c} = \int_{k}\mathcal{F}(k,L)\frac{\sqrt{-h(k)}}{a_{\mathrm{f}}^{3}}S_{k}(t)$$

(Analogue) Cosmological Particle Production as a Scattering Problem

Mode equation

$$igg[-rac{\mathrm{d}^2}{\mathrm{d}\eta^2}+V(\eta)igg]\psi_k(\eta)=-h(k)\psi_k(\eta)\qquad \eta=\intrac{\mathrm{d}}{a(\eta)} d\eta$$

$$V(\eta) = -a^2(\eta) \left[m^2 + \xi R(\eta)
ight] + rac{D-1}{2} \Bigg[rac{a''(\eta)}{a(\eta)} - rac{3-3}{2} \Bigg]$$

Eigenenergies

$$h(k) = \begin{cases} -k \left[k + (D-1)\sqrt{|\kappa|} \right] & \text{for} \\ -k^2 & \text{for} \end{cases}$$

$$\left[-\left[k^2 + \left(\frac{D-1}{2}\right)^2 |\kappa|\right]$$
 for

Region III

$$r_k \cdot e^{i \omega_k \eta}$$

$$e^{-i\omega_k\eta}$$

outgoing

 η

vacuum

[CFS, Lopez, Simeón, Flörchinger, **Oberthaler group (in preparation)]**

(Analogue) Cosmological Particle Production as a Scattering Problem

Power Spectrum

$$S_k(t) = rac{1}{2} + N_k + \Delta N_k^0 \cos(2\omega_k\eta(t) + artheta_k)$$

Offset

$$N_k = \left|rac{r_k}{t_k}
ight|^2$$

Amplitude

$$\Delta N_k^0 = igg| rac{r_k}{t_k^2}$$

Phase

$$artheta_k = rg(-r_k \mathrm{e}^{-2\mathrm{i}\omega_k\eta_\mathrm{f}})$$

[CFS, Lopez, Simeón, Flörchinger, **Oberthaler group (in preparation)]**

Quantum Simulation of Cosmological Scattering Potentials

Focus on minimally coupled, massless fields in D = 2 spatial dimensions

Discontinuous transitions imply singular contributions

$$V_{
m s}(\eta) = rac{\dot{a}(t(\eta))}{2} [\delta(\eta-\eta_{
m i})-\delta(\eta-\eta_{
m f})]$$

Results:

Results:

Periodical Cosmological Scattering Potentials

Transfer matrix method

Periodical Cosmological Scattering Potentials

 $\omega_k \eta_b$

 $\omega_k \eta_b$

Invariant Cosmological Vacua through Transparant Potentials **Poeschl-Teller potential** $V(\eta) = -\alpha^2 \lambda (\lambda - 1) \operatorname{sech}^2(\alpha \eta)$ Spectrum

$$a(\eta) = [c_1 P_{\lambda-1}(anhlpha\eta) + c_2 Q_{\lambda-1}(anhlpha\eta)]^{2/(D-1)}$$

Continuum shift: $V(\eta) = \alpha^2 \lambda^2 - \alpha^2 \lambda (\lambda - 1) \operatorname{sech}^2(\alpha \eta)$

Constant eff. mass (asympt.):

$$\omega_k^2 o \omega_k^2 + (a)$$

Invariant Cosmological Vacua through Transparent Potentials

Generalized transparent potentials [Kay, Moses (1956)]

$$egin{aligned} V(\eta) &= -2rac{\mathrm{d}^2}{\mathrm{d}\eta^2}\mathrm{log}\,\mathrm{det}[\mathbbm{1}+A(\eta)] \ &= -4\sum_{m=1}^N\kappa_m\psi_m^2(\eta) \end{aligned}$$

Scattering amplitudes +Bound state energies

 $\hat{A}_{nm} = \frac{\sqrt{A_n A_m}}{\kappa_n + \kappa_m} \exp\{(\kappa_n + \kappa_m)\eta\}$

Bound-state energies

Correspond to Solitons of Korteweg-deVries-hierarchy [e.g. Gardner et al. (1974)]

Transparent property related to integrability of inverse scattering transform:

Scattering potential

Gelfand, Levitan (1955); Marchenko (1955)

Future avenues

Inverse Scattering Theory and Isospectrality:

1. Infer cosmological evolution from power spectrum

Full Mode Dispersion:

[Corley, Jacobson (1996); Martin, Brandenberger (2002)]

Analogue rainbow metric

Cosmological Particle Production [e.g. Weinfurtner et al. (2008)] Hawking radiation [e.g. Coutant, Weinfurtner (2017)]

Non-linear mode interaction in BEC:

Dissipation effects [e.g. Micheli, Robertson (2023)]

Quantum entanglement of two-mode-squeezed states

- 2. Isospectral scattering potentials [Cooper,Khare,Sukhatme (1995), Dunne, Feinberg (1998)] **Iso-spectral QFTCS (different coupling to background)**

- Beyond healing-length: Bogoliubov dispersion [Bogoliubov (1946), Volovik (2009)]
 - Corresponds to Corley-Jacobson dispersion as UV-completion Transplanckian Problem

Primordial Cosmological Perturbations

Source: ESA/Planck Collaboration 2018

Generation of both scalar and tensor perturbations to metric is essentially captured by massless scalar on FLRW-spacetime [Martin,Brandenberger(2001); Mukhanov,Winitzki (2013); Brandenberger, Peter (2016)]

Seeds for cosmic structure formation were generated through dynamic background Universe

e.g Inflation: Miniscule vacuum fluctuations were amplified and stretched beyond cosmological horizon and ceased oscillating [Mukhanov, Feldman, Brandenberger (1992]

Alternatives are possible, e.g. **Bouncing Cosmologies** [Brandenberger,Peter (2016); ljjas,Steinhardt (2018)]

BackUp: Primordial Cosmological Perturbations

Scalar and tensor perturbations to the metric obey (Martin (2008))

$rac{\mathrm{d}^2 \mu_{S,T}(k,\eta)}{\mathrm{d} n^2} + \omega_{S,T}^2(k,\eta) \mu_{S,T}(k,\eta) = 0$ wit

 \bullet

th
$$\omega_S^2(k,\eta)=k^2-rac{(a\sqrt{\gamma})''}{a\sqrt{\gamma}}$$
 $\omega_T^2(k,\eta)=k^2-rac{a}{a\sqrt{\gamma}}$

approximately constant for a wide class of inflation models (Power-law-inflation)

Backup: Scattering Analogy of Cosmological Particle Production

Generalize theory

$$\Gamma[\phi] = -\frac{1}{2} \int dt \, d^D x \sqrt{g} \left[\partial_\mu \phi \partial^\mu \phi + \left(m^2 + \xi R \right) \phi^2 \right]$$

Ricci scalar

Line-element

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + a^2(t) \left[\frac{\mathrm{d}u^2}{1 - \kappa u^2} + u^2 \mathrm{d}\Omega_D^2\right]$$

1. Conformal time

2. Rescale

 $\mathrm{d}\eta = \frac{\mathrm{d}t}{a(t)}$

$$\chi(x) = a^{\frac{D-1}{2}}(\eta)\phi(x)$$

To wit

$$\Gamma[\chi] = -\frac{1}{2} \int \mathrm{d}\eta \, \mathrm{d}^D x \sqrt{\gamma} \, \chi \left[\frac{\mathrm{d}^2}{\mathrm{d}\eta^2} - \Delta + m_{\mathrm{eff}}^2(\eta) \right] \chi$$

Mode expansion

$$\chi(\eta, \boldsymbol{x}) = \int_{\boldsymbol{k}} \left[a_{\boldsymbol{k}} \mathcal{H}_{\boldsymbol{k}}(\boldsymbol{x}) \psi_{k}(\eta) + a_{\boldsymbol{k}}^{*} \mathcal{H}_{\boldsymbol{k}}^{*}(\boldsymbol{x}) \psi_{k}^{*}(\eta) \right]$$

Eigenfunctions of Laplace-Beltrami

$$\Delta \cdot \mathcal{H}_{k}(\boldsymbol{x}) = -h(k)\mathcal{H}_{k}(\boldsymbol{x})$$

$$h(k) = \begin{cases} -k\left[k + (D-1)\sqrt{|\kappa|}\right] & \text{for } \kappa > 0\\ -k^{2} & \text{for } \kappa = 0\\ -\left[k^{2} + \left(\frac{D-1}{2}\right)^{2}|\kappa|\right] & \text{for } \kappa < 0 \end{cases}$$

Mode equation has Schrödinger form

Energy eigenvalue

$$\left[-\frac{\mathrm{d}^2}{\mathrm{d}\eta^2} + V(\eta)\right]\psi_k(\eta) = E_k\psi_k(\eta)$$

$$E_k=\sqrt{-h(k)}$$

Scattering potential

$$egin{aligned} V(\eta) &= -m_{ ext{eff}}^2(\eta) \ &= -a^2(\eta)\left[m^2 + \xi R(\eta)
ight] + rac{D-1}{2} \Bigg[rac{a''(\eta)}{a(\eta)} - rac{3-D}{2}igg(rac{a'(\eta)}{a(\eta)}igg)^2 \Bigg] \end{aligned}$$

Examples:

$$V(\eta) = -a_0^2 m^2 + \xi D(D-1)\kappa \quad \text{Stationary space} \quad a(t) = a_0$$
$$V(\eta) = -\frac{(D-1)^2}{4}\kappa \quad \text{Conformally coupled, massless} \quad \xi = \frac{D-1}{4D}, \ m = 0$$

Focus on minimally coupled, massless fields from now on $(\xi = 0, m = 0)$

Vanishing potential: $V(\eta) = 0$

$$\left[\frac{D-1}{2} - q(t)\right]\dot{a}(t)^2 = 0 \qquad \text{Deceleration parameter} \quad q(t) = -\frac{\ddot{a}(t)a(t)}{\dot{a}^2(t)}$$

Implies either stasis ($\dot{a} = 0$) or radiation domination q = (D - 1)/2

$$egin{split} H_0 &= rac{1}{c_{
m s}(a_{
m s}^{
m max})^{q+1}\Delta t} rac{(a_{
m s}^{
m max}/a_{
m s}^{
m min})^{(q+1)/2}-1}{q+1} \ H_0 &= rac{1}{c_{
m s}(a_{
m s}^{
m min})\Delta t} \left[rccos\left(2\sqrt{rac{a_{
m s}^{
m min}}{a_{
m s}^{
m max}}}-1
ight)+2\left(\sqrt{rac{a_{
m s}^{
m min}}{a_{
m s}^{
m max}}}
ight] \end{split}$$

BackUp: PowerLaw (linear)

Spectrum for $\gamma = 1$, $\alpha_i = 400$, $\alpha_f = 50$; $c_s^{\text{fin}} = 1.1 \,\mu\text{m}/\text{ms}$

 $\Delta t = 3 ms$

 $\Delta t = 1.5 ms$

 $\Delta t = 3 ms$

BackUp: Power Law (2/3)

Spectrum for $\gamma = 2/3$, $\alpha_i = 400$, $\alpha_f = 50$;

$c_s^{\text{fin}} = 1.1 \,\mu\text{m}/\text{ms}$

 $\Delta t = 3 ms$

 $\Delta t = 1.5 ms$

Thermal Initial State

Initial spectrum (linear ramp)

Find further partners with

 $y(\eta) \propto a^{(D-1)/2}(\eta)$

Or: Find different potentials with equal scattering coefficients

minimally coupled, massless

$$a_{\rm lin}(t) = 1 + H_0 t$$
$$D = 3$$

$$a_{\text{quad}}(t) = \left(1 + \frac{H_0}{2}t\right)^2$$
$$D = 2$$

$$y''(\eta) - V(\eta)y(\eta) = 0$$

Iso-spectral cosmological backgrounds

Factorize Scattering Hamiltonian (after shift to zero energy solution)

$$H_1 = -rac{\mathrm{d}^2}{\mathrm{d}\eta^2} + V_1(\eta) = A^\dagger A$$

with
$$A = \frac{\mathrm{d}}{\mathrm{d}\eta} + W(\eta),$$

$$V_1(\eta) = W^2(\eta) - W'(\eta)$$
 is

In scattering analogy

$$W(\eta)=-rac{y'(\eta)}{y(\eta)}=-rac{D-1}{2}rac{a'(\eta)}{a(\eta)}$$

$$H_2=-rac{\mathrm{d}^2}{\mathrm{d}\eta^2}+V_2(\eta)=AA^\dagger$$

$$A^{\dagger} = -\frac{\mathrm{d}}{\mathrm{d}\eta} + W(\eta)$$

s iso-spectral to [Dunne, Feinberg (1998)]

$$V_2(\eta) = W^2(\eta) + W'(\eta)$$

with

$$y(\eta) \propto a(\eta)^{(D-1)/2}$$

zero-energy-state

Iso-spectral cosmological backgrounds

Iso-spectrality

$$V_1(\eta) = rac{D-1}{2} igg[rac{D-3}{2} igg(rac{a'(\eta)}{a(\eta)} igg)^2 + rac{a''(\eta)}{a(\eta)} igg] ext{ } = rac{D-1}{2} igg[rac{D-1}{2} igg[rac{D+1}{2} igg(rac{a'(\eta)}{a(\eta)} igg)^2 - rac{a''(\eta)}{a(\eta)} igg]^2 + rac{a''(\eta)}{a(\eta)} igg]$$

Realize V_2 with different QFT on cosmological background

$$egin{aligned} V_2(\eta) &\equiv - ilde{a}^2(\eta)[m^2+ ilde{\xi} ilde{R}(\eta)]+rac{ ilde{D}-1}{2}iggl[rac{ ilde{a}''(\eta)}{a(\eta)}-rac{3- ilde{D}}{2}iggl(rac{ ilde{a}'(\eta)}{ ilde{a}(\eta)}iggr)^2iggr]\ &=rac{1}{2}iggl[rac{D-1}{2}iggl[rac{D+1}{2}iggl(rac{a'(\eta)}{a(\eta)}iggr)^2-rac{a''(\eta)}{a(\eta)}iggr] \end{aligned}$$

