Effective Spin foam models

Constructing a 'quantum spacetime'
Seth Kurankyi Asante, FSU Jena
[Bianca Dittrich, Hal Haggard, José Padua-Argüelles]

Physik-Combo
TPI, FSU-Jena
March 26-27, 2024

Alexander von
HUMBOLDT STIFTUNG

Path Integrals

A formalism adopted by many approaches:

Transition amplitude between A and B: $Z[A ; B]=\int D \mu($ geom $) \exp (\mathrm{i} S[$ geom $])$

- Sum over histories of geometries

What are the fundamental geometries?

Gravitational Path Integrals

Non-perturbative quantum gravity

$$
\text { Many approaches- } \quad \mathscr{Z}=\int_{M / \operatorname{Diff}(M)}[\mathscr{D} \mu(\text { geom })] e^{-\mathrm{i} S[\text { geom }]}
$$

Path Integral approaches

* Computation: Lorentzian oscillatory path integrals
* Control: What configurations should be summed over in path integral?
* Continuum limit: Refinement or coarse graining techniques necessary

Gravitational Path Integrals

Non-perturbative quantum gravity
Many approaches- $\quad \mathscr{Z}=\int_{M / D \operatorname{Diff}(M)}[\mathscr{D} \mu($ geom $)] e^{-\mathrm{i} S[\text { geom }]}$

Path Integral approaches

* Computation: Lorentzian oscillatory path integrals
* Control: What configurations should be summed over in path integral?
- Continuum limit: Refinement or coarse graining techniques necessary

Effective spin foam models

provide insights into many of these interesting questions

Outline

Spin foam models

- Path integrals for gravity
- Quantum geometry from area variables

Effective models

- Area Regge calculus
- Weak implementation of constraints

Testing the model

- Discrete Regge dynamics
- Refinement limit **

Spin foam models

In a nutshell

Defined as path integral formulation over discrete geometries:
Based on Plebanski gauge formulation for gravity

$$
\mathscr{Z}=\int_{\mathscr{G}} d A d B e^{i \int_{M} B \wedge F(A)+\phi B \wedge B}
$$

Discretization a priori scale free regulators- have to take refinement limit
[Long list of names , ... , Steinhaus et.al ,...]

Dynamics: as transition amplitudes between LQG states

Spin foam models

In a nutshell

Defined as path integral formulation over discrete geometries:
Based on Plebanski gauge formulation for gravity

$$
\mathscr{Z}=\int_{\mathscr{G}} d A d B e^{i \int_{M} B \wedge F(A)+\phi B \wedge B}
$$

Discretization a priori scale free regulators- have to take refinement limit
[Long list of names , ... , Steinhaus et.al ,...]

Dynamics: as transition amplitudes between LQG states

Does this lead to GR?

Asymptotic analysis:

$$
\begin{array}{ll}
\mathscr{A}_{v} \sim \sum_{\left\{j_{f}\right\}} \cos \left(\sum_{f} j_{j_{f}} \theta_{f}\right) & \text { Regge action } \\
{[\text { Barrett et all, ...] }]}
\end{array}
$$

Quantum geometries (Discrete)

Spin Networks

Mathematically well-defined structures

Decorated graphs

Encode quantum geometries
$\mathscr{H}_{\Gamma}=L^{2}\left(\mathrm{SU}(2)^{\# \ell} / \mathrm{SU}(2)^{\# n}\right)$

Labels:
quantum numbers
quantum tetrahedron

gluing geometries

Functional of space of connections invariant under local gauge transformations

Spin foam models

Path integral over quantum geometries
\star Sum over histories of quantum geometries for fixed boundaries
\downarrow Describe dynamics of quantum geometry
\star Very complicated amplitudes

$$
Z[A ; B]=\sum_{\left\{t_{e}, \rho_{t}\right\}}
$$

- Difficult to compute for large discretization

Spin foam models

Path integral over quantum geometries
\star Sum over histories of quantum geometries for fixed boundaries
\downarrow Describe dynamics of quantum geometry
\star Very complicated amplitudes

$$
Z[A ; B]=\sum_{\left\{t_{e}, \rho_{t}\right\}}
$$

- Difficult to compute for large discretization

Need methods to: compute, have control and study its continuum limit..

Summary: Quantum Geometry

Key features in (3+1) D

Area variables fundamental

support from BH physics, holography, generalized geometries, discrete symplectic geometry angles as auxiliary variables

Summary: Quantum Geometry

Key features in (3+1) D

Area variables fundamental

support from BH physics, holography, generalized geometries, discrete symplectic geometry angles as auxiliary variables
[LQG: Rovelli, Smolin...]
[Edge modes: Wieland, Freidel-Pranzetti-Geiller]

Area variables have discrete spectra
$a=\gamma \ell_{P} \sqrt{j(j+1)} \sim \gamma \ell_{P} j, \quad j \in \mathbb{N} / 2$
asymptotically equidistant $\quad \gamma$-Barbero-Immirzi parameter

Summary: Quantum Geometry

Key features in (3+1) D

Area variables fundamental
[LQG: Ashtekar, Rovelli, Smolin, Lewandowski, Isham...]
support from BH physics, holography, generalized geometries, discrete symplectic geometry angles as auxiliary variables
[LQG: Rovelli, Smolin...]
[Edge modes: Wieland, Freidel-Pranzetti-Geiller]

Area variables have discrete spectra $a=\gamma \ell_{P} \sqrt{j(j+1)} \sim \gamma \ell_{P} j, \quad j \in \mathbb{N} / 2$
asymptotically equidistant $\quad \gamma$-Barbero-Immirzi parameter
[Freidel-Speziale, Dittrich-Ryan]
Area configurations more general than length configurations
[Schuller, Wohlfahrt '06]

[SKA, Brysiewicz 2024]

Simple models

Need to find a way to access and isolate the geometric data from spin foam amplitudes

$$
\mathscr{Z}=\sum_{\left\{j_{f}, i_{e}\right\}} \prod_{f} \mathscr{A}_{f} \prod_{e} \mathscr{A}_{e} \prod_{v} \mathscr{A}_{v}
$$

Idea: Effective spin foam models

[SKA, Dittrich, Haggard]
Maintain dynamical principles of spin foams

- area variables fundamental
- discrete spectra for area operators + implement gluing principle

Simple models

Need to find a way to access and isolate the geometric data from spin foam amplitudes

$$
\mathscr{Z}=\sum_{\left\{j_{f}, i_{e}\right\}} \prod_{f} \mathscr{A}_{f} \prod_{e} \mathscr{A}_{e} \prod_{v} \mathscr{A}_{v}
$$

Idea: Effective spin foam models

[SKA, Dittrich, Haggard]
Maintain dynamical principles of spin foams

- area variables fundamental
- discrete spectra for area operators + implement gluing principle

Replace with simple amplitude

- discrete areas + imposition of constraints
from
- effective description of quantum geometries $\mathscr{Z} \sim \sum_{\left\{j_{f}\right\}} \cos \left(S_{R}\left[j_{f}, \theta_{f}\right]\right) \quad$ higher gauge theory
[Baratin, Freidel, Mikovic, Vojonovic, Girelli et.a]]

Simple Amplitudes

Triangulated spacetimes

Simple action (4D)

Area Regge action:

$$
S_{\mathrm{ARC}}=-\sum_{t \in \mathrm{bulk}} a_{t} \epsilon_{t}\left(a_{t^{\prime}}\right)-\sum_{t \in \mathrm{bdry}} a_{t} \psi_{t}\left(a_{t^{\prime}}\right)
$$

discrete GR action for area configurations

State sum model:

$$
Z=\sum_{\{a\}} \mu(a) \exp \left(i S_{\mathrm{ARC}}(a)\right)
$$

discrete areas

Simple Amplitudes

Triangulated spacetimes

Simple action (4D)

Area Regge action:

$$
S_{\mathrm{ARC}}=-\sum_{t \in \mathrm{bulk}} a_{t} \epsilon_{t}\left(a_{t^{\prime}}\right)-\sum_{t \in \mathrm{bdry}} a_{t} \psi_{t}\left(a_{t^{\prime}}\right)
$$

discrete GR action for area configurations

State sum model: $\quad Z=\sum_{\{a\}} \mu(a) \exp \left(i S_{\mathrm{ARC}}(a)\right) \quad$ Does this lead to GR?
discrete areas

Classical: $\quad \mathrm{No} ? \quad \epsilon_{t}\left(a_{t^{\prime}}\right)=0$

Simple Amplitudes

Triangulated spacetimes

Simple action (4D)

Area Regge action:

$$
S_{\mathrm{ARC}}=-\sum_{t \in \text { bulk }} a_{t} \epsilon_{t}\left(a_{t^{\prime}}\right)-\sum_{t \in \mathrm{bdry}} a_{t} \psi_{t}\left(a_{t^{\prime}}\right)
$$

discrete GR action for area configurations

State sum model: $\quad Z=\sum_{\{a\}} \mu(a) \exp \left(i S_{\mathrm{ARC}}(a)\right) \quad$ Does this lead to GR?
discrete areas
Classical: No? $\quad \epsilon_{t}\left(a_{t^{\prime}}\right)=0$

Discrete dynamics: Add constraints to reproduce discrete GR Yes?

Continuum limit: possibly Yes [Dittrich-Kogios]

Regge calculus

Discrete gravity

Based on a simplicial decomposition
Assign length to edges : defines piecewise-flat geometry

$(\mathscr{M} \rightarrow \mathscr{T})$

Curvature as deficit angles distributed on co-dimension 2 simplices
2D: curvature around a point

$$
\epsilon_{p}=2 \pi-\sum_{p \subset t} \theta_{p}^{t}
$$

Regge calculus

Discrete gravity

Based on a simplicial decomposition
Assign length to edges : defines piecewise-flat geometry

$(\mathscr{M} \rightarrow \mathscr{T})$

Curvature as deficit angles distributed on co-dimension 2 simplices
2D: curvature around a point

$$
\epsilon_{p}=2 \pi-\sum_{p \subset t} \theta_{p}^{t}
$$

3D: curvature around 1 bones (edges)
Edge lengths conjugate to (compact) angles

Regge Calculus

Action as distribution of curvature

(Euclidean and Lorentzian)

$$
\text { Discrete action: } \quad S_{\text {Regge }}\left[l_{e}\right]=\sum_{t \in T} A_{t}\left(l_{e}\right) \epsilon_{t}\left(l_{e}\right)
$$

equations of motion:

$$
\begin{aligned}
& \delta S_{\text {Regge }}=\sum_{t} \delta A_{t} \epsilon_{t} \\
& \text { an } \quad \epsilon_{t}=2 \pi-\sum_{\sigma \supset t} \theta_{t}^{\sigma}\left(l_{e}\right)
\end{aligned}
$$

Euclidean

Schläfli identity: encodes symplectic structure

$$
\sum_{t} A_{t} \delta \theta_{t}^{\sigma}=0
$$

$$
S_{\mathrm{EH}}(g)=\int_{M} d^{4} x \sqrt{|g|} R
$$

Einsteins equations:

$$
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=0
$$

4 D : curvature around 2 bones (triangles)

Area Regge calculus (ARC)

Building blocks are 4 -simplices: each simplex has 10 triangles and 10 edges

Locally invert areas and lengths
[Hero of Alexandria AD 60]
Heron's formula $A_{t}\left(l_{e}\right)=a_{t} \quad A_{t}^{2}\left(l_{1}, l_{2}, l_{3}\right)=\frac{1}{16}\left(l_{1}+l_{2}+l_{3}\right)\left(l_{1}+l_{2}-l_{3}\right)\left(l_{1}-l_{2}+l_{3}\right)\left(-l_{1}+l_{2}+l_{3}\right)$

$$
l_{e}=L_{e}^{\sigma}\left(a_{t}\right)
$$

area Regge action: $\quad S_{\mathrm{ARC}}\left[a_{t}\right]=\sum_{t} a_{t} \epsilon_{t}\left(a_{t^{\prime}}\right) \quad$ Euclidean/Lorentzian versions
[Williams, Barett, ...] $\quad \delta S_{\mathrm{ARC}} \Longrightarrow \epsilon_{t}\left(a_{t^{\prime}}\right)=0 \quad$ flatness?

$$
Z=\sum_{\{a\}} \mu(a) \exp \left(i S_{\mathrm{ARC}}(a)\right)
$$

Area Regge calculus (ARC)

Building blocks are 4 -simplices: each simplex has 10 triangles and 10 edges

Locally invert areas and lengths
[Hero of Alexandria AD 60]
Heron's formula $A_{t}\left(l_{e}\right)=a_{t} \quad A_{t}^{2}\left(l_{1}, l_{2}, l_{3}\right)=\frac{1}{16}\left(l_{1}+l_{2}+l_{3}\right)\left(l_{1}+l_{2}-l_{3}\right)\left(l_{1}-l_{2}+l_{3}\right)\left(-l_{1}+l_{2}+l_{3}\right)$

$$
l_{e}=L_{e}^{\sigma}\left(a_{t}\right)
$$

area Regge action:

$$
S_{\mathrm{ARC}}\left[a_{t}\right]=\sum_{t} a_{t} \epsilon_{t}\left(a_{t^{\prime}}\right)
$$

Euclidean/Lorentzian versions
[Williams, Barett,..$] \quad \delta S_{\text {ARC }} \Longrightarrow \epsilon_{t}\left(a_{t^{\prime}}\right)=0 \quad$ flatness?

Does ARC lead to a discretization of general relativity?

$$
Z=\sum_{\{a\}} \mu(a) \exp \left(i S_{\mathrm{ARC}}(a)\right)
$$

Constraints

General triangulation has mismatch between data on shared tetrahedra

Gluing simplices

(localized geometric constraints)

$$
\mathscr{C}_{i}^{\tau}:=\phi_{e_{i}}^{\tau}-\Phi_{e_{i}}^{\tau, \sigma}\left(a_{t}\right)=0
$$

[Dittrich, Speziale, Ryan,...]
match two 3d dihedral angles $\quad \Phi_{e_{i}}^{\tau, \sigma}\left(a_{t}\right)=\Phi_{e_{i}}^{\tau, \sigma^{\prime}}\left(a_{t}\right)$
[Kapovich-Milson]

$$
\left\{\mathscr{C}_{i}^{\tau}, \mathscr{C}_{j}^{\tau}\right\}=\gamma(9 / 2) \mathrm{Vol}_{\tau}
$$

Barbero-Immrizi Anomaly parameter
(second-class constraints)

Constraints

General triangulation has mismatch between data on shared tetrahedra

Gluing simplices

(localized geometric constraints)

$$
\mathscr{C}_{i}^{\tau}:=\phi_{e_{i}}^{\tau}-\Phi_{e_{i}}^{\tau, \sigma}\left(a_{t}\right)=0
$$

[Dittrich, Speziale, Ryan,...]
match two 3 d dihedral angles $\quad \Phi_{e_{i}}^{\tau, \sigma}\left(a_{t}\right)=\Phi_{e_{i}}^{\tau, \sigma^{\prime}}\left(a_{t}\right)$

$\begin{array}{cc} & \\ \left\{\mathscr{C}_{i}^{\tau}, \mathscr{C}_{j}^{\tau}\right\}=\gamma(9 / 2) \mathrm{Vol}_{\tau} & \text { Barbero-Immrizi } \\ \text { (second-class constraints) } & \end{array}$
[Dirac, Gupta-Bleuler]
Impose constraints 'weakly' in quantum theory: as allowed by uncertainty relation.
γ controls how sharply we can implement the constraints

Weak Constraints

Implementing constraints weakly

[Livine, Speziale]
Use coherent states $\quad\left|K\left(\phi^{\tau}, \Phi_{e_{i}}^{\tau, \sigma}\right)\right\rangle$

Inner product between coherent states
peaked on classical 3d angles
'Integrate out' ϕ^{τ} variables

$$
G_{\tau}=\left\langle K_{\Phi_{\varepsilon_{i} \tau_{i}}} \mid K_{\Phi_{\tau_{i} \sigma_{i}^{\sigma^{\prime}}}}\right\rangle
$$

$$
\text { ansatz } \sim \mathscr{N}_{k} \exp \left(-\frac{\mathscr{C}^{2}}{4 \Sigma^{2}(j)}\right)
$$

Gluing terms

$\Sigma^{2}(j)$-deviation determined by commutator of constraints
$\left\{\mathscr{C}_{i}^{\tau}, \mathscr{C}_{j}^{\tau}\right\}=\gamma(9 / 2) \mathrm{Vol}_{\tau}$

Effective spin foams

Effective spin foam models are discrete geometrical path integrals for quantum gravity.

$$
Z_{\mathrm{ESF}}=\sum_{\left\{a_{\}}\right\}} \mu(a) \exp \left(\mathrm{i} S_{\mathrm{ARC}}(a)\right) \prod_{\tau} G_{\tau}^{\sigma, \sigma^{\prime}}(a) \prod_{\sigma} \Theta_{\sigma}^{\mathrm{tr}_{\sigma}}(a)
$$

[Steinhaus, Simāo, SKA '22]
Spin foam amplitudes may be cast into similar form

Effective spin foams

Effective spin foam models are discrete geometrical path integrals for quantum gravity.

$$
Z_{\mathrm{ESF}}=\sum_{\left\{a_{\}}\right\}} \mu(a) \exp \left(\mathrm{i} S_{\mathrm{ARC}}(a)\right) \prod_{\tau} G_{\tau}^{\sigma, \sigma^{\prime}}(a) \prod_{\sigma} \Theta_{\sigma}^{\mathrm{tr}}(a)
$$

[Steinhaus, Simāo, SKA '22]
Spin foam amplitudes may be cast into similar form

Does this lead to GR?

Discrete dynamics results: Yes! for small γ

Due to anomaly of constraints or its weak implementation
But how small?

Outline

Spin foam models

- Path integrals for gravity
o Quantum geometry from area variables

Effective models

- Area Regge calculus

DETOUR AHEAD

- Weak implementation of constraints

Testing the model

- Discrete Regge dynamics
- Refinement limit

Discrete gravity

Lorentzian spacetimes

Lorentzian Area Regge action: $\quad S_{\mathrm{ARC}}=-\sum_{t \in \mathrm{bulk}} a_{t} \epsilon_{t}\left(a_{t^{\prime}}\right)-\sum_{t \in \mathrm{bdry}} a_{t} \psi_{t}\left(a_{t^{\prime}}\right)$

Lorentzian Angles

[Alexandrov '01, Sorkin '19, Jia '21, SKA, Dittrich, Padua-Argüelles '21]

Choice of $\mp \mathrm{i} \pi / 2$ for light ray crossings

$$
\begin{aligned}
& \theta_{12}=\cosh ^{-1}\left(x_{1} \cdot x_{2}\right) \\
& \theta_{13}=\sinh ^{-1}\left(x_{1} \cdot x_{3}\right) \mp \frac{\pi \mathrm{i}}{2} \\
& \theta_{14}=-\cosh ^{-1}\left(-x_{1} \cdot x_{4}\right) \mp \pi \mathrm{i} \\
& \theta_{35}=\cosh ^{-1}\left(x_{3} \cdot x_{5}\right) \mp \pi \mathrm{i}
\end{aligned}
$$

action: $S_{\text {ARC }}$ is complex for causally irregular configurations
Two choices L_{\mp} : either enhance or suppress irregular configurations

Lorentzian geometries

Plethora of interesting configurations
Configurations can be grouped into two sets: Regular and Irregular

Lorentzian geometries

Plethora of interesting configurations
Configurations can be grouped into two sets: Regular and Irregular

2D Examples

Regular configuration

Topology change

Lorentzian geometries

Plethora of interesting configurations
Configurations can be grouped into two sets: Regular and Irregular

2D Examples

Regular configuration

Irregular configurations

Topology change

[Jordan, Loll '13]
Higher Dimensions: Other causality conditions Edge causality, Vertex Causality
[Borgolte, SKA wip]

Advantages

Regge calculus Gluing terms

$$
Z_{\mathrm{ESF}}=\sum_{\left\{a_{t}\right\}} \mu(a) \exp \left(\mathrm{i} S_{\mathrm{ARC}}(a)\right) \prod_{\tau} G_{\tau}^{\sigma, \sigma^{\prime}}(a) \prod_{\sigma} \Theta_{\sigma}^{\mathrm{tr}}(a)
$$

\star 'Effective' dynamics of quantum geometries
keep dynamic principles of LQG and spin foam models
\downarrow Computationally efficient
[Marseille CNRS group, Florida FAU group, London Western group, Bahr, Steinhaus..]
Fast numerical computations compared to BF and EPRL/FK numerics
\downarrow Control: can test many features
[Steinhaus, Simāo]
Easy construction of Lorentzian model allows spacelike and timelike areas

SF Cosmology applications [Dittrich, Gielen, Schander, Padua-Argüelles] [Jercher, Marchetti, Pithis] [Steinhaus, Jercher]

ESF model

Weakly imposed constraints

But how small? γ anomaly parameter

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{ESF}}= \sum_{\left\{a_{t}\right\}} \mu(a) \exp \left(\mathrm{i} S_{\mathrm{ARC}}(a)\right) \prod_{\tau} G_{\tau}^{\sigma, \sigma^{\prime}}(a) \prod_{\sigma} \Theta_{\sigma}^{\operatorname{tr}}(a) \\
& \text { Oscillations } \\
& \text { peaked on conssians }
\end{aligned}
$$

Semi-classical limit:
Few oscillations over Gaussian needed

$$
\gamma \sqrt{a_{t}} \operatorname{curv}_{\mathrm{t}} \lesssim \mathcal{O}(1)
$$

ESF model

Weakly imposed constraints

But how small? γ anomaly parameter

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{ESF}}= \sum_{\left\{a_{t}\right\}} \mu(a) \exp \left(\mathrm{i} S_{\mathrm{ARC}}(a)\right) \prod_{\tau} G_{\tau}^{\sigma, \sigma^{\prime}}(a) \prod_{\sigma} \Theta_{\sigma}^{\operatorname{tr}}(a) \\
& \text { Oscillations } \\
& \text { peaked on constrains }
\end{aligned}
$$

Semi-classical limit:
Few oscillations over Gaussian needed

$$
\gamma \sqrt{a_{t}} \operatorname{curv}_{\mathrm{t}} \lesssim \mathcal{O}(1)
$$

Alternative point of view: Complex critical points

Imaginary part of saddle point controlled by γ needs to be small

Outline

Spin foam models

- Path integrals for gravity
o Quantum geometry from area variables

Effective models

- Area Regge calculus
- Weak implementation of constraints

Testing the model

- Discrete Regge dynamics
© Refinement limit **

Testing ESF model

\downarrow Early non-trivial results

Several examples of discrete geometries with curvature

- Recover discrete gravity dynamics in certain range of parameters explicit path integral of expectation values, testing EOMs interesting effects beyond saddle point evaluation

Testing the model

Triangulation with bulk edge

Example:

3D projection

6 four-simplices 21 tetrahedra 29 triangles 20 edges

Symmetry reduction: 5 bulk areas $\rightarrow 3$ bulk areas
Can test discrete classical equations of motion.

Compute expectation values of geometric objects

$$
\langle\mathcal{O}\rangle(\gamma, j)=\frac{\sum_{j_{t}} \mathcal{O} \exp \left(i S_{\mathrm{ARC}}(a)\right) G(\gamma, a)}{\sum_{j_{t}} \exp \left(i S_{\mathrm{ARC}}(a)\right) G(\gamma, a)}
$$

Numerical results

Small curvature

$$
\epsilon_{1_{\mathrm{cl}}}=0, \quad \epsilon_{2 \mathrm{cl}}=\epsilon_{3_{\mathrm{cl}}}=0.034
$$

- Abs Z is a good indicator for oscillations.
- Threshold behaviour in gamma for oscillations.
- Matching to classical value gets better for larger j - no bound on j .
- acceptable γ range: <0.5 or $<\mathbf{1 . 3}$ (depending on scale)

Surprises:
-threshold behaviour for oscillations -threshold values independent of scale Λ

Improvement in semi-classical expectation values for large Λ

Bulk-Edge

Remarks

- First test of spin foam implementing discrete equations of motion for gravity
- small range of γ allows curved configurations
- reproduce classical solutions for a regime where: $\quad \gamma \sqrt{j_{t}} \epsilon_{t} \lesssim \mathcal{O}(1)$

Suggests renormalization flow in γ

- Can easily check stability of these features, if we change certain details of model
- different curvature and boundary scales
- examples exist for Lorentzian model: allow irregular configurations

Fix diffeomorphism invariant measure from coarse graining and convergence
(inner vertex configuration)

Remarks

- First test of spin foam implementing discrete equations of motion for gravity
- small range of γ allows curved configurations

Resolves flatness problem

- reproduce classical solutions for a regime where: $\quad \gamma \sqrt{j_{t}} \epsilon_{t} \lesssim \mathcal{O}(1)$

Suggests renormalization flow in γ

- Can easily check stability of these features, if we change certain details of model
- different curvature and boundary scales
- examples exist for Lorentzian model: allow irregular configurations

Fix diffeomorphism invariant measure from coarse graining and convergence

Crucial question:

- Continuum limit - how do weakly imposed constraints behave under coarse graining/refinement?

Refinement limit

Summary

$$
S_{\mathrm{ARC}}=-\sum_{t \in \text { bulk }} a_{t} \epsilon_{t}\left(a_{t}\right)-\sum_{t \in \text { bdry }} a_{t} \psi_{t}\left(a_{t}\right)
$$

Linearize around flat background on hypercube lattice

$$
S^{(2)}=\frac{\partial \epsilon_{t}}{\partial a_{t^{\prime}}} \delta a_{t} \delta a_{t^{\prime}} \quad \text { Scaling of Hessian block in lattice derivatives } k
$$

Refinement limit

Summary

$$
S_{\mathrm{ARC}}=-\sum_{t \in \mathrm{bulk}} a_{t} \epsilon_{t}\left(a_{t^{\prime}}\right)-\sum_{t \in \mathrm{bdry}} a_{t} \psi_{t}\left(a_{t^{\prime}}\right)
$$

Linearize around flat background on hypercube lattice

$$
S^{(2)}=\frac{\partial \epsilon_{t}}{\partial a_{t^{\prime}}} \delta a_{t} \delta a_{t^{\prime}} \quad \text { Scaling of Hessian block in lattice derivatives } k
$$

Useful parametrization of area perturbation variables 20 area parameters per point

h	+	χ
trace part		trace-free part
$\mathbf{1 0}$		$\mathbf{1 0}$

Refinement limit

Area Regge Calculus

possibly Yes

Summary

$$
S_{\mathrm{ARC}}=-\sum_{t \in \mathrm{bulk}} a_{t} \epsilon_{t}\left(a_{t^{\prime}}\right)-\sum_{t \in \mathrm{bdry}} a_{t} \psi_{t}\left(a_{t^{\prime}}\right)
$$

Linearize around flat background on hypercube lattice

$$
S^{(2)}=\frac{\partial \epsilon_{t}}{\partial a_{t^{\prime}}} \delta a_{t} \delta a_{t^{\prime}} \quad \text { Scaling of Hessian block in lattice derivatives } k
$$

Useful parametrization of area perturbation variables 20 area parameters per point
h +

10

10

Effective action for metric variables

$$
\begin{aligned}
& \qquad S_{\text {eff }}=h \cdot\left(H_{h h}-H_{h \chi} H_{\chi \chi}^{-1} H_{\chi h}\right) \cdot h \quad H_{h \chi} \cdot h \sim \text { weyl curvature } \\
& \text { linearized GR } \sim k^{2} \quad \text { correction } \sim k^{4}
\end{aligned}
$$

Refinement limit

Area Regge Calculus

Summary

$$
S_{\mathrm{ARC}}=-\sum_{t \in \mathrm{bulk}} a_{t} \epsilon_{t}\left(a_{t^{\prime}}\right)-\sum_{t \in \mathrm{bdry}} a_{t} \psi_{t}\left(a_{t^{\prime}}\right)
$$

Linearize around flat background on hypercube lattice

$$
S^{(2)}=\frac{\partial \epsilon_{t}}{\partial a_{t^{\prime}}} \delta a_{t} \delta a_{t^{\prime}} \quad \text { Scaling of Hessian block in lattice derivatives } k
$$

Useful parametrization of area perturbation variables 20 area parameters per point

h	+	χ
trace part		trace-free part
$\mathbf{1 0}$		$\mathbf{1 0}$

Effective action for metric variables

$$
\begin{gathered}
S_{\text {eff }}=h \cdot\left(H_{h h}-H_{h \chi} H_{\chi \chi}^{-1} H_{\chi h}\right) \cdot h \quad H_{h \chi} \cdot h \sim \text { weyl curvature } \\
\text { linearized GR } \sim k^{2} \quad \text { correction } \sim k^{4}
\end{gathered}
$$

Linearized continuum limit
Area Regge Calculus ~ GR + Weyl^2

Summary

\downarrow Effective spin foam models: provides an effective description of quantum spacetime
\star Simple model allows control over spin foam transition amplitudes

- opportunity to test many features of spin foam models
\uparrow Computationally efficient models
- study practical examples

Outlook:

\star Go beyond discrete to continuous formulations
[Dittrich, Borissova, Krasnov]

- Continuum limit: Refinement or coarse graining

Summary

\downarrow Effective spin foam models: provides an effective description of quantum spacetime
\star Simple model allows control over spin foam transition amplitudes

- opportunity to test many features of spin foam models
\downarrow Computationally efficient models
- study practical examples

Outlook:

\downarrow Go beyond discrete to continuous formulations
[Dittrich, Borissova, Krasnov]

- Continuum limit: Refinement or coarse graining

THANK YOU !

30

