Open quantum systems:
From Brownian motion to quantum gravity

Julio Virrueta

TPI, FSU Jena

The big ticket questions

Gravitational path integral

$$
\int D g e^{i S_{\mathrm{EH}}}
$$

what do expressions like this even mean?

Fluctuating Hydrodynamics
$\left\langle T_{\mu \nu}\right\rangle=T^{d}\left(g_{\mu \nu}+d u_{\mu} u_{\nu}\right)+\cdots$ how to account for $\left\langle T_{\mu \nu} T_{\rho \sigma} \cdots\right\rangle$?

Dynamics of quantum information

$$
\frac{d \rho}{d t}=-i[H, \rho]+\cdots
$$

keeping noise under control

Return to the basics (I am not very smart)

Modeling dissipative dynamics: the Langevin equation

Many applications: Brownian motion, Johnson noise, etc.

Dissipation also plays a role in theories at local equilibrium
(hydrodynamics)

$$
T_{\mu \nu}=(\epsilon+p) u_{\mu} u_{\nu}+p g_{\mu \nu}-\eta \partial_{(\mu} u_{\nu)}-\zeta(\partial \cdot u)\left(g_{\mu \nu}+u_{\mu} u_{\nu}\right)+\cdots
$$

but what about stochastic fluctuation?

Microscopic origin of dissipation

The two situations before are effective descriptions.

Microscopic quantum theory

$$
i \partial_{t}|\psi(t)\rangle=H|\psi(t)\rangle
$$

Somehow has to deal with:

- Linearity (superposition)
- Unitarity (reversibility)

A solution: open quantum systems

Consider a QM system composed of two distinct parts:

with unitary time evolution $\rho(t)=e^{-i H t} \rho(0) e^{i H t}$.

Could be taken to be pure... but don't.

The Hilbert space is taken to be of the form

Spanned by $\{|R\rangle\}$

The state at $t=0$ can be taken to be a tensor product state

$$
\rho(0)=\rho_{A}(0) \otimes \rho_{B}(0)
$$

Very simple (SRE) state: $I(A, B)=S(A B)-S(A)-S(B)=0$

The matrix elements of $\rho(t)$ in the given basis are

$$
\begin{aligned}
& \frac{K\left(x, r ; t \mid x^{\prime}, R^{\prime} ; 0\right)}{\langle x, R| \rho(t)|y, Q\rangle=} \\
& \times\langle x, R| e^{-i H t}\left|x^{\prime}, R^{\prime}\right\rangle\left\langle x^{\prime}, R^{\prime}\right| \rho(0)\left|y^{\prime}, Q^{\prime}\right\rangle \\
& \begin{array}{|}
K^{*}\left(y, Q ; t \mid y^{\prime}, Q^{\prime} ; 0\right)
\end{array}
\end{aligned}
$$

and the propagators admit a path integral representation

$$
K\left(x, r ; t \mid x^{\prime}, R^{\prime} ; 0\right)=\int_{\tilde{x}(0)=x^{\prime}, \tilde{R}(0)=R^{\prime}}^{\tilde{x}(t)=x, \tilde{R}(t)=R} D \tilde{x} D \tilde{R} e^{i S[\tilde{x}, \tilde{R}]}
$$

Mind the limits

All together
Difference between K and K^{*}

$$
\begin{aligned}
\langle x, R| \rho(t)|y, Q\rangle= & \int D \tilde{x} D \tilde{R} D \tilde{y} D \tilde{R} e^{i S[\tilde{x}, \tilde{R}]-i S[\tilde{y}, \tilde{Q}]} \\
& \times\left\langle x^{\prime}, R^{\prime}\right| \rho(0)\left|y^{\prime}, Q^{\prime}\right\rangle
\end{aligned}
$$

or abusing short-hand

$$
\begin{array}{cc}
\rho(t)=\int_{\rho(0)} D X_{R} & D X_{L} e^{i S\left[X_{R}\right]-i S\left[X_{L}\right]} \\
\overline{X_{R}=\{\tilde{x}, \tilde{R}\}} & X_{L}=\{\tilde{y}, \tilde{Q}\}
\end{array}
$$

We can also use diagrams:

and it is clear also how to compute correlators

This is known as the Schwinger-Keldysh contour.

This story can be extended for higher order correlators

$$
\operatorname{Tr}\left(\rho(0) \mathcal{O}\left(t_{1}\right) \mathcal{O}\left(t_{2}\right) \ldots \mathcal{O}\left(t_{n}\right)\right)=
$$

More general situation.
Often can be simplified using unitarity.

- All this can be "easily" applied to QFT.

Some comments about SK contours

- At least double the DoF $X \rightarrow\left\{X_{R}, X_{L}\right\}$ (purification).
- In-in formalism: only input is $\rho(0)$ (out-of-equilibrium).
- Any operator ordering (retarded/advance correlators).

Compare against S-matrix calculations (in-out formalism).

Of course, we could also have

EITL SGIIUWEESRHELDYSH时LIK

OUT-OUT FOMMMISM
credit: Anonymous undergraduate.

Partial traces and influence functionals

We do not care about the full density matrix, $\rho(t)$, but just $\rho_{A}(t)=\operatorname{Tr}_{B} \rho(t)$ where the environment is ignored ${ }^{\text {American style }}$.

In terms of matrix elements:

$$
\begin{aligned}
&\langle x| \rho_{A}(t)|y\rangle=\sum d R\langle x, R| \rho(t)|y, R\rangle \quad \text { Only A's DoF } \\
&=\sum d x^{\prime} d y^{\prime} \int_{x^{\prime}, y^{\prime}}^{x, y} D \tilde{x} D \tilde{y} e^{i S_{A}[\tilde{x}]-i S_{A}[\tilde{y}]}\left\langle x^{\prime}\right| \rho_{A}(0)\left|y^{\prime}\right\rangle \\
& \begin{array}{ll}
\text { Interaction } & \times \sum d R d R^{\prime} d Q^{\prime} \int_{R^{\prime}, Q^{\prime}}^{R} D \tilde{R} D \tilde{Q} e^{i S_{B}[\tilde{R}]-i S_{B}[\tilde{Q}]} \\
& \times e^{i S_{I}[\tilde{x}, \tilde{R}]-i S_{I}[\tilde{y}, \tilde{Q}]}\left\langle R^{\prime}\right| \rho_{B}(0)\left|Q^{\prime}\right\rangle
\end{array}
\end{aligned}
$$

where we used $\rho(0)=\rho_{A}(0) \otimes \rho_{B}(0)$.

Or in much more compact notation

$$
\begin{array}{r}
\frac{\dot{\rho}_{A}=-i\left[H_{A}, \rho_{A}\right]}{} \\
\rho_{A}(t)=\int_{\rho_{A}(0)} D x_{R} D x_{L} \exp \left[i S_{A}\left[x_{R}\right]-i S_{A}\left[x_{L}\right]+i F\left[x_{R}, x_{L}\right]\right] \\
\text { Dissipation \& noise }
\end{array}
$$

where we introduce the influence functional

$$
e^{i F\left[x_{R}, x_{L}\right]}=\int_{\rho_{B}(0)} D Q_{R} D Q_{L} e^{i S_{B}\left[Q_{R}\right]-i S_{B}\left[Q_{L}\right]+i S_{I}\left[x_{R}, Q_{R}\right]-i S_{I}\left[x_{L}, Q_{L}\right]}
$$

An old friend, rediscovered

Consider a very simple interaction:

$$
S_{I}=\lambda \int_{0}^{t} d t^{\prime} x\left(t^{\prime}\right) Q\left(t^{\prime}\right)
$$

then

$$
\begin{aligned}
e^{i F\left[x_{R}, x_{L}\right]}= & \int_{\rho_{B}(0)} D Q_{R} D Q_{L} e^{i S_{B}\left[Q_{R}\right]-i S_{B}\left[Q_{L}\right]} \\
& \times e^{i \lambda d t^{\prime}\left(x_{R} Q_{R}-x_{L} Q_{L}\right)} \\
= & \left\langle e^{i \lambda \int d t^{\prime}\left(x_{R} Q_{R}-x_{L} Q_{L}\right)}\right\rangle_{\rho_{B}}
\end{aligned}
$$

The influence functional $=$ generating functional of correlators.

Effective action for Fluctuating Hydro

A special case: $\rho_{B}=\frac{1}{Z(\beta)} e^{-\beta H}$

- The effect of system A on B is to take it out of equilibrium!
- The response is captured by $e^{i F\left[x_{R}, x_{L}\right]}$, in the limit $\omega,|\vec{k}| \ll T$.
- From the influence functional we get $\left\langle T_{\mu \nu} T_{\rho \sigma} \cdots\right\rangle$

The only example ever: harmonic oscillators

Let us evaluate the influence functional for:

$$
H=\frac{p^{2}}{2 M}+V(x)+\frac{1}{2} \sum_{k}\left(\frac{P_{k}^{2}}{m}+m \omega_{k}^{2} R_{k}\right)+x \sum_{k} \lambda_{k} R_{k}
$$

we then evaluate

$$
\begin{aligned}
e^{i F\left[x_{R}, x_{L}\right]}= & \int_{R^{\prime}, Q^{\prime}}^{R} D \\
& \times\left\langle Q_{R} D Q_{L} e^{\frac{i}{2} m \sum_{k} \int d t^{\prime}\left(\dot{Q}_{R}^{2}-\omega_{k}^{2} Q_{R}^{2}+\lambda_{k} x_{R} Q_{R}\right)-(R \rightarrow L)}\right. \\
& \xlongequal[\rho_{B}(0)\left|Q^{\prime}\right\rangle]{ } \\
& \left.\uparrow R^{\prime}\left|e^{-\beta H}\right| Q^{\prime}\right\rangle=K\left(R^{\prime} ;-i \beta \mid Q^{\prime} ; 0\right)
\end{aligned}
$$

Diagramatically

$$
e^{i F\left[x_{R}, x_{L}\right]}=
$$

with a lot of insertions along the Lorentzian segments.

Doing the path integral

Final answer:

$$
\begin{aligned}
e^{i F\left[x_{R}, x_{L}\right]}= & \exp \left[-\int d \tau d s\left(x_{R}(\tau)-x_{L}(\tau)\right)\right. \\
& \left.\times\left(\alpha(\tau-s) x_{R}(s)-\alpha^{*}(\tau-s) x_{L}(s)\right)\right]
\end{aligned}
$$

where

$$
\alpha(t)=\sum_{k} \frac{\lambda_{k}}{2 m \omega_{k}}\left[e^{-i \omega_{k} t}+\frac{e^{-i \omega_{k} t}+e^{i \omega_{k} t}}{e^{\beta \omega_{k}}-1}\right]
$$

It is better to write all this as:

$$
\begin{gathered}
e^{i F\left[x_{a}, x_{d}\right]}=\exp \left[-\int d \tau d s\left(\alpha_{R}(\tau-s) x_{d}(\tau) x_{d}(s)\right.\right. \\
\left.\left.+2 i \alpha_{I}(\tau-s) x_{d}(\tau) x_{a}(s)\right)\right]
\end{gathered}
$$

where

$$
x_{a} \equiv \frac{1}{2}\left(x_{R}+x_{L}\right), \quad x_{d} \equiv x_{R}-x_{L}
$$

This term is important: KMS

$$
\begin{aligned}
\alpha_{R}(\tau) & =\operatorname{Re}(\alpha(\tau))=\sum_{k} \frac{\lambda_{k}^{2}}{2 m \omega_{k}} \operatorname{coth}\left(\frac{\omega_{k} \beta}{2}\right) \cos \left(\omega_{k} t\right) \\
\alpha_{I}(\tau) & =\operatorname{Im}(\alpha(\tau))=\sum_{k} \frac{\lambda_{k}^{2}}{2 m \omega_{k}} \sin \left(\omega_{k} t\right)
\end{aligned}
$$

What it all means? Recovering Brownian motion

Ok... we got a big expression for the propagator of A :
$J\left(x, y ; t \mid x^{\prime} y^{\prime} ; 0\right)=\int D x_{R} D x_{L} e^{i S\left[x_{R}\right]-i S\left[x_{L}\right]-i \int x_{d} \alpha_{I} x_{a}-\int x_{d} \alpha_{R} x_{d}}$
How can we interpretate it?
Compare with expectation: system under random external force

$$
\begin{aligned}
& \quad J\left(x, y ; t \mid x^{\prime} y^{\prime} ; 0\right)=\int D x_{R} D x_{L} D F \underset{\uparrow}{p}(F) e^{i S\left[x_{R}\right]-i S\left[x_{L}\right]+i \int x_{d} F(t)} \\
& \text { Distribution of random force (take it gaussian) }
\end{aligned}
$$

Just as before, we change perspective

$$
Z_{F}\left[x_{d}\right]=\int D F p(F) e^{i \int x_{d} F}
$$

Generating functional of correlators, $\left\langle F\left(t_{1}\right) F\left(t_{2}\right) \cdots\right\rangle$
For gaussian distributions $p(F) \propto e^{-F^{2} / A}$:

$$
Z_{F}\left[x_{d}\right]=e^{-\int d \tau d s x_{d}(\tau) A(\tau-s) x_{d}(s)}
$$

where $\langle F(\tau) F(s)\rangle=A(\tau-s)$.

We can compare the two expressions:

$$
\begin{array}{ll}
\begin{array}{l}
\text { Pheno. } \\
J\left(x, y ; t \mid x^{\prime} y^{\prime} ; 0\right)
\end{array} & =\int D x_{R} D x_{L} e^{i S\left[x_{R}\right]-i S\left[x_{L}\right]-\int} x_{x_{d} A x_{d}}^{\downarrow} \\
J\left(x, y ; t \mid x^{\prime} y^{\prime} ; 0\right) & =\int D x_{R} D x_{L} e^{i S\left[x_{R}\right]-i S\left[x_{L}\right]-i \int x_{d} \alpha_{I} x_{a}-\int x_{d} \alpha_{R} x_{d}} \\
\underset{\text { Micro. }}{\uparrow} & \text { Additional part: micro. dynamics }
\end{array}
$$

and identify:

$$
\langle F(t) F(0)\rangle=\alpha_{R}(t)
$$

In the thermodynamic limit

\[

\]

With the right choice of $\rho(\omega)$:

$$
\alpha_{R}(t) \sim \frac{2 \eta T}{\pi} \frac{\sin \Omega t}{t} \sim 2 \eta T \delta(t)
$$

We recover Langevin from micro. dynamics!

A closer look: what about α_{I}

Once again, take the view of the enviroment:

$$
\begin{aligned}
Z\left[x_{a}, x_{d}\right] & =\left\langle e^{i \int\left(Q_{R} x_{R}-Q_{L} x_{L}\right)}\right\rangle_{\beta}=\left\langle e^{i \int\left(Q_{d} x_{a}+Q_{a} x_{d}\right)}\right\rangle_{\beta} \\
& =e^{-i \int x_{d} \alpha_{I} x_{a}-\int x_{d} \alpha_{R} x_{d}}
\end{aligned}
$$

and taking functional derivatives:

Fluctuating force

$$
\begin{aligned}
&\left\langle Q_{a}(t) Q_{a}(0)\right\rangle= \frac{1}{2}\langle\{Q(t), Q(0)\}\rangle=\frac{1}{i} \frac{\delta}{\delta x_{d}} \frac{1}{i} \frac{\delta}{\delta x_{d}} Z\left[x_{a}, x_{d}\right]=\alpha_{R}(t) \\
&\left\langle Q_{a}(t) Q_{d}(0)\right\rangle=\langle[Q(t), Q(0)]\rangle= \\
& \uparrow \frac{1}{i} \frac{\delta}{\delta x_{a}} \frac{1}{i} \frac{\delta}{\delta x_{d}} Z\left[x_{a}, x_{d}\right]=i \alpha_{I}(t) \\
& \text { Retarded response }
\end{aligned}
$$

Lessons learned

- Influence functional: key object in open quantum systems.
- The $x_{d} x_{d}$ coefficient captures the fluctuations (they average to the semi-classical force in Langevin).
- The $x_{a} x_{d}$ coefficient gives the response of the environment (dissipation, when conserved).
- Notice, there is no $x_{a} x_{a}$ term (unitarity).

Taking stock

Open quantum systems

The gravitational path integral

Old story: gravitational systems can be seen as thermal:

$$
\begin{gathered}
\int_{\mathcal{M} \times S_{\beta}^{1}} D g e^{-S_{E}} \sim \sum_{\substack{g^{*} \mid \propto \mathcal{M} \times S_{\beta}^{1}}} e^{-S\left(g^{*}\right)} \sim \operatorname{Tr}\left(e^{-\beta H_{\mathrm{bdy} .}}\right) \\
\text { Mind the limits } \\
\end{gathered} \prod_{\substack{\text { Sum over solutions }}}
$$

"Newer" story: the holographic GKPW dictionary

$$
\left\langle e^{-\int J(x) \mathcal{O}(x)}\right\rangle_{\mathrm{CFT}}=\int_{\mathrm{AdS}} D g D \phi e^{-S_{E}} \sim e^{-S^{\text {on-shell }}[\phi \rightarrow J]}
$$

Unpacking GKPW

The generating functional has two pieces of data

$$
\begin{aligned}
& \text { Sources } \\
& Z_{\mathrm{CFT}}[J]=\left\langle e^{-\int J(x) \mathcal{O}(x)}\right\rangle
\end{aligned}
$$

This has to be encoded in the dynamics on asymptotically AdS spacetimes

$$
d s^{2}=\frac{d r^{2}}{r^{2}}+r^{2} g_{\mu \nu}(r, x) d x^{\mu} d x^{\nu}
$$

Generic behavior in AdS_{d+1} :
First identification: leading behavior $=$ source

$$
\Phi(r, x)=r^{d-\Delta} J(x)(1+\cdots)+r^{-\Delta}\langle\mathcal{O}(x)\rangle_{\rho}(1+\cdots)
$$

Second identification: sub-leading behavior $=$ Exp. Val.

- The leading behavior is universal \rightarrow sources are fixed external inputs.
- The sub-leading behavior depends on the interior geometry \rightarrow correlations are dynamical responses (holographic reconstruction).

A special case: the thermal state

- Observation: In QFT, $Z(\beta)=\operatorname{Tr} e^{-\beta H}$ can be obtained as a path integral over $\mathbb{R}^{d-1} \times S_{\beta}^{1}$.
- GKPW: Sum over geometries with boundary condition

$$
\mathbb{R}^{d-1} \times S_{\beta}^{1}
$$

Dominant saddle: Euclidean cigar ("black hole"):

$$
d s^{2}=r^{2} f(r) d t_{E}^{2}+\frac{d r^{2}}{r^{2} f(r)}+r^{2} d \vec{x}_{d-1}^{2}, \quad f(r)=1-\frac{r_{+}^{d}}{r^{d}}
$$

The Lorentzian GKPW dictionary

- GKPW was only formulated for Euclidean geometries.
- Long history of Lorentzian generalizations [Herzog, Son, Starinets, Skenderis, van Rees...].
- Main obstacle: Additional data due to time-ordering (causality).
- Solution: Lesson from before, the Schwinger-Keldysh contour.

The LHS: what do we want to compute?

From our previous study, the real-time generating functional is:

$$
Z\left[J_{R}, J_{L}\right]=\left\langle P e^{i \int_{\mathbb{R}^{d-1} \times \mathcal{c}_{S K}}\left(J_{R} \mathcal{O}_{R}-J_{L} \mathcal{O}_{L}\right)}\right\rangle_{\beta}=
$$

The gravitational SK (grSK) geometry

Generalized GKPW prescription:

$$
\begin{aligned}
\left\langle P e^{i \int_{\mathbb{R}^{d-1} \times \mathcal{c}_{S K}}\left(J_{R} \mathcal{O}_{R}-J_{L} \mathcal{O}_{L}\right)}\right\rangle_{\beta} & =\int_{\left.g\right|_{\text {bdy. }} \sim \mathbb{R}^{d-1} \times \mathcal{C}_{S K}} D g e^{i S} \\
& =e^{i S\left[g_{*}\right]}
\end{aligned}
$$

where g_{*} is a solution of Einstein's equations with bdy. condition $\mathbb{R}^{d-1} \times \mathcal{C}_{S K}$.

Constructing the solution

- Euclidean insight: dominant saddle in the imaginary-time section is $d s_{E}^{2}=r^{2} f(r) d t_{E}^{2}+\frac{d r^{2}}{r^{2} f(r)}+r^{2} d \vec{x}_{d-1}^{2}$.
- Dominant solution in Lorentzian segments:

$$
d s_{ \pm}^{2}=-r^{2} f(r) d t_{ \pm}^{2}+\frac{d r^{2}}{r^{2} f(r)}+r^{2} d \vec{x}_{d-1}^{2}
$$

- Building new solutions by copy-paste (poor's man solution):

$$
\left[g_{\mu \nu}^{(i)}-g_{\mu \nu}^{(j)}\right]_{\Sigma}=0, \quad\left[K_{\mu \nu}^{(i)}-K_{\mu \nu}^{(j)}\right]_{\Sigma}=0
$$

- Easy part: pasting to the Euclidean segment.

Simply take Σ to be the surface $t_{E}=0 \sim 0+\beta$, and $t_{+} \sim 0, t_{-}=0+i \beta$.

- Tricky part: pasting of Lorentzian segments across their horizon.

The CGL prescription

To paste the Lorentzian segments, make r complex[Giorioso, Crossley,

Liu]

We then restrict $r \in \mathbb{C}$ to live on the Hankel contour above.

Credit: Heroic tikz work by Tom Angrick

All in one patch: Mock tortoise coordinate

It is convenient to introduce the mock tortoise coordinate [Jana,

Loganayagam, Rangamani]:

$$
d s^{2}=-r^{2} f d v^{2}+i \beta r^{2} f d v d \zeta+r^{2} d \vec{x}^{2}
$$

$$
\frac{d \zeta}{d r}=\frac{2}{i \beta} \frac{1}{r^{2} f(r)}
$$

Convinience prefactor $\uparrow \quad$ Good ol' tortoise coordinate
Main property: $\zeta(r) \propto \log \left(r-r_{+}\right)$, logarithmic branch cut!

The prefactors have been chosen such that

In particular

$$
\lim _{r \rightarrow \infty+i \epsilon} \zeta(r)=0, \quad \lim _{r \rightarrow \infty-i \epsilon} \zeta(r)=1
$$

Scalar dynamics in grSK

To test the prescription, consider

$$
S=-\frac{1}{2} \int d^{d+1} x \sqrt{-g} g^{A B} \partial_{A} \Phi \partial_{B} \Phi
$$

For $r \rightarrow \infty \pm i \epsilon$, nothing really changes

$$
\text { F.T.: } e^{-i \omega v+i \vec{k} \cdot \vec{x}}
$$

$$
\Phi(r, k) \sim J_{R / L}(k)(1+\cdots)+\frac{\phi_{R / L}^{(1)}(k)}{r^{d}}(1+\cdots), \quad k=(\omega, \vec{k})
$$

But for $r \rightarrow r_{+}$

> Regular at horizon
$\Phi(r, k) \sim A_{R / L}(k)(1+\cdots)+B_{R / L}(k)\left(r-r_{+}\right)^{\frac{i \beta \omega}{2 \pi}}(1+\cdots)$

Discontinuous around horizon

Across the horizon $r-r_{+} \rightarrow\left(r-r_{+}\right) e^{2 \pi i}$.

Continuity of the full solution then requires:

$$
A_{R}(k)=A_{L}(k), \quad B_{R}(k)=B_{L}(k) e^{-\beta \omega}
$$

It is convenient to write linear combinations, a fully regular solution:

$$
\begin{aligned}
\Phi_{\text {in }}(r, k) & \equiv \Phi_{R}(r, k)-e^{-\beta \omega} \Phi_{L}(r, k) \\
& \sim \begin{cases}A(k)(1+\cdots) & r \rightarrow r_{+} \\
-\left(1+n_{\omega}\right) J_{R}(k)+n_{\omega} J_{L}(1+\cdots) & r \rightarrow \infty+i \epsilon\end{cases}
\end{aligned}
$$

and a fully irregular one:

$$
\begin{aligned}
\Phi_{\mathrm{out}}(r, k) & \equiv \Phi_{R}(r, k)-\Phi_{L}(r, k) \\
& \sim \begin{cases}B(k)\left(r-r_{+}\right)^{\frac{i \beta \omega}{2 \pi}}(1+\cdots) & r \rightarrow r_{+} \\
-n_{\omega}\left(J_{R}(k)-J_{L}(k)\right)(1+\cdots) & r \rightarrow \infty+i \epsilon\end{cases}
\end{aligned}
$$

where $n_{\omega}=\frac{1}{e^{\beta \omega}-1}$ is the familiar Boltzmann factor. Notice a different linear combination produces:

$$
J_{a}=\frac{1}{2}\left(J_{R}+J_{L}\right), \quad J_{d}=J_{R}-J_{L}
$$

Solving the EoM

With the boundary conditions sorted out, we can solve

$$
-\frac{1}{\sqrt{-g}} \partial_{A}\left(\sqrt{-g} g^{A B} \partial_{B} \Phi\right)=0
$$

or in Fourier domain

$$
\frac{1}{r^{d-1}} \mathbb{D}_{+}\left(r^{d-1} \mathbb{D}_{+} \Phi(r, k)\right)+\left(\omega^{2}-k^{2} f\right) \Phi(r, k)=0
$$

where $\mathbb{D}_{+}=r^{2} f \frac{d}{d r}-i \omega$ is motivated by time-reversal.

We define the ingoing propagator $G^{\text {in }}(r, k)$ as a solution satisfying:

$$
\begin{gathered}
\lim _{r \rightarrow \infty \pm i \epsilon} G^{\text {in }}(r, k)=1, \quad \lim _{r \rightarrow r_{+}} G^{\text {in }}(r, k)=\text { regular } \\
\uparrow \text { Due to regularity, it's the same in both branches }
\end{gathered}
$$

Using time-reversal symmetry, $v \rightarrow i \beta \zeta-v$, the outgoing propagator is

$$
\begin{aligned}
\qquad G^{\text {out }}(r, \omega, \vec{k}) & =e^{-\beta \omega \zeta} \quad G^{\text {in }}(r,-\omega, \vec{k}) \\
\text { Fully irregular, } \zeta \rightarrow 0,1 & \begin{array}{l}
\uparrow \\
\text { Fully regular }
\end{array}
\end{aligned}
$$

The general solution to the EoM in grSK geometry is

$$
\begin{aligned}
\Phi(\zeta, \omega, k)= & \left(J_{a}+\left(n_{\omega}+\frac{1}{2}\right) J_{d}\right) G^{\mathrm{in}}(r, \omega, \vec{k}) \\
& -n_{\omega} J_{d} e^{\beta \omega(1-\zeta)} G^{\mathrm{in}}(r,-\omega, k)
\end{aligned}
$$

Notice, we only need to compute $G^{\text {in }}(r, \omega, k)$!
A quick check:

$$
\begin{aligned}
& \lim _{\zeta \rightarrow 0} \Phi(\zeta, \omega, k)=\left(J_{a}+\left(n_{\omega}+\frac{1}{2}\right) J_{d}\right)-n_{\omega} e^{\beta \omega} J_{d}=J_{L} \\
& \lim _{\zeta \rightarrow 1} \Phi(\zeta, \omega, k)=\left(J_{a}+\left(n_{\omega}+\frac{1}{2}\right) J_{d}\right)-n_{\omega} J_{d}=J_{R}
\end{aligned}
$$

Evaluating the on-shell action

With the solution on hand, we evaluate:

$$
\begin{aligned}
S= & \mathrm{EoM}-\int d^{d+1} x \partial_{A}\left(\sqrt{-g} g^{A B} \Phi \partial_{B} \Phi\right) \\
= & \left.\frac{1}{2} \int_{k} \Phi(r, k) \Pi(r,-k)\right|_{\zeta=0} ^{\zeta=1} \\
& \text { There are two boundaries } \uparrow^{\zeta=1}
\end{aligned}
$$

where

$$
\Pi(r, k) \equiv-\sqrt{-g} g^{r B} \partial_{B} \Phi=-r^{d-1} \mathbb{D}_{+} \Phi
$$

Defining

$$
K^{\mathrm{in}}(\omega, k)=-\lim _{r \rightarrow \infty}\left(r^{d-1} \mathbb{D}_{+} G^{\mathrm{in}}(r, \omega, k)+\text { c.t. }\right)
$$

We find

$$
S_{\text {on-shell }}=-\frac{1}{2} \int_{k} J_{d}^{\dagger}(k) K^{\text {in }}(\omega, k)\left(J_{a}(k)+\left(n_{\omega}+\frac{1}{2}\right) J_{d}(k)\right)+\text { c.c. }
$$

which, by GKPW, gives us the generating functional of connected correlators:

$$
i W\left[J_{a}, J_{d}\right]=\log Z\left[J_{a}, J_{d}\right] \sim i S_{\text {on-shell }}\left[J_{a}, J_{d}\right]
$$

A reassuring answer

We can compare:
$S_{\text {on-shell }}=-\frac{1}{2} \int_{k} J_{d}^{\dagger}(k) K^{\text {in }}(\omega, k)\left(J_{a}(k)+\left(n_{\omega}+\frac{1}{2}\right) J_{d}(k)\right)+$ c.c.
with the harmonic oscillator answer

$$
\log Z\left[x_{a}, x_{d}\right]=-i \int x_{d} \alpha_{I} x_{a}-\int x_{d} \alpha_{R} x_{d}
$$

It is the same structure!

- From the H.O. analysis, the $J_{d}^{\dagger} J_{d}$ coefficient gives the average force:

- While the $J_{d}^{\dagger} J_{a}$ coefficient gives the retarded response:

$$
\langle\mathcal{O}(-k) \mathcal{O}(k)\rangle^{\text {Ret. }}=i K^{\text {in }}(\omega, \vec{k})
$$

- The two results are related:

$$
\langle\mathcal{O}(-k) \mathcal{O}(k)\rangle^{\text {Kel. }}=\frac{1}{2} \operatorname{coth}\left(\frac{\beta \omega}{2}\right) \operatorname{Re}\langle\mathcal{O}(-k) \mathcal{O}(k)\rangle^{\text {Ret. }}
$$

which is the fluctuation-dissipation theorem.

- Notice there is no $J_{a}^{\dagger} J_{a}$ term, as expected from unitarity.
- Our gravitational calculation agrees completely with the QM expectation.

All together: Holographic open quantum systems

$$
\begin{gathered}
\begin{array}{c}
\text { Observer/measuring system } \\
\qquad \\
S_{A}+S_{B}+\int d^{d} x J(x) \\
S_{\uparrow} \\
\text { Holographic system, for example } \mathcal{N}
\end{array}=4 \text { SYM }
\end{gathered}
$$

Influence functional:
Fancy-pants harmonic oscillator

$$
\left\langle e^{i \int\left(J_{R} \mathcal{O}_{R}-J_{L} \mathcal{O}_{L}\right)}\right\rangle_{\beta}^{\mathcal{N}=4 \mathrm{SYM}}=\left.\int D g D \Phi e^{i S[g, \Phi]} \sim e^{i S_{\text {on-shell }\left[J_{R}, J_{L}\right]}}\right|_{\mathrm{grSK}}
$$

The real deal: metric fluctuations

Going beyond toy scalars:

$$
\begin{aligned}
\left\langle e^{i \int\left(J_{R} \mathcal{O}_{R}-J_{L} \mathcal{O}_{L}\right)}\right\rangle_{\beta}^{\mathcal{N}=4 \mathrm{SYM}} & \sim e^{i S_{\text {on-shell }}} \text { (metric fluctuations) } \\
& =e^{i S_{\text {on-shell }}} \int D h e^{i S^{(2)}[h]+i S^{(3)}[h]+\cdots}
\end{aligned}
$$

where $g=g_{\mathrm{grSK}}+h$, with $|h| \ll 1$, and $S^{(n)}[h]$ come from expanding the Einstein-Hilbert action.

Humble beginnings: gaussian fluctuations

Start with only

Gaussian integration

$$
Z_{2}[h]=\int D h e^{i S^{(2)}[h]}=e^{i S_{\text {onshenl| }}^{(2)}[h \mid \text { dxd }]}
$$

Generic behavior:

> One-point function
$h_{A B}(r, x) d x^{A} d x^{B} \sim \frac{d r^{2}}{r^{2}}+r^{2}\left({\left.\underset{\text { Source }}{ } \gamma_{\mu \nu}(x)+\frac{\left\langle T_{\mu \nu}(x)\right\rangle}{r^{d}}\right) d x^{\mu} d x^{\nu}+\cdots . . .}^{\gamma^{2}}\right.$

Metric fluctuations as open quantum systems

Comparing with the scalar results:

$$
\begin{gathered}
\qquad e^{\text {Generating functional of stress tensor correlators }} \\
\qquad \underbrace{i \int\left(\gamma_{\mu \nu}^{R} T_{R}^{\mu \nu}-\gamma_{\mu \nu}^{L} T_{L}^{\mu \nu}\right)}_{\beta}\rangle_{\text {Perturbation around grSK geometry }}^{\mathcal{N}=4 \mathrm{SYM}}=e^{i S_{\text {on-shell }}^{(2)}\left[\left.h\right|_{\text {bdy. }} \sim \gamma\right]}+\cdots
\end{gathered}
$$

Connection with Hydrodynamics: $\left\langle T_{\mu \nu} T_{\rho \sigma} \cdots\right\rangle$ in the limit $\omega,|\vec{k}| \ll T$.

Handling metric fluctuations: designer scalars

$$
g=g_{\mathrm{grSK}}+h
$$

Diff. invariance
Constraint equations

$$
S_{\mathcal{M}}=-\frac{1}{2} \int d^{d+1} x \sqrt{-g} e^{\chi(r)} \nabla_{A} \Phi_{\mathcal{M}} \nabla^{A} \Phi_{\mathcal{M}}, \quad \sqrt{-g} e^{\chi(r)} \sim r^{\mathcal{M}}
$$

The dilaton makes all the difference

- Tensors: $e^{\chi(r)}=1$.
- Vectors: $e^{\chi(r)}=\frac{1}{r^{2(d-1)}}$,
- Scalars: $e^{\chi(r)}=\frac{1}{r^{2(d-2)} \Lambda_{k}^{2}}, \quad \Lambda_{k}=k^{2}+\frac{1}{2}(d-1) r^{3} f^{\prime}$.

Dynamic of designer scalars in SK

- Let us study the system (scalars are hard):

$$
S_{\text {designer }}=-\frac{1}{2} \int d^{d+1} x \sqrt{-g} r^{\mathcal{M}-d+1} \nabla_{A} \Phi_{\mathcal{M}} \nabla^{A} \Phi_{\mathcal{M}}+S_{\text {bdy }}
$$

- The equation of motion is

$$
r^{-\mathcal{M}} \mathbb{D}_{+}\left(r^{\mathcal{M}} \mathbb{D}_{+} \Phi_{\mathcal{M}}\right)+\left(\omega^{2}-k^{2} f\right) \Phi_{\mathcal{M}}=0 .
$$

- For $d>2$, this equation can be solved in a gradient expansion:

$$
\frac{\omega}{r_{+}}, \frac{k}{r_{+}} \ll 1
$$

- Asymptotic behavior:

$$
\Phi_{\mathcal{M}} \sim c_{1}+\frac{c_{2}}{r^{\mathcal{M}+1}}
$$

- For $\mathcal{M}>-1$, we impose Dirichlet conditions $\left(S_{\mathrm{bdy}}=0\right)$.
- For $\mathcal{M}<-1$, compute the conjugate momentum:

$$
\pi_{\mathcal{M}}=-r^{\mathcal{M}} \mathbb{D}_{+} \Phi_{\mathcal{M}} \sim \tilde{c}_{1}+\tilde{c}_{2} r^{\mathcal{M}}
$$

- Quantization is done using Neumann conditions

$$
\left(S_{\mathrm{bdy}}=\int d^{d} x \Phi_{\mathcal{M}} \pi_{\mathcal{M}}\right)
$$

Markovian fields (tensors)

Same old scalar:

$$
\begin{gathered}
\Phi_{\mathcal{M}}(\zeta, w, \vec{k})=J_{a} G_{\mathcal{M}}^{\text {in }}+\left[\left(n_{\beta}+\frac{1}{2}\right) G_{\mathcal{M}}^{\text {in }}-n_{\beta} e^{\beta(\zeta-1)} G_{\mathcal{M}}^{\text {rev }}\right] J_{d} \\
S_{\text {on-shell }}\left[J_{a}, J_{d}\right]=-\int_{k} J_{d}^{\dagger} \mathcal{K}_{\mathcal{M}}^{\text {in }}\left[J_{a}+\left(n_{\beta}+\frac{1}{2}\right) J_{d}\right] \\
K_{\mathcal{M}}^{\text {in }}=-i w+\frac{k^{2}}{1-\mathcal{M}}+\Delta_{\mathcal{M}}^{2,0}\left(r_{+}\right) w^{2}+\ldots
\end{gathered}
$$

Note: Correlations are analytic in ω and $|\vec{k}| \Rightarrow$ there are no conserved tensor-like currents!

Non-Markovian fields (vectors and scalars*)

Here things are trickier

- We could compute $\log Z\left[J_{a}, J_{d}\right]=i S_{\text {on-shell }}\left[J_{a}, J_{d}\right]$, using Newmann conditions.
- Alternatively, we could still use Dirichlet

$$
\Phi_{\mathcal{M}}(\zeta, w, \vec{k})=\check{\Phi}_{a} G_{\mathcal{M}}^{\mathrm{in}}+\left[\left(n_{\beta}+\frac{1}{2}\right) G_{\mathcal{M}}^{\mathrm{in}}-n_{\beta} e^{\beta(\zeta-1)} G_{\mathcal{M}}^{\mathrm{rev}}\right] \check{\Phi}_{d}
$$

fixing the one-point function (very non-kosher).

Old friend: Quantum Effective Action

- What does it mean to fix the one-point function?
- Gravity side: changing from Newmann to Dirichlet:

$$
\begin{aligned}
& \text { Original action: Newmann conditions } \\
& \tilde{S}=-\frac{1}{2} \int d^{d+1} x \sqrt{-g} r^{\mathcal{M}-d+1} \nabla_{A} \Phi_{\mathcal{M}} \nabla^{A} \Phi_{\mathcal{M}}+\int d^{d} x \Phi_{\mathcal{M}} \pi_{\mathcal{M}} \\
&-\int d^{d} x \Phi_{\mathcal{M}} \pi_{\mathcal{M}}
\end{aligned}
$$

Legendre transform to Dirichlet conditions

- Field theory side:

$$
\left.\frac{i S_{\text {on-shell }}\left[J_{a}, J_{d}\right]}{\downarrow} \cdot \stackrel{\left.\int d^{d} x \Phi_{\mathcal{M}} \pi_{\mathcal{M}}\right|_{\zeta-0} ^{\zeta=1}}{\downarrow} \check{\breve{\Phi}}_{a}, \check{\Phi}_{d}\right]=\log Z\left[J_{a}, J_{d}\right]-i \int d^{d} x\left(J_{R} \check{\Phi}_{R}-J_{L} \check{\Phi}_{L}\right)
$$

- The Legendre transform of the generating functional is the Quantum Effective Action.

$$
\begin{aligned}
\Gamma\left[\check{\Phi}_{a}, \check{\Phi}_{d}\right] & =S_{\text {on-shell }}^{\text {Dirichet }}\left[\check{\Phi}_{a}, \check{\Phi}_{d}\right] \\
& =-\int_{k} \check{\Phi}_{d}^{\dagger} \mathcal{K}_{-\mathcal{M}}^{\text {in }}\left[\check{\Phi}_{a}+\left(n_{\beta}+\frac{1}{2}\right) \check{\Phi}_{d}\right]
\end{aligned}
$$

Interpreation: Wilsonian Influence Functional

- Before, influence functional:

$$
e^{i F\left[x_{R}, x_{L}\right]}=\int_{\rho} D Q_{R} D Q_{L} e^{i S_{R}-i S_{L}}
$$

- Now, Wilsonian Influence Functional

$$
\begin{aligned}
\stackrel{\text { Short-Lived modes }}{\substack{i F\left[x_{R}, x_{L}\right]}} \begin{aligned}
& =\int_{\rho}\left(D Q_{R}^{S L} D Q_{L}^{S L}\right)\left(D Q_{R}^{L L} D Q_{L}^{L L}\right) e^{i S_{R}-i S_{L}} \\
& =\int\left(D Q_{R}^{S L} D Q_{L}^{S L}\right) e^{i S_{\text {WIF }}}
\end{aligned}
\end{aligned}
$$

- In total:

$$
\begin{aligned}
\mathcal{S}_{\text {WIF }} \propto & -\sum_{\alpha=1}^{N_{V}} \int_{k}\left(\check{\mathcal{P}}_{d}^{\alpha}\right)^{\dagger} K_{\text {Mom. }}^{\text {in }}\left[\check{\mathcal{P}}_{a}^{\alpha}+\left(n_{\beta}+\frac{1}{2}\right) \check{\mathcal{P}}_{d}^{\alpha}\right] \\
& -\int_{k}\left(\check{\mathcal{Z}}_{d}\right)^{\dagger} K_{\text {Sound }}^{\text {in }}\left[\check{\mathcal{Z}}_{a}+\left(n_{\beta}+\frac{1}{2}\right) \check{\mathcal{Z}}_{d}\right]
\end{aligned}
$$

Famous result $\mathcal{D}=\frac{\eta}{e+p} \rightarrow \frac{\eta}{s}=\frac{1}{4 \pi}$

$$
\begin{aligned}
& K_{\text {Mom }}^{\text {in }}=-i \omega+\frac{1}{d} k^{2}+\cdots \\
& K_{\text {Sound }}^{\text {in }}=-\omega^{2}+\frac{k^{2}}{d-1}+\nu_{s} k^{2} \Gamma_{s}(\omega, k) \\
& \quad \text { Hawking sound }
\end{aligned}
$$

Beyond the Gaussian level:

Witten diagrams in SK geometry

What about $S^{(n)}[h]$ for $n>1$

The ingredients:

- Ingoing Bulk-to-Bdy Prop.: $G_{\text {in }}(\zeta, k)$.
- Outgoing Bulk-to-Bdy Prop.: $G_{\text {out }}(\zeta, k)=e^{-\beta \omega \zeta} G_{\text {in }}(\zeta, \bar{k})$
- Bulk-to-Bulk Prop:

$$
G_{\mathrm{bb}}\left(\zeta, \zeta^{\prime} ; k\right)=\mathcal{N}(k) e^{\beta \omega \zeta^{\prime}} G_{\mathrm{L}}\left(\zeta_{>}, k\right) G_{\mathrm{R}}\left(\zeta_{<}^{\prime}, k\right)
$$

Important: $G_{\text {in }}(\zeta+1, k)=G_{\text {in }}(\zeta, k)$.

- Contact diagram:

$$
\bar{\searrow}=\oint d \zeta \mathfrak{L}(\zeta)=\int_{r_{\mathrm{H}}}^{r_{c}} d r(\mathfrak{L}(\zeta(r)+1)-\mathfrak{L}(\zeta(r)))
$$

- Exchange diagram

$$
\begin{aligned}
& =\oint d \zeta \oint d \zeta^{\prime}\left[F_{1}\left(\zeta, \zeta^{\prime}\right) \Theta\left(\zeta-\zeta^{\prime}\right)+F_{2}\left(\zeta, \zeta^{\prime}\right) \Theta\left(\zeta^{\prime}-\zeta\right)\right] \\
& =\int_{r_{\mathrm{H}}}^{r_{c}} d r \int_{r_{\mathrm{H}}}^{r_{c}} d r^{\prime}\left[\mathfrak{F}_{1} \theta\left(r-r^{\prime}\right)+\mathfrak{F}_{2} \theta\left(r^{\prime}-r\right)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathfrak{F}_{1}=F_{1}\left(\zeta, \zeta^{\prime}\right)-F_{1}\left(\zeta+1, \zeta^{\prime}\right)+F_{2}\left(\zeta+1, \zeta^{\prime}+1\right)-F_{2}\left(\zeta, \zeta^{\prime}+1\right), \\
& \mathfrak{F}_{2}=F_{1}\left(\zeta+1, \zeta^{\prime}+1\right)-F_{1}\left(\zeta+1, \zeta^{\prime}\right)+F_{2}\left(\zeta, \zeta^{\prime}\right)-F_{2}\left(\zeta, \zeta^{\prime}+1\right) .
\end{aligned}
$$

Taking stock, part II

Gravitational path integral

$\int D g e^{i S_{\text {EH }}}$
what do expressions like this even mean?

Fluctuating Hydrodynamics
$\left\langle T_{\mu \nu}\right\rangle=T^{d}\left(g_{\mu \nu}+d u_{\mu} u_{\nu}\right)+\cdots$ how to account for $\left\langle T_{\mu \nu} T_{\rho \sigma} \cdots\right\rangle$?

Dynamics of quantum information
$\frac{d \rho}{d t}=-i[H, \rho]+\cdots$
keeping noise under control

Open quantum systems

Work in progress

- Higher order SK correlators for $d>2$ [Ammon, Rangamani, Specht, JV].
- Connections to non-linear fluid actions [Rangamani, Jv].
- Beyond the SK contour: OTOC ${ }_{\text {[Ammon, Germerodt, Sieling, JV]. }}$

Final musings

- More complicated thermal systems: Kerr black holes, superfluids, ...
(For charged black holes see ${ }_{[H, ~ L o g a n a y a g a m, ~ R a n g a m a n i, ~ J V]) ~}^{\text {I }}$
- Transition amplitudes: beyond saddle point approximation (Golden dream: topology changes)
- Non local-probes: entanglement entropy, reflected entropy, negativity, ... [Colin-Ellerin, Dong, Marolf, Rangamani, Wang||Pelliconi, Sonner][Mezei,JV]
- Effective actions for chaotic systems [Blake, Lee, Liu][Haehl, Rozali]
- Gravitational SK contours for more general spacetimes (see recent work on dS correlators[Di Pietro, Gorbenko, Komatsu][Loganayagam, Shetye]).
- Is there something to be said in asymptotically flat spacetimes?

Thank You!

