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The big ticket questions

Gravitational path integral
J Dg eSen

what do expressions like this even mean?

Fluctuating Hydrodynamics Dynamics of quantum information
(Tw) = TG + duu,) + - — % = —i[H,p] + -

how to account for (T},,T,, - - +)? keeping noise under control




Return to the basics (I am not very smart)

Modeling dissipative dynamics: the Langevin equation

Dissipation External force
. dV(x) .
mi+ + ni = F(¢)
dz
T (F(1)) =0

Good old dynamics

Many applications: Brownian motion, Johnson noise, etc.



Dissipation also plays a role in theories at local equilibrium

(hydrodynamics)

T = (€+p) uptty +p G — N0ty — € (0~ ) (g + uptty) +--
A A A

Ideal fluid Dissipative terms

but what about stochastic fluctuation?



Microscopic origin of dissipation

The two situations before are effective descriptions.

Microscopic quantum theory

0, [(t)) = Hp(t))

< Comsegriing >

Dissipative physics

Somehow has to deal with:
e Linearity (superposition)

e Unitarity (reversibility)

mi + W o+ ni = F(t)




A solution: open quantum systems

Consider a QM system composed of two distinct parts:

System of interest Interaction

} !

H= Hy + Hp +
.

Environment

with unitary time evolution p(t) = e~ p(0) €At

Could be taken to be pure... but don't.




The Hilbert space is taken to be of the form

Spanned by {|z)}

!
H=Hs Q) Hs
T

Spanned by {|R)}

The state at ¢ = 0 can be taken to be a tensor product state

p(0) = pa (0) ® pp(0)
L]

Very simple (SRE) state: I(A, B) = S(AB) — S(A) —S(B) =0



The matrix elements of p(t) in the given basis are

K(x,r;tlz’, R';0)

l
(2. R| p(t) |y, Q) = i (. R|e" o R (o, R p(0) |y Q)

« <y/7Ql| eth ‘UQ>
[

K*(y,Q;tly’,Q";0)

and the propagators admit a path integral representation

#(t)==z,R(t)=R .
K(:r,r;t|x',R';0):/ DzDR ¢4
#(0)=z',R(0)=R’
-1

Mind the limits



All together
Difference between K and K*

}
(z, Rl p(t) ly, Q) = / DiDR DjDR SR — 80

x (@', B[ p(0) |/, Q')

or abusing short-hand

p(t) = / DXp DXy SXnlmiSXL]
p(0)

1



We can also use diagrams:

p(0) p(t)

Y
J

A

and it is clear also how to compute correlators

O(t)

P \ °
4

Tr (p(0)0(1)) = }

B

This is known as the Schwinger-Keldysh contour.



This story can be extended for higher order correlators

O(t1)

\
[ 4 7 L 4

Tr (p(0)O(t1)O(ts)..O(tn)) =

<

¥

.
ofts) . 7
More general situation. .
Often can be simplified X . O(t,)
using unitarity. < y

» All this can be “easily” applied to QFT.



Some comments about SK contours
» At least double the DoF X — {Xg, X} (purification).
» In-in formalism: only input is p(0) (out-of-equilibrium).
» Any operator ordering (retarded/advance correlators).
Compare against S—matrix calculations (in-out formalism).

t — 0o ? lout) ~ al |0)

(inlout) oc (LSZ) (T O(t1)O(t2) - - -)

t— —o0 A lin) Na;r-|0>




Of course, we could also have

EVIL SCHWINGER-KELDYSH
BE LIKE

0UT-0UT FORMALISM

credit: Anonymous undergraduate.



Partial traces and influence functionals

WUSTSTOR!, /)
¢ 3 sy X J

We do not care about the full density matrix, p(t), but just

pa(t) = Trpp(t) where the environment is ignored/American style



In terms of matrix elements:

(al pa(®) o) = Y dR o, R ) Iy, ) oo

Y oA LQ T~
= I d:c’dy’/ D3 Dy eSalEl=i5ald] (@' pa(0) o)
x/7y/

R ~ ~
x Z dRAR'dQ) DRDQ ¢Ss1i=iS51Q)
Interaction R.Q Only B's DoF

Y A

X (—'»,’tSI{fﬁ} iS1[5,Q) <R/|pB(O)|Q,>

where we used p(0) = pa(0) ® pg(0).



Or in much more compact notation

pa = —i[Ha,pal

l

pa(t) = / Dxg Dxy exp [iSA[a:R] —iSalxL] + iF xR, 2y ]
pa(0)

Dissipation & noise’

where we introduce the influence functional

Flrrwr] — DQrDQ; SBIQR]-1SB(QL]+iSI[rR,QR]—iSI[rL,QL]
pB(0)



An old friend, rediscovered

Consider a very simple interaction:

Sr= A\ dt'x(t' !
I /0 tflf<t)Q(t)
then

eiFlerer] — DQrDQy, eSBlQR]~iSE(QL]
p5(0)

x e Jdt'(zr Qr—zr QL)

— <6i>\fdt'(ﬂ»‘R Qr—7rL QL)>
PB

The influence functional = generating functional of correlators.



Effective action for Fluctuating Hydro

A special case: pg = %e‘ﬁH

» The effect of system A on B is to take it out of

equilibrium!

» The response is captured by e?*r7L] in the limit

w, k| < T.

» From the influence functional we get (7},,7,, - -)



The only example ever: harmonic oscillators

Let us evaluate the influence functional for:

2

= p 1 P’? 2 paes
H = m—FV(x) + §§<E+mkak + 1;/\A:Rk

we then evaluate

R _ ‘
- DQrDQr e2™ Lk J dt/(QéiwiQ%+)‘k1RQR>*(R~>L)

Rl,Ql

x (R pp(0)|Q)

e'LF[Zl'R,:I)L}

(R'|e="7|Q") = K(R';—if|Q’; 0)




Diagramatically

elF[mR7wL} — }

evolution by e ##

Y

B

with a lot of insertions along the Lorentzian segments.



Doing the path integral

Final answer:

eiFlerei] — oy {— / drds (zp(T) — x(7))

X (a1 — s)xg(s) — o™ (1 — s)xp(9))]

where

Ak} it efiwkt + eiwkt
oft) = zk: 2mwy, [e + ePur — 1



It is better to write all this as:
eFlearal — exp [— /des (ar(T — 8)xa(T)4(8)

+2ia (1 — 8)xa(T)24(9))]
where

xaz§(x3+mL), Ty = TR — T,

This term is important: KMS

an(r) = Z (“2”) o5 (wit)

ar(t) = Xk: Qmwk sin (wgt)




What it all means? Recovering Brownian motion

Ok... we got a big expression for the propagator of A:
J(I, Y t|$,y/, 0) _ /D(L’R Dz, eiS[xR]fiS[xL]f i [wgarze — [xgopzg

How can we interpretate it?
Compare with expectation: system under random external

force
J(z,y;t|z"y';0) = [ Dxg Dy DF p(F) SRl =iSlaLlti [2al'(t)

Distribution of random force (take it gaussian)




Just as before, we change perspective
Zplwd) = | DFp(F)etd el

[ Generating functional of correlators, (F'(t1)F(t2)---)

For gaussian distributions p(F) oc e~ /4

ZF [xd] — e—dedsacd(’r)A(T—s)acd(s)

where (F(7)F(s)) = A(T — s).



We can compare the two expressions:

Pheno. Real exponentials

B .
J(z,y; tlx'y';0) = /D:UR Dz, ! Strrlmislesl= ] ‘rm

J(l’, Y t|l'/y,, 0) _ /DIR D, eiS[xR]fiS[mL]f i [zgarza — [zgopzg
1

. Additional part: micro. dynamics[
Micro.

and identify:
(F(t)F(0)) = ag(t)



In the thermodynamic limit

wT

l T

)2
E —g coswit ~ — / cos wt
e Yk

Large volume

With the right choice of p(w):

21T sin Qt
0

ag(t) ~ ~ 2nT6(t)

We recover Langevin from micro. dynamics!



A closer look: what about «;

Once again, take the view of the enviroment:

Z|xg, 4] = <6if(QRwR—QLwL)> _ <eif(Qdfa+Qa:c,1)>
A 8

_ efif:vdajxaffzdoggwd

and taking functional derivatives: ,
Fluctuating force

: !
(@) Qul0)) = 5 Q). QO)Y) =557 50 Zlearza = an(t)
(Qult) Qu(0) = QW) Q) = 5oy 5 Zlaasial = s (1)

Retarded response




Lessons learned

» Influence functional: key object in open quantum systems.

» The x4z, coefficient captures the fluctuations (they

average to the semi-classical force in Langevin).

» The x, x4 coefficient gives the response of the

environment (dissipation, when conserved).

» Notice, there is no z, x, term (unitarity).



Taking stock

Gravitational path integral
f Dg oiSeH

what do expressions like this even mean?

Fluctuating Hydrodynamics Dynamics of quantum information
(Tw) = THguw + duyu,) + -+ — D = —i[H,p] + -
how to account for (7, T,y - - -)? keeping noise under control

Open quantum systems



The gravitational path integral

Old story: gravitational systems can be seen as thermal:

Dage 5F ~ =5(9") ~ Tr (e PHoa
Joasg Por (e

* 1
g*|oc MxSg

Mind the limits )
Sum over solutions

“Newer” story: the holographic GKPW dictionary

<6_IJ(J»‘)O($)> — DgD¢ G_SE -~ e_Son»shell[qﬁ_h]]
CFT AdS



Unpacking GKPW

The generating functional has two pieces of data
Sources

Zerr[J] = <6f /) O(x)>
p

State

This has to be encoded in the dynamics on asymptotically AdS

spacetimes

2 dr? 2 W
ds® = T—2+r Gy (1, x)d2t d



Generic behavior in AdSy,1:

First identification: leading behavior = source

|
O(r,z) =rt> J(z) 14+---) 472 (O(x)), 1+--)

Second identification: sub-leading behavior = Exp. Val.

» The leading behavior is universal — sources are fixed

external inputs.

» The sub-leading behavior depends on the interior
geometry — correlations are dynamical responses

(holographic reconstruction).



A special case: the thermal state

» Observation: In QFT, Z(3) = Tre " can be obtained

as a path integral over R%™! x Sj.

» GKPW: Sum over geometries with boundary condition
d—1 1
R x S3.



Dominant saddle: Euclidean cigar (“black hole")

dr 2 7’d
A5 = f)Ath + s+ T, f() =1

rd




The Lorentzian GKPW dictionary

» GKPW was only formulated for Euclidean geometries.

» Long history of Lorentzian generalizations (rerog, Son, Starinets,

Skenderis, van Rees...].

» Main obstacle: Additional data due to time-ordering

(causality).

» Solution: Lesson from before, the Schwinger-Keldysh

contour.



The LHS: what do we want to compute?

From our previous study, the real-time generating functional is:

Z[JR, JL] = <Peif]Rd—1XCSK(JROR—JLOL)> _
B

B



The gravitational SK (grSK) geometry

Generalized GKPW prescription:

<Peif]Rd—1xCSK(JROR_JLOL)> :/ DgeiS
B g

lbdy. ~RI~1XCs ¢

_ eiS[g*}

where g, is a solution of Einstein's equations with bdy.

condition R x Cyx.



Constructing the solution

» Euclidean insight: dominant saddle in the imaginary-time

. . T‘2
section is ds% = r2f(r)dt% + ngfﬁ +r2dd?_, .

» Dominant solution in Lorentzian segments:

= —r?f(r)dti + +r2di_, .

Tzf( )

» Building new solutions by copy-paste (poor's man

solution):

o~ 2], =0, (L2 - K], =0,



» Easy part: pasting to the Euclidean segment.
Simply take X to be the surface tp =0~ 0+ 3, and
t+ NO, t_ :O‘{‘Zﬁ

» Tricky part: pasting of Lorentzian segments across their

horizon.



The CGL prescription

To paste the Lorentzian segments, make 7 complexXsiorioso, Crossley,

Liu]

ds* = —r* fdv? + 2dvdr + r*dz®

rtie, r€(ry,00)
<
h)
r—r, =ee? ,C
\
6 € (0,2m) AN

We then restrict » € C to live on the Hankel contour above.




Credit: Heroic tikz work by Tom Angrick



All in one patch: Mock tortoise coordinate

It is convenient to introduce the mock tortoise coordinate [sana,

Loganayagam, Rangamani]:

ds* = —r? fdv? + iBr® fdvd( + r*di*

a 2 1

&=

Convinience prefactor[ WGood ol" tortoise coordinate

Main property: ((r) o log(r — r.), logarithmic branch cut!



The prefactors have been chosen such that

Re ((r — i¢)

1,0'
0.8»

oo\ Im((r +ie)
04f

02}

Re ¢(r -l-eze)

In particular

lim ¢(r)=0, lim ((r)=1.
r—00-41€ r—00—1€



Scalar dynamics in grSK

To test the prescription, consider

1

5=-3

/ A e /=gg* B0, PO D

For r — oo = 7€, nothing really changes

FT.: e—v’,wu+i§~:?:

O, (k)

rd

O(r, k) ~ Jpp(k) (14 )+ (14--), k= (wk)



But for r — r
Regular at horizon

v iBw

O(r,k) ~ Agjr(k) (L+ )+ Bryr(k)(r —ry) 2 (14

Discontinuous around horizon

r+ie, re(ry,00)
<

)

T—00
T+ \
(4

r—ie, r€(rsy,00)

Across the horizon r — 1 — (r —ry)e*™.



Continuity of the full solution then requires:
AR(lf) = AL(]{?) s BR(I{?) = BL(k)G_ﬁw.

It is convenient to write linear combinations, a fully regular

solution:

Oin(r, k) = Op(r k) — e P (1, k)
A(k)(1+--+) =y

—(14ny)Jr(k) +ny,J (1+--+) 17— 00 +ie



and a fully irregular one:

Doyt (r, k) = Pr(r k) — ®p(r, k)
iBw

Bk)(r—ry)2z (1+--+) =

—ny, (Jr(k) — Jp(k)) (1 +--+) 7 — oco+ie
where n,, = ﬁ is the familiar Boltzmann factor. Notice a

different linear combination produces:

J, = (JR—l-JL), Jg=Jr—JL.

1
2



Solving the EoM

With the boundary conditions sorted out, we can solve
1
V=

or in Fourier domain

da (V=99""059) =0,

Lm (r' "Dy ®(r, k) + (0 = K f) @(r,k) = 0.

prd—1

where D, = r2fd% — 4w is motivated by time-reversal.



We define the ingoing propagator G™"(r, k) as a solution
satisfying:

lim G™(r,k) =1, lim G"(r,k) = regular

r—ootie =Ty

Due to regularity, it's the same in both branches

Using time-reversal symmetry, v — ¢8(¢ — v, the outgoing

propagator is

GO (r,w, k) = ¢ ™ G"(r, —w, k)

Fully irregular, ¢ — 0, 1[ Fully regular




The general solution to the EoM in grSK geometry is
1 . .
O(C,w, k) = (Ja + (nw + 5) Jd) G"(r,w, k)
— 1y Jge? OGN (1, —w, k)

Notice, we only need to compute G"(r, w, k)!

A quick check:

1

%ing)cb(g,w,k) = (Ja + (nw + 5) Jd) —nye® g, =Jg,
1

élrriq)((,w,k) = (Ja + <nw + 5) Jd) — Ny, Jd = JR



Evaluating the on-shell action

With the solution on hand, we evaluate:

S = EoM — / A2, (V=99 P ®OpP)

1 ¢=1

_ —/Cb(r, )TI(r, —k)

2 Jk

¢=0

There are two boundaries]

where

(r k) = —/—gg"P05® = —r*'D, &



Defining
K™w, k) =—lim (r"'DyG"(r,w, k) + c.t.)

r—00

We find

Son-shell = 5 Jd(k) K"™(w, k) | Jo(k) + ( no + 5 Ja(k) | +c.c.
k

which, by GKPW, gives us the generating functional of

connected correlators:

iW(da, Ja) = 1og Z[Jy, Ja] ~ iSon-sheil|Ja, Jd]



A reassuring answer

We can compare:

Son-shell = —% /k JH(k) K™ (w, k) (Ja(k:) + <nw + ;) Jd(k)) +cc.

with the harmonic oscillator answer

log Z[x4, 4] = —@'/xdogxa—/xdoszd

It is the same structure!



> From the H.O. analysis, the .J!.J; coefficient gives the

average force:

(O(=k)O(k))Ke = —% coth (é‘”) ImK ™ (w, k)

Same factor we found in the H.O. analysis! T

» While the J;Ja coefficient gives the retarded response:

(O(=k)O(k)) " = iK™ (w, k)



» The two results are related:

1

(O(=k)O(k))*" = = coth <5”

2

: ) Re(O(-0)0m)™

which is the fluctuation-dissipation theorem.
» Notice there is no J;Ja term, as expected from unitarity.

» Our gravitational calculation agrees completely with the

QM expectation.



All together: Holographic open quantum systems

Observer/measuring system
vy
S= 5S4+ Sp —i—/ddac J(z) O(x)
{ ]

Holographic system, for example N' =4 SYM

Influence functional: Fancy-pants harmonic oscillator

v
N=4SYM

B

<eif(JROR_JLOL)> — /DgD(I) S19:2] eison—shell[JR:JL]|

grSK

[Jana,Loganayagam,Rangamani][Loganayagam,Rangamani,JV]



The real deal: metric fluctuations

Going beyond toy scalars:

) N=4SYM
<e’f(‘]ROR_JLOL)> ~ ¢'Sorshell (metric fluctuations)
g

_ eison-sheu /Dh eiS(Q)[h]+iS(3)[h]+...

where g = ggsk + h, with |h] < 1, and S [h] come from

expanding the Einstein-Hilbert action.



Humble beginnings: gaussian fluctuations

Start with only Gaussian integration

|
ZQ[h] = /Dh 6i5(2)[h] :eiséi)shell[h‘bdy-]

Generic behavior: One-point function
l
dr? (T (7))
h/AB(/r, x)dl'Ade ~ T—2+r2 ,.Y/J,V(:E> + Td



Metric fluctuations as open quantum systems

Comparing with the scalar results:

Generating functional of stress tensor correlators

ri ot N=45YM o
et f('yw Vi ) = ezSon—shell[h‘bd‘/-N’ﬂ 4o

. |

Perturbation around grSK geometry

Connection with Hydrodynamics: (7),,7),, - --) in the limit

w, k| < T.



Handling metric fluctuations: designer scalars

9 = Jgrsk + h

SO(d — 2) harmonic descomposition

Diff. invariance

Constraint equations

SM = —% fdd+1$\/—_g6X(T)VA<I>MVA(I)M, \/—_QGX(T) ~ M

[Ghosh,Loganayagam,Prabhu,Rangamani,Sivakumar,Vishal][He,Loganayagam,Rangamani,Sivakumar,JV]



The dilaton makes all the difference
» Tensors: eX(") =1,

> Vectors: eX(") = ,r2(d—1—1) :

> Scalars: eX() = —TW}Q)Ai ,

Ap = K2+ L(d—1)r3f"

ex A

non-Markovian

Markovian

<N

T4



Dynamic of designer scalars in SK

» Let us study the system (scalars are hard):

1
Sdesigner = _5 /dd+1x —9g TM?dH VACI)MVA(I)M+dey_

» The equation of motion is
r DL (PMDL @) 4 (WP = K f) P = 0.

» For d > 2, this equation can be solved in a gradient

expansion:
w k
—_,— <1
ry Ty



» Asymptotic behavior:

Co

P~ + ML

» For M > —1, we impose Dirichlet conditions (Spay.

» For M < —1, compute the conjugate momentum:
™™ = —TMD+<DM ~ 61 +627"M

» Quantization is done using Neumann conditions

(dey_ = fddflj(I)Mﬂ'M)



Markovian fields (tensors)

Same old scalar:

Pw(C k) [(”ﬁ + > M~ n/aeﬁ“—l)Gfﬁ] Ja

1
Son shell Jaa Jd /JTK: |: <n5 + 2) Jd:|
k

+ Ai/?(T+)w2 + ...

Kin _ _
“”+1—M

Note: Correlations are analytic in w and |k| = there are no

conserved tensor-like currents!



Non-Markovian fields (vectors and scalars”)

Here things are trickier

» We could compute log Z[J,, Ja] = ©.Son-sheli|Ja, Ja, using

Newmann conditions.

» Alternatively, we could still use Dirichlet
T 5 oin 1 in B(C—1) rrev | &
(I)M(C,w,k):q)aGM—i- n5+§ Gy — nge G| ®q

fixing the one-point function (very non-kosher).



Old friend: Quantum Effective Action

» What does it mean to fix the one-point function?

» Gravity side: changing from Newmann to Dirichlet:

Original action: Newmann conditions

[ I
1

2/dd+1x —grMTIIY 4B\ VAD L + /ddeW

— /dd:E(I)Mﬂ'M

A

G- _

Legendre transform to Dirichlet conditions



» Field theory side:

. g 6=t
Son-shell[Ja; Jd] J d%a® pmay ‘47()

ﬁ _ v
il[By, @) = log Z[Ju, Ja] — 1/ d'z (Jpbr — JL®r)

» The Legendre transform of the generating functional is

the Quantum Effective Action.

F[(i)a, (i)d] — DiriChlet[(i)a, (i)d]

on-shell

i . 1\ .
- forafos )]



Interpreation: Wilsonian Influence Functional

» Before, influence functional:

eiF[mR,mL] _ /DQRDQL eiSR—iSL
p

» Now, Wilsonian Influence Functional

Short-Lived modes Long-Lived modes
¥ ¥
oiFlerar] — / ( DQ%LDQ€L> (DQ%LDQéL) iSR—iSL
P

SL SL JISWIF
_ SLY
/(DQR DQSY) «
t

LT wrt Long-Lived modes = QEA = Fluid EFT



> |n total:
Ny . 1
SwIF X — Z/ (Pg‘)T K\ om. [P{j‘ + <n5 + 2) j‘]
a=1 k
5 \T 7-in > 1 >
o (Zd) Ksound | Za + ng + B Zq
k

Famous result D = #’p — % =L
v
in . 1 2
Mom = — W + g ke —+---
. 2
KISr:)und = —w+ d—1 +Vsk2rs(w,k?)



Beyond the Gaussian level:

Witten diagrams in SK geometry

What about S™[h] for n > 1

[Loganayagam,Rangamani,JV] and work in progress [Ammon,Rangamani,Specht,JV]



The ingredients:

» Ingoing Bulk-to-Bdy Prop.: Gi,((, k).
» Outgoing Bulk-to-Bdy Prop.: Gou(C, k) = e PG ((, k)
» Bulk-to-Bulk Prop:
Gob(C, ¢s k) = N (k)P GL(C, k) Gr(CL, k).
Important: G;,(¢ + 1,k) = Gin((, k).



» Contact diagram:

} jqfdgs dr (£(¢(r) +1) = £(¢(r)))

» Exchange diagram

>m< = fdc ¢ IR(COBIC - ) + Re. IO - )
— [: dr /T: dr' [§10(r — ') + F20(r" — 1))

where

:Fl(C7C/)_Fl(c+17<./)+F2(C+17€,+1)_F2(€7</+1)7

Fo=Fi(C+1,{+1) - F(C+1,{)+ B ) — (¢ +1).



Taking stock, part |

Gravitational path integral
| Dg '5en

what do expressions like this even mean?

Fluctuating Hydrodynamics Dynamics of quantum information

(D) = g+ du) + - |— Y

3

how to account for (7}, T,y - - keeping noise under control

Open quantum systems




Work in progress

» Higher order SK correlators for d > 2 {ammon, Rangamani, Specht, 1v1.
» Connections to non-linear fluid actions [rangamani, 3v].

> Beyond the SK COﬂtOUI’ OTOC [Ammon, Germerodt, Sieling, JV].



Final musings

» More complicated thermal systems: Kerr black holes,
superfluids,...

(FOI’ Charged blaCk hOleS see [He, Loganayagam, Rangamani, JV])

» Transition amplitudes: beyond saddle point approximation

(Golden dream: topology changes)

» Non local-probes: entanglement entropy, reflected
entrOpy, negatIVIty, ... [Colin-Ellerin, Dong, Marolf, Rangamani, Wang][Pelliconi,

Sonner][Mezei,JV]



» Effective actions for chaotic systems [siake, Lee, Liv][Hachl, Rozali

» Gravitational SK contours for more general spacetimes
(see recent work on dS correlatorsoi pictro, Gorbenko,

Komatsu][Loganayagam, Shetye]) .

» Is there something to be said in asymptotically flat

spacetimes?



Thank Youl
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