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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

Motivation

• Dissipative effects

• Mergers/accretion/ejecta

• Magnetohydrodynamics (MHD)
Figure 1: Neutron star mergers produce accreting
black holes and ejecta.
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

Motivation

• Dissipative effects

• Mergers/accretion/ejecta

• Magnetohydrodynamics (MHD)

Figure 2: Force-free model of a pulsar’s
magnetosphere
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

Non-relativistic Hydrodynamics

• Defining fluids

• Thermodynamics and equilibrium

• Equation of motion

Fluids

• ℓ ≪ L

• f = f (t, x i , v i )

• f = f(0) + τ f(1) +O(τ2)
Figure 3: A system with N particles, where the
width represents the characteristic length.
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

Non-relativistic Hydrodynamics

• Defining fluids

• Thermodynamics and equilibrium

• Equation of motion

Thermodynamics

• Fluids are not closed systems.

• Volume elements are closed
systems.

• ε, ρ, and v i represent fields
dependent on position and
time.
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

Non-relativistic Hydrodynamics

• Defining fluids

• Thermodynamics and equilibrium

• Equation of motion

j iε =

(
ε+ p +

ρv2

2

)
v i−ησijvj − ζv i∂kv

k

Πij = pδij + ρv iv j−ησij − ζδij∂kv
k .

Note: Thermal conductivity has been set equal
to zero.

Equation of motion

∂tρ+ ∂i (ρv
i ) = 0

∂t(ρv
i ) + ∂jΠ

ij = 0

∂t

(
ε+

ρv2

2

)
+ ∂i j

i
ε = 0.
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

Relativistic Hydrodynamics

• Conserved quantities

• Eckart and Landau-Lifshitz frames

• Müller-Isreal-Stewart theory

• Relativistic Navier Stoke Equations

Tµν
(0) = εuµuν + p∆µν

Jµ(0) = nuµ

∆µν = uµuν + gµν

The e.o.m are found by contracting with uν
and ∆µν

Energy-momentum tensor and four
current

T 00 : energy density T ii : pressure

T ij : stress T 0i : energy current

J0 : charge density J i : charge current
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

Relativistic Hydrodynamics

• Conserved quantities

• Eckart and Landau-Lifshitz frames

• Müller-Isreal-Stewart theory

• Relativistic Navier Stoke Equations

Im ω(κ) ≤ 0

0 ≤ Re ω(κ)

κ
< 1

• Classical theories.

• Added dissipative effects

• Eckart

uµuνT
µν
(1) = 0 Jµ(1) = 0

• Landau-Lifshitz

uµT
µν
(1) = 0 uµJ

µ
(1) = 0

• Unstable and acausal; NOT
GOOD!
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

Relativistic Hydrodynamics

• Conserved quantities

• Eckart and Landau-Lifshitz frames

• Müller-Isreal-Stewart theory

• Relativistic Navier Stoke Equations

• Most popular fix

• Introduces extended fields

• Stable and causal

• Not classical theory

• Further complication for numerical
relativity.
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

Relativistic Hydrodynamics

• Conserved quantities

• Eckart and Landau-Lifshitz frames

• Müller-Isreal-Stewart theory

• Relativistic Navier Stoke Equations

Question:

• Classical theory

• Stable and causal

• Locally well posed

(Not a strict requirement)

• Strong hyperbolic
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

BDNK theory

• Effective field theory

• Setting up the general frame

• Constitution relations

• Frame transformation

BDNK: Bemfica, Disconzi, Noronha, and
Kovtun

BDNK: Is locally well posed and strongly
hyperbolic [1]

Essentials

• µ,T and uµ

• ∇µT
µν = 0 , ∇µJ

µ = 0

• Gradient expansion

Translation and global U(1)
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

BDNK theory

• Effective field theory

• Setting up the general frame

• Constitution relations

• Frame transformation

Tµν = Euµuν + P∆µν + 2Q(µuν) + tµν

Jµ = Nuµ + jµ

Decomposition

E = uµuνT
µν P =

1

3
∆µνT

µν

Qµ = ∆µ
νuσT

νσ jµ = ∆µ
νJ

ν

N = uµJ
µ

tµν =
1

2

(
∆µ

α∆
ν
β +∆µ

β∆
ν
α − 2

3
∆µν∆αβ

)
Tαβ
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

BDNK theory

• Effective field theory

• Setting up the general frame

• Constitution relations

• Frame transformation

E : ε+ ϵi P : p + πi N : n + τi

Q : qi jµ : li tµν : η

Example

E = ε+ ϵ1
1

T
Ṫ + ϵ2∇µu

µ + ϵ3u
µ∇µ

(
µ

T

)
Ṫ = uµ∇µT

There are 3 coefficients at zero order, and 16
at first order.
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

BDNK theory

• Effective field theory

• Setting up the general frame

• Constitution relations

• Frame transformation

δT = a1
1

T
uµ∇µT + a2∇µu

µ + a3u
µ∇µ

(
µ

T

)
ϵ′i → ϵi −

(
∂ε

∂T

)
µ

ai −
(
∂ε

∂µ

)
T

bi

Out of equilibrium

• µ,T and uµ: No microscopic
definiton

• T → T + δT

• 7 Genuine transport coefficients

fi ℓi η

• ℓ1 = ℓ2 [2]
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

BDNK: Constraints

• Entropy Current

• Interpretation of transport coefficients

• Stability and causality

∇µS
µ = ∇µ

(
1

T
uνT

µν

)
+∇µ

(
µ

T
Jµ

)
≥ 0

ζ = p,εf1 − f2 +
p,n
T

f3

σ =
n

w
ℓ1 −

1

T
ℓ3

Procedure

• Derivative at all order

• On-shell

• Three physical coefficients

ζ ≥ 0 σ ≥ 0 η ≥ 0
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

BDNK: Constraints

• Entropy Current

• Interpretation of transport coefficients

• Stability and causality

Philosophy of BDNK

• Only three physical coefficients

• 14− 3 = 11 non physical transport
coefficients

• ”UV regulators”

• ”strict constraints”

Only a few transport coefficients have
constraints; most can be set to zero.
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

BDNK: Constraints

• Entropy Current

• Interpretation of transport coefficients

• Stability and causality

ωshear = − iη

w
κ2 +O(κ3)

ωsound = ±vsκ− i

2
ω2κ

2 +O(κ3)

ωheat = −iDκ2 +O(κ3)

Dispersion relations

• Fluctuations

• Follow plane waves

• Physical and unphysical modes

• Routh-Hurwitz critera

D =
σwp2;ϵ

v2s wn;µ − n2v2s
Im ω(κ) ≤ 0

ω2 =
4η + ζ

w
+

σ

wv2s
p2;n 0 ≤ Reω(κ)

κ
< 1

Mads Sørensen Friedrich-Schiller-Universität 26 March 2024 6 / 10



Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

BDNK: Magnetohydrodynamics

Dispersion relations BDNK: MHD

• ’Complete theory’

• Two extra degrees of freedom

• Stable and causal [3]

• More realistic
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

Discussion

• BDNK or MIS

• Dissipation in numerical relativity

• BDNK Limitations

BDNK or MIS

• MIS is well established.

• Numerically suitable.

• Handling of shock.[1] [4]

• Low viscosity: BDNK ∼ MIS [4]

Rankine-Hugoniot Condition: Not satisfied
by MIS.
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

Discussion

• BDNK or MIS

• Dissipation in numerical relativity

• BDNK Limitations

Dissipation in NR

• Gravitation waves: unlikely.

• Accretion disk: likely

• Ejecta: Likely.

• MHD application: Important.

Rankine-Hugoniot Condition: Not satisfied
by MIS.
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

Discussion

• BDNK or MIS

• Dissipation in numerical relativity

• BDNK Limitations

BDNK Limitations

• Non-linear fluctuation:
non-Markovian behavior. [5]

• Limited study of the theory

• Perhaps more to come
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Towards a deeper understanding of relativistic dissipative hydrodynamics in numerical relativity: Introducing the BDNK theory.

Final remarks

• Finish analytical work

• Testing validity of frames

• Applying to neutron star merges (with coupled magnetic field)

• BDNK: magnetohydrodynamics
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