Elements formation in radiation-hydrodynamics simulations of kilonovae

Fabio Magistrelli, S. Bernuzzi, A. Perego, D. Radice

Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena DFG RTG 2522

Jena, 26 Mar 2024

Funded by

DFG Deutsche Forschungsgemeinschaft FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Binary Neutron Star Mergers

- Detection:
 - Gravitational Waves: GW170817
 - Kilonovae, short γ -ray bursts
- Simulation:
 - Ab-initio Numerical Relativity simulations (WhiskyTHC^[1])
 - Dynamical, spiral-wave and disk ejecta

Figure: F. Zappa

^[1]D. Radice et al. 2018, 2021

Simulations of Kilonovae

Test kilonovae physics with targeted simulations

- Constraints from GW (or not)
- Targeted numerical relativity simulations
- Radiation-hydrodynamic simulations to predict
 - Matter composition evolution
 - Kilonovae light curves

Kilonovae Nuclear Engine

- · Thermal emission from expanding ejecta
- · Powered by nuclear decays
 - · Production of heavy elements

 $\tau_n \sim \tau_\beta \longrightarrow \mathbf{n}$

Kilonovae Nuclear Engine

- · Thermal emission from expanding ejecta
- · Powered by nuclear decays
 - Production of r-process peaks elements

 $Y_e \lesssim 0.22 \longrightarrow au_n \ll au_eta \longrightarrow$ rapid neutron captures

· Nuclear heating from heavy, neutron-rich nuclei

Nuclear Network

Numerical solution of the detailed balance equation

$$\frac{dY_{i}}{dt} = \sum_{\alpha} \lambda_{\alpha} \left(-R_{i}^{\alpha} + P_{i}^{\alpha} \right) N_{i}^{\alpha} \prod_{m \in \mathcal{R}_{\alpha}} Y_{m}^{N_{m}^{\alpha}}$$

SkyNet^[2] Nuclear Network (NN)

- $\sim 7800 \ {\rm isotopes}$
- strong, weak, EM reactions

^[2] J. Lippuner & L. Roberts 2018

Standard approaches

- Pre-process for heating rates:
 - analytical fits for radiation-hydrodynamics^[3-4]
- Post-process with homologous expansion ($ho \propto t^{-3}$)
 - from extracted profiles^[4-5]
 - following tracers^[3,6-7]
- Isolated fluid elements decoupling nuclear reactions and dynamics

^[3]S. Rosswog et al. 2014

^[4]Z. Wu et al. 2022

^[5]A. Perego et al. 2022

^[6]L. Combi and D. Siegel 2023a

^[7]C. Collins et al. 2023

Figure: Abundances evolution (from [5])

Figure: Heating rate fits (from [4])

Funded by
Deutsche
Forschungsgemeinschaft

Ejecta Evolution

2D Radiation-Hydrodynamics with online nuclear network

- Initial profiles from numerical relativity
 - Results for LS220 $q \simeq 1.43$
- Ray-by-ray Lagrangian radiation-hydrodynamics
 - Effects of a polar jet
- Online nuclear network coupling (SkyNet^[2])
 - Self-consistent composition tracking
 - Dynamics affected on the fly

^[2] J. Lippuner & L. Roberts 2018

r-process nucleosynthesis yields

- r-peaks and rare-earths
- Mostly from equatorial plane
- Light elements from disk
- No significant global effects from jet
- discrepancies $\gtrsim 10\%$ with post-process of ${\rm [5]}$

Figure: Final abundances and cumulative mass fractions

Selected elements abundances

- n freeze-out at $t \sim 1$ s, then β -decay
- Signs of incomplete burning and α -rich freeze-out

Selected elements abundances

- n freeze-out at $t\sim 1$ s, then β -decay
- Signs of incomplete burning and α -rich freeze-out
- polar jet (inner shells):
 - p and n boost
 - · inhibition of light element burning
- significant deviations from post-process nuclear networks (e.g. [5])

^[5]A. Perego et al. 2022

Kilonova Light Curves

- UV/blue precursor at $t \sim$ hours
- Disk emission screened by lanthanide curtain
- Red and blue from equatorial and disk-edge ejecta

Kilonova Light Curves

- UV/blue precursor at $t \sim$ hours
- Disk emission screened by lanthanide curtain
- Red and blue from equatorial and disk-edge ejecta
- Jet raises early temperature:
 - Slightly bluer and brighter early emission
 - Faster matter cooling: redder and dimmer late emission

Summary and Outlook

- Ray-by-ray radiation-hydrodynamic with online nuclear network^[8]
- · Nucleosynthesis strongly connected to dynamics:
 - Final yields **not** determined by initial thermodynamic properties solely
 - · Abundance evolution strongly differs from post-process
 - Dynamics affected by nuclear events
- Further investigations
 - Systematic investigation of kilonovae
 - · Explore dependencies on EoS and mass ratios

^[8]FM, S. Bernuzzi, A. Perego and D. Radice, (2024)

