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Path Integrals

[Feynman, Schwinger, Dyson, ...]

A formalism adopted by many approaches:

Transition amplitude between A and B: Z|A; B] = [D,u(geom) exp(1S[geom])

» Sum over histories of geometries

What are the fundamental geometries ?



Gravitational Path Integrals (/

Non-perturbative quantum gravity

Many approaches- F = [Du(geom)] e~ Sleeom]

J M/Ditt(M)

Path Integral approaches

< Computation: Lorentzian oscillatory path integrals

< Control: What configurations should be summed over in path integral ?

Discrete formulations
< Continuum limit: Refinement or coarse graining techniques necessary



Gravitational Path Integrals d

W

Many approaches- Z = J [Du(geom)] e~ Slecom
M/Dift(M)

Non-perturbative quantum gravity

Path Integral approaches

< Computation: Lorentzian oscillatory path integrals

< Control: What configurations should be summed over in path integral ?

Discrete formulations
< Continuum limit: Refinement or coarse graining techniques necessary

Effective spin foam models

provide insights into many of these interesting questions



Outline

Spin foam models
® Path integrals for gravity

® Quantum geometry from area variables

Effective models

® Area Regge calculus

® Weak implementation of constraints

Testing the model

® Discrete Regge dynamics

® Refinement limit **



Spin foam models In a nutshell

Defined as path integral formulation over discrete geometries:

Based on Plebanski gauge formulation for gravity F = [ dAdB e'u BAF(A)+$BAB
¢

Discretization a priori scale free regulators- have to take refinement limit

[ Long list of names, ... , Steinhaus et.al ,...]

Dynamics: as transition amplitudes between LQG states

2= ZH%H*Q“H% A e

{Jf L} f €



Spin foam models In a nutshell

Defined as path integral formulation over discrete geometries:

Based on Plebanski gauge formulation for gravity Z = [ dAdB elu BANEATIBAB
7

Discretization a priori scale free regulators- have to take refinement limit

[ Long list of names, ... , Steinhaus et.al ,...]

Dynamics: as transition amplitudes between LQG states
ie
z=> l1#]]~. H o, -
Upled [ €
Does this lead to GR?

ie
Asymptotic analysis: /’\ one-simplex \; :

o, ~ Z cos( Z jr0) Regge action e
Ul f [Barrett et al, ... ]



Quantum geometries  (Discrete)

Spin Networks Mathematically well-defined structures [R. Penrose ]

Decorated graphs Ji Labels:

, quantum numbers
Encode quantum geometries

I = L*(SUQ)" /SU2)™)

Ja

quantum tetrahedron

Functional of space of connections invariant under local gauge transformations

6



Spin foam models

Path integral over quantum geometries

<+ Sum over histories of quantum geometries for fixed boundaries

4 Describe dynamics of quantum geometry

Z[A: B] = Z

4+ Very complicated amplitudes e Pt}
e’ 't

» Difficult to compute for large discretization




Spin foam models

Path integral over quantum geometries

<+ Sum over histories of quantum geometries for fixed boundaries

4 Describe dynamics of quantum geometry

Z[A: B] = Z

4+ Very complicated amplitudes e Pt}
e’ 't

» Difficult to compute for large discretization

Need methods to: compute, have control and study its continuum limit..



Summary: Quantum Geometry

Key features in (3+1) D

. [LQG: Ashtekar, Rovelli, Smolin, Lewandowski, Isham...]
Area variables fundamental

support from BH physics, holography, generalized geometries, discrete symplectic geometry

angles as auxiliary variables
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[Edge modes: Wieland, Freidel-Pranzetti-Geiller]




Summary: Quantum Geometry

Key features in (3+1) D

. [LQG: Ashtekar, Rovelli, Smolin, Lewandowski, Isham...]
Area variables fundamental

support from BH physics, holography, generalized geometries, discrete symplectic geometry

angles as auxiliary variables

[LQG: Rovelli, Smolin...]
Area variables have discrete spectra

a=yCp/jj+1) ~ytpj, jENI2

asymptotically equidistant y - Barbero-Immirzi parameter

[Edge modes: Wieland, Freidel-Pranzetti-Geiller]

[Freidel-Speziale, Dittrich-Ryan]
Area configurations more general than length configurations [Schuller, Wohlfahrt *06]

[SKA, Brysiewicz 2024]




Simple models

Need to find a way to access and isolate the geometric data from spin foam amplitudes

z=) [1«]l=]]=

{pid f e v

Idea: Effective spin foam models [SKA, Dittrich, Haggard]

Maintain dynamical principles of spin foams
® area variables fundamental

® discrete spectra for area operators + implement gluing principle



Simple models

Need to find a way to access and isolate the geometric data from spin foam amplitudes
z=>) 11«]1l<.]]«
{pied f e v

Idea: Effective spin foam models [SKA, Dittrich, Haggard]

Maintain dynamical principles of spin foams
® area variables fundamental

® discrete spectra for area operators + implement gluing principle

Replace with simple amplitude

® discrete areas + imposition of constraints

from
® effective description of quantum geometries Z ~ 2 cos(Sgljr»0r])  higher gauge theory

e

[Baratin, Freidel, Mikovic, Vojonovic, Girelli et.al]



Simple AmplitUdeS Triangulated spacetimes

Slmple action (4 D) [Regge, Rovelli, Barrett, Rocek, Williams, SKA, Dittrich, Haggard...]

Area Regge action: Sarc = — Z a,ela,) — Z a, wla,)
tebulk rebdry

discrete GR action for area configurations

State sum model: 7 = 2 u(a) exp(iSyge(a))
{a}

discrete areas

10
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Simple AmplitUdeS Triangulated spacetimes

Slmple action (4 D) [Regge, Rovelli, Barrett, Rocek, Williams, SKA, Dittrich, Haggard...]

Area Regge action: Sarc = — Z a,ela,) — Z a, wla,)
tebulk rebdry

discrete GR action for area configurations

State sum model: Z =) ua) exp(iSpyrc(@) Does this lead to GR?
{a}
discrete areas Classical: No? ¢€f(a,) =0
Discrete dynamics:  Add constraints to reproduce discrete GR Yes?
Continuum limit: possib]y Yes [Dittrich-Kogios]

10



Regge calculus (Regge 61

Discrete gravity

Based on a simplicial decomposition

Assign length to edges : defines piecewise-flat geometry

Curvature as deficit angles distributed on co-dimension 2 simplices

2D: curvature around a point 2D

€, €p=2ﬂ—291§

pCt

11



Regge calculus (Regge 61

Discrete gravity

Based on a simplicial decomposition

Assign length to edges : defines piecewise-flat geometry

Curvature as deficit angles distributed on co-dimension 2 simplices

2D: curvature around a point 2D

€, €p=2ﬂ—291§

pCt

3D: curvature around 1 bones (edges)

Edge lengths conjugate to (compact) angles

11



Regge Calculus  (4D)

. S (Euclidean and Lorentzian)
Action as distribution of curvature

Discrete action: SRegge[le] — ZAt(le) Gt(le) ) SEH(g) — J' d4x |g | R

teT M
equations of motion: Einsteins equations:
1
5SRegge — Z 5At €t G,uv = R,uy B ERg,uv =0
t
Euclidean € =27 — Z or(l,)

oDt

4D: curvature around 2 bones (triangles)
Schlifli identity: encodes symplectic structure

D A,807=0
4

12



Area Regge calculus (ARC)

Building blocks are 4-simplices: each simplex has 10 triangles and 10 edges

Locally invert areas and lengths
[Hero of Alexandria AD 60]

Heron's formula A(l) = a, AML by =<+ L+ L) + b= L) — L+ LY=L + L + 1)
le = L (a,) h 4\
Ly
area Regge action: Sarcla] = Z a,ela,) Euclidean/Lorentzian versions
4
[Williams, Barett, ...] OSArc = €{a,) =0 flatness? Honzom ]

Flatness problem

Z= 2 p(a) exp(iSyrc(@))
{a}

13



Area Regge calculus (ARC)

Building blocks are 4-simplices: each simplex has 10 triangles and 10 edges

Locally invert areas and lengths
[Hero of Alexandria AD 60]

Heron's formula A(l) = a, AML by =<+ L+ L) + b= L) — L+ LY=L + L + 1)
le = L (a,) h 4\
Ly
area Regge action: Sarcla] = Z a,ela,) Euclidean/Lorentzian versions
4
[Williams, Barett, ...] OSArc = €{a,) =0 flatness? Honzom ]

Flatness problem

Does ARC lead to a discretization of general relativity? Z = 2 p(a) exp(iSprc(a))

Impose area constraints between geometries ta}

13



Constraints

General triangulation has mismatch between data on shared tetrahedra

Gluing simplices

(localized geometric constraints)

G =¢! —D(a)=0
i ¢€i e 1 [Dittrich, Speziale, Ryan,...]

match two 3d dihedral angles  @;%(a,) = (I)Zl’_a’(at)

[Kapovich-Milson]

{C‘g;,f, cgjf} — 9 /2)VOIT Barbero-Immrizi

Anomaly parameter

(second-class constraints)

14



Constraints

General triangulation has mismatch between data on shared tetrahedra

Gluing simplices

(localized geometric constraints)

CT=¢ —D°(a)=0
] ¢€i e 1 [Dittrich, Speziale, Ryan,...]

match two 3d dihedral angles  @;%(a,) = (I)Zza’(at)

[Kapovich-Milson]

{C‘gf, cgjf} — 9 /2)VO]T Barbero-Immrizi

Anomaly parameter

(second-class constraints)

[Dirac, Gupta-Bleuler]

Impose constraints ‘weakly’ in quantum theory: as allowed by uncertainty relation.

y controls how sharply we can implement the constraints

14



Weak Constraints

Implementing constraints weakly

Use coherent states | K(¢ ; (I)Z;G) >

[Livine, Speziale]

[SF: Engle-Perriera-Rovelli-Livine]

Inner product between coherent states

peaked on classical 3d angles _} G, = ( Kq)é’f | K(DZ’,-"/>

‘Integrate out’ ¢p° variables

c‘gZ
ansatz k €XP 20)

Gluing terms
@- constraints  ®;%(a,) = ©;%(a,)
>2( j)- deviation determined by
commutator of constraints

0.4

(€7, 7} =y (9/2)Vol,

1 1 1 1 1
-10 -5 0 5 10

15



Effective spin foams

Combine simple amplitude and gluing constraints [Dittrich, Haggard, Padua-Argiielles, SKA]

Effective spin foam models are discrete geometrical path integrals for quantum gravity.

Zgsp = ) (@) exp (iSapc@) [ | G27(a) [ | 0@

{a,} T

[Steinhaus, Simao, SKA '22]
Spin foam amplitudes may be cast into similar form

16



Effective spin foams

Combine simple amplitude and gluing constraints [Dittrich, Haggard, Padua-Argiielles, SKA]

Effective spin foam models are discrete geometrical path integrals for quantum gravity.

Zgsp = ) (@) exp (iSapc@) [ | G27(a) [ | 0@

{a,} T

[Steinhaus, Simao, SKA ’22]
Spin foam amplitudes may be cast into similar form

Does this lead to GR?

Discrete dynamics results: Yes! for small y

Due to anomaly of constraints or its weak implementation But how small?

16



Effective models

® Area Regge calculus

® Weak implementation of constraints

17



Discrete gravity Lorentzian spacetimes |:I

Lorentzian Area Regge action: Sarc = — Z aela,) — Z a,yl(a,)
tebulk t€bdry

Lorentzian Angles
[Alexandrov ’01, Sorkin ’19, Jia ‘21, SKA, Dittrich, Padua-Argiielles '21]

2
M T, Choice of F1z/2 for light ray crossings
912 — COSh_l(xl . x2)
\ 3 |
% * il g 2
S2 Sl 913 —_ SlIlh (xl XB) -+ 2
914 - - COSh_l(—Xl . X4) + 7[1
'x 935 — COSh_l(.X3 . x5) + 77:1
T2

action: S, rc is complex for causally irregular configurations

Two choices L. : either enhance or suppress irregular configurations

18



Lorentzian geometries

Plethora of interesting configurations

Configurations can be grouped into two sets: Regular and Irregular

19



Lorentzian geometries []

Plethora of interesting configurations

Configurations can be grouped into two sets: Regular and Irregular

2D Examples

[Luoko-Sorkin]

, [rregular configurations
Regular configuration 8 8

Trouser-like Yarmulke
a
d C b
a a ¢ c
b d
e b b e
e
C =~
v Topology change é 5

—
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Lorentzian geometries []

Plethora of interesting configurations

Configurations can be grouped into two sets: Regular and Irregular

2D Examples

[Luoko-Sorkin]

, [rregular configurations
Regular configuration 8 8

Trouser-like Yarmulke
a
d C b
a a ¢ c
b d
e b b e
e
C )
v Topology change é 5

[Jordan, Loll ’13 ]

Higher Dimensions: Other causality conditions Edge causality, Vertex Causality
[Borgolte, SKA wip]

19



Advantages Regge calculus  Gluing terms .
Zse = D 1@ exp (i Sare@) [ ] 677(@) [] ©5(a)

{at} T
4+ ‘Effective’ dynamics of quantum geometries

keep dynamic principles of LQG and spin foam models

4 Computationally efficient
[Marseille CNRS group, Florida FAU group, London Western group, Bahr, Steinhaus..]

Fast numerical computations compared to BF and EPRL/FK numerics

4+ Control: can test many features
[Steinhaus, Simao]

Easy construction of Lorentzian model  allows spacelike and timelike areas

SF Cosmology applications [Dittrich, Gielen, Schander, Padua-Argiielles] [Jercher, Marchetti, Pithis]

[Steinhaus, Jercher]

20



ESKF model

1.0}

0.5;

0.0

-0.5}

-1.0}

Weakly imposed constraints

/\

|

N

204

202

0.

0

0.2

0.4

But how small? 7 anomaly parameter

Zgsr = Y u(@) exp (iSppc@) [ [ G27(@) ] 0%(a)

{Clt} / T \
Oscillations Gaussians
peaked on constraints

Semi-classical limit:

Few oscillations over Gaussian needed

KA, Dittri
, \/Et curv, < 0(1) [SKA, Dittrich, Haggard]
[SF: Han 13]

21



ESF m()del But how small? 7 anomaly parameter

Weakly imposed constraints

Zgsr = Y u(@) exp (iSppc@) [ [ G27(@) ] 0%(a)

1of 4 A | ﬂ\ | | {a,) / r \

U Oscillations Gaussians
/ peaked on constraints

0.0 o

Semi-classical limit:

-0.5}

U v U Few oscillations over Gaussian needed
s - - - L] KA, Dittrich, H
04 0.2 0.0 0.2 0.4 ]/\/Et curv, S O(1) [SKA, Dittrich, Haggard]

[SF: Han 13]

Alternative point of view: Complex critical points

Imaginary part of saddle point controlled by y needs to be small [SF: Han, Huang, Liu, Qu ]

21



Outline

Testing the model

® Discrete Regge dynamics

® Refinement limit **

22



Testing ESF model

4+ Early non-trivial results

Several examples of discrete geometries with curvature

» Recover discrete gravity dynamics in certain range of parameters

explicit path integral of expectation values, testing EOMs

interesting effects beyond saddle point evaluation

23



Testing the model

Triangulation with bulk edge

Example:
Bulk edge
6 four-simplices
21 tetrahedra
20 triangles
20 edges
3D projection 2D projection
Symmetry reduction: 5 bulk areas — 3 bulk areas Can test discrete classical equations of motion.

Compute expectation values of geometric objects

2. 0 exp(iSapc(a)) G(y, a)

@ | N — Jt
(O)(¥,J) th exp(i Sarc(a)) G(y, a)

24



Numericalresults  Bulk-Edge Small curvature

- Abs Z is a good indicator for
oscillations.

- Threshold behaviour in gamma
for oscillations.

N - Matching to classical value gets
better for largerj - no bound
onj.

- acceptable y range:
. <0.5 or <1.3 (depending on

i% scale)

:Ei Surprises:

2 -threshold behaviour for oscillations

- -threshold values independent of

< scale A

Dy

<

g Improvement in semi-classical

expectation values for large A




5000F

|Z]

3000f

2000f

1000¢

Re(A1) /Aol

Bulk-Edge

= — 1.790,

6101 — 4193, 6201

cl

e, =— 1.1432

Large curvature

4000¢

== >

_ N

Discretization effects
Peaks explained by

pseudo saddle points

acceptable range

26
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Remarks

* First test of spin foam implementing discrete equations of motion for gravity

- small range of y allows curved configurations Resolves flatness problem
- reproduce classical solutions for a regime where: y\/]_'tet < O(1)

Suggests renormalization flow in y

* Can easily check stability of these features, if we change certain details of model

- different curvature and boundary scales

- examples exist for Lorentzian model: allow irregular configurations

Fix diffeomorphism invariant measure from coarse graining and convergence [wip]

(inner vertex configuration)

27



Remarks

* First test of spin foam implementing discrete equations of motion for gravity

- small range of y allows curved configurations Resolves flatness problem
- reproduce classical solutions for a regime where: y\/]_'tet < O(1)

Suggests renormalization flow in y

* Can easily check stability of these features, if we change certain details of model

- different curvature and boundary scales

- examples exist for Lorentzian model: allow irregular configurations

Fix diffeomorphism invariant measure from coarse graining and convergence [wip]

(inner vertex configuration)
Crucial question:

* Continuum limit - how do weakly imposed constraints behave under coarse graining/refinement ?

27



Refinement limit Area Regge Calculus possibly Yes
SARC - = Z a, et(at/) — Z a, l//t(at’)

Summary r€bulk rebdry
Linearize around flat background on hypercube lattice [Dittrich et al, ...]
€ :
§@ =1L oa, oa, Scaling of Hessian block in lattice derivatives k
aat’

28
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Refinement limit Area Regge Calculus possibly Yes
SARC - = Z a, et(at/) — Z a, l//t(at’)

S umma ry tebulk tebdry
Linearize around flat background on hypercube lattice [Dittrich et al, ...]
2) €y : . . . .
W = 8_ oa, oa, Scaling of Hessian block in lattice derivatives k
a,
Useful parametrization of area perturbation variables h T 4
_ trace part trace-free part
20 area parameters per point
10 10
Effective action for metric variables
— 5. H,  -h~
Seff — h (Hhh Hh)( H)(h) h h)( Weyl curvature

linearized GR ~ k? correction ~ k*
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Refinement limit Area Regge Calculus possibly Yes
SARC - = Z a, et(at/) — Z a, l//t(at’)

SU mmad ry tebulk tEbdry
Linearize around flat background on hypercube lattice [Dittrich et al, ...]
2) € : : : : ..
Ohid= 8_ oa, oa, Scaling of Hessian block in lattice derivatives k
a,
Useful parametrization of area perturbation variables h T 4
, trace part trace-free part
20 area parameters per point
10 10
Effective action for metric variables
— 7. H, -h~
Seff — h (Hhh Hh)( H)(h) h hy Weyl curvature
linearized GR ~ k? correction ~ k*

Linearized continuum limit

Area Regge Calculus ~ GR + Weyl*2
28



Summary

4+ Effective spin foam models: provides an effective description of quantum spacetime

4+ Simple model allows control over spin foam transition amplitudes
» opportunity to test many features of spin foam models

4+ Computationally efficient models

V|
» study practical examples \ /

Outlook:

4 Go beyond discrete to continuous formulations

[Dittrich, Borissova, Krasnov]
» Continuum limit: Refinement or coarse graining

29



Summary

4+ Effective spin foam models: provides an effective description of quantum spacetime

4+ Simple model allows control over spin foam transition amplitudes
» opportunity to test many features of spin foam models

4+ Computationally efficient models

» study practical examples ‘ /

Outlook:

4 Go beyond discrete to continuous formulations

[Dittrich, Borissova, Krasnov]
» Continuum limit: Refinement or coarse graining

THANK YOU'!
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