Three ways of calculating mass spectra in the Hamiltonian formalism

Etsuko Itou (YITP, Kyoto University / RIKEN iTHEMS) based on JHEP11(2023)231 w/ A.Matsumoto and Y.Tanizaki work in progress

Towards quantum simulation of gauge/gravity duality and lattice gauge theory, 2024/03/06

Outline

- 1. Introduction
- 2. 2-flavor Schwinger model
- 3. Our proposal for calculating "Hadron" spectra ($\theta = 0$) **Correlation-function scheme One-point function scheme Dispersion-relation scheme**
- 4. "Hadron" spectra ($\theta \neq 0$, preliminary) Correlation-fn. + one-point-fn. scheme **Dispersion-relation shceme**
- 5. Summary

1.Introduction New calculation method for QCD observables

Introduction : Sucesses of Lattice MC QCD

G.Bali, Phys.Rept.343:1 (2000)

HotQCD (2014)

© Derek B. Leinweber

Z.Fodor and C.Hoelbling arXiv:1203.4789

it hadron spectrum Experimental data is reproduced from on of the PACS-CS

Aoki, Ishii, Hatsuda HAL QCD coll. (2007 -)

QCD (gauge theories) in Hamiltonian formalism

- How to deal with gauge d.o.f.? (In LQCD, introducing link variable, $e^{iA_{\mu}}$, is compact reps. instead of $-\infty \leq A_{\mu} \leq \infty$)
- How to generate state? (In LQCD: PHB, HMC, RHMC) quantum algorithm (adiabatic state preparation, variational..) tensor network (DMRG, PEPs..)
- How to measure physical observables? conceptually and technically confinement (In LQCD: Polyakov loop, Wilson loop, smearing tech.) hadron spectrum (In LQCD: 2pt. fn, several source improvement) hadron scattering (In LQCD: Luscher method, HAL QCD method…) thermodynamic quantities (In LQCD: integration method, fixed scale, gradient flow)

New calculation method for QCD observables In Hamiltonian formalism, different calculation method is available Ex.) $q - \bar{q}$ potential

Lagrangian formalism: Wilson loop

$$\langle W(C) \rangle \approx e^{-TV(r)} = \operatorname{tr} \left[\prod_{i \in C} U_i \right]$$

Measure the product of link variables and see its exponent

New calculation method for QCD observables In Hamiltonian formalism, different calculation method is available • Ex.) $q - \bar{q}$ potential

Lagrangian formalism: Wilson loop

$$\langle W(C) \rangle \approx e^{-TV(r)} = \operatorname{tr} \left[\prod_{i \in C} U_i \right]$$

G.Bali, Phys.Rept.343:1 (2000)

New calculation method for QCD observables In Hamiltonian formalism, different calculation method is available • Ex.) $q - \bar{q}$ potential

Lagrangian formalism: Wilson loop

$$\langle W(C) \rangle \approx e^{-TV(r)} = \operatorname{tr} \left[\prod_{i \in C} U_i \right]$$

G.Bali, Phys.Rept.343:1 (2000)

Hamiltonian formalism (for Schwinger model) • ground state energy w/probe charges system

Measure $E(\ell) = \langle \Omega | H(\ell) | \Omega \rangle$ with several ℓ

potential $V(\ell) = E(\ell) - E(0)$

New calculation method for QCD observables In Hamiltonian formalism, different calculation method is available Ex.) $q - \bar{q}$ potential

Lagrangian formalism: Wilson loop

$$\langle W(C) \rangle \approx e^{-TV(r)} = \operatorname{tr} \left[\prod_{i \in C} U_i \right]$$

G.Bali, Phys.Rept.343:1 (2000)

Hamiltonian formalism (for Schwinger model) • ground state energy w/probe charges system

Measure $E(\ell) = \langle \Omega | H(\ell) | \Omega \rangle$ with several ℓ

potential $V(\ell) = E(\ell) - E(0)$

M.Honda, E.I., Y.Kikuchi, L.Nagano, T.Okuda, Phys.Rev.D 105 (2022) 1, 01450

Today's main subject

- How to calculate "hadron" spectrum • in Hamiltonian formalism
- Hadron spectrum calc. • in conventional Lattice MC

 $C(\tau) = \langle O(\tau)O(0) \rangle$ $\lim C(\tau) \sim e^{-m\tau}$ $\tau \rightarrow \infty$

pion: $O = \bar{\psi}\gamma_5\psi$ rho meson: $O = \bar{\psi}\gamma_1\psi$

proton mass ~ 938MeV

Z.Fodor and C.Hoelbling arXiv:1203.4789

FIG. 20 The extrapolated $N_f = 2 + 1$ light hadron spectrum results from the PACS-CS collaboration. Experimental data are from (Amsler et al., 2008). The plot is reproduced from (Aoki et al., 2009a) with friendly permission of the PACS-CS collaboration.

Our work

- **Density Matrix Renormalization Group (DMRG) method** (N~1000 is doable)
 - algorithm: cost fn. is $_{trv}\langle \Psi | H | \Psi \rangle_{trv}$
- problems

To test Hamiltonian formalism, tensor network method is also useful ITensor, Fishman et al.(2022)

Find ground state (Matrix Product State, MPS) w/ variational

Also obtain excited states by modified cost fn. $H \rightarrow H + \lambda \sum_{k=1}^{\infty} |\psi_k\rangle\langle\psi_k|$

Non-abelian gauge and/or higher dim. QFT suffers from several

Nf=2 Schwinger model, namely 1+1d. QED is a good testing ground

2. Schwinger model

Schwinger model Toy model of QCD (discrete) chiral symmetry breaking confinement / screening potential composite states

1+1d U(1) gauge theory (QED)

$$\mathscr{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{g\theta_0}{4\pi}\epsilon_{\mu\nu}F^{\mu\nu}$$

• w/ θ term sign problem in conventional MC method

$+ i\bar{\psi}\gamma^{\mu}(\partial_{\mu} + igA_{\mu})\psi - m\bar{\psi}\psi$

Schwinger model + θ term (Nf=1)

Lagrangian •

$$\mathscr{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{g\theta_0}{4\pi}\epsilon_{\mu\nu}F^{\mu\nu} + i\bar{\psi}\gamma^{\mu}(\partial_{\mu} + igA_{\mu})\psi -$$

non-zero θ_0 : Sign problem in conventional method

• Hamiltonian by spin variables

$$H = J \sum_{n=0}^{N-2} \left[\sum_{i=0}^{n} \frac{Z_i + (-1)^i}{2} \left[+ \frac{\theta_0}{2\pi} \right]^2 + \frac{w}{2} \sum_{n=0}^{N-2} \left[X_n X_{n+1} + Y_n Y_{n+1} \right] + \frac{m_{\text{lat.}}}{2} \sum_{n=0}^{N-1} (-1)^n Z_n$$

kinetic term of electric field kinetic/mass terms of electron

- θ_0 is constant shift of electric field
- all-to-all interaction of Z Gaped system (even in massless case for Nf=1)

 $m_{\text{lat}} := m - \frac{N_f g^2 a}{\circ}$

Kogut and Susskind (1975) Shaw et al. Quantum 4, 306 (2020) R.Dempsey et al. PRR 4 (2022) 043133

Recent study on Schwinger model w/ Hamiltonian formalism Nf=1 Schwinger model

- **Real-time evolution** •
- **Finite-density** •

Variational algorithm, A. Yamamoto Phys. Rev. D 104, 014506 (2021), Tomiya arXiv:2205.08860 Entangelement entropy, K.lkeda et al. arXiv:2305.00996

Topological theta term • chiral condensate potential between probe charges charge-q Schwinger model ('t Hooft anomaly matching) Mass spectrum M.C.Banuls et al., JHEP 11 (2013)158

Schwinger effect, C.Muschik et al. NJ of Physics 19 103020 Martinez et al.,<u>Nature</u> 534, 516–519 (2016) L.Nagano et al., arXiv:2302.10933

> Phase structure (DMRG): M.C.Banuls et al, PRD 93,094512 (2016) L.Funcke et al. PRD 101, 054507 (2020) Adiabatic state preparation: B.Chakraborty et al., PRD 105, 094503 (2022)

M.Honda, El, et al. PRD105, 014504 (2022) M.Honda, El, Y.Kikuchi, Y.Tanizaki, PTEP (2022) M.Honda, El, Y.Tanizaki, JHEP (2022)

Multi-flavor Schwinger model: ordering

- **Dirac fermion -> lattice fermion (staggered fermion)** • 2nd flavor Dirac
 - 1st flavor Dirac

lattice fermion -> spin variable (Jordan-Wigner trans.) •

M.C. Banuls et al, PRL 118, 071601 (2017) R.Dempsey et al., arXiv:2305.00437 M.Rigobello et al., arXiv:2308.04488

Multi-flavor Schwinger model: ordering

Dirac fermion -> lattice fermion (staggered fermion) • 2nd flavor Dirac 1st flavor Dirac

Flavor ordering (n=k+N(f-1))

lattice fermion -> spin variable (Jordan-Wigner trans.) •

K

3

M.C. Banuls et al, PRL 118, 071601 (2017) R.Dempsey et al., arXiv:2305.00437 M.Rigobello et al., arXiv:2308.04488

Staggered ordering (n=2k+(f-1))

n

Multi-flavor Schwinger model: ordering Dirac fermion -> lattice fermion (staggered fermion)

2nd flavor Dirac 1st flavor Dirac

Flavor ordering (n=k+N(f-1))

n

M.C. Banuls et al, PRL 118, 071601 (2017) R.Dempsey et al., arXiv:2305.00437 M.Rigobello et al., arXiv:2308.04488

Staggered ordering (n=2k+(f-1))

K

3

Multi-flavor Schwinger model: ordering Dirac fermion -> lattice fermion (staggered fermion) 2nd flavor Dirac k 1st flavor Dirac

Flavor ordering (n=k+N(f-1))

lattice fermion -> spin variable (Jordan-Wigner trans.)

Conditions for Nf -fermion

$$\{\chi_{f,n}^{\dagger}, \chi_{\tilde{f},m}\} = \delta_{f,\tilde{f}}\delta_{n,m}$$

$$\{\chi_{f,n}, \chi_{\tilde{f},m}\} = \{\chi_{f,n}^{\dagger}, \chi_{\tilde{f},m}^{\dagger}\} = 0$$

$$\chi_{1,n} = -\frac{\chi_{1,n}}{\chi_{2,n}}$$

M.C. Banuls et al, PRL 118, 071601 (2017) R.Dempsey et al., arXiv:2305.00437 M.Rigobello et al., arXiv:2308.04488

Staggered ordering (n=2k+(f-1))

our choice

2 3

 $\frac{\sigma_{1,n}^{x} - \sigma_{1,n}^{y}}{2} \prod_{j=0}^{n-1} \left(-\sigma_{2,j}^{z} \sigma_{1,j}^{z} \right)$ local op. (isospin and so on) becomes only a few # of Pauli matrices $\frac{1}{2} \frac{-\sigma_{2,n}^{y}}{2} (-i\sigma_{1,n}^{z}) \prod_{j=0}^{n-1} (-\sigma_{2,j}^{z}\sigma_{1,j}^{z})$

3. Mass spectra in the Hamiltonian formalism

<u>JHEP11(2023)231</u>

"Hadron" state in Nf=2 Schwinger model Prediction by analytical study (Coleman, 1976) at $\theta = 0$ • (1)pion (lso-triplet pseudo-scalar meson)

$$\pi = -i\left(\bar{\psi}_1\gamma^5\psi_1 - \bar{\psi}_2\gamma^5\psi_2\right)$$

$$J^{PG} = 1^{-+} (J_z = -1, 0, 1)$$

(2)sigma(lso-singlet scalar meson) $\sigma = \bar{\psi}_1 \psi_1 + \bar{\psi}_2 \psi_2, J^{PG} = 0^{++}$

(3)eta(lso-singlet pseudo-scalar meson) $\eta = -i\left(\bar{\psi}_{1}\gamma^{5}\psi_{1} + \bar{\psi}_{2}\gamma^{5}\psi_{2}\right), J^{PG} = 0^{--}$

Quantum numbers:

 \mathbf{J}^2, J_7 Isospin

associate with SU(2) flavor sym.

$$\begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \to \mathcal{U} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

P: Parity G-parity (generalized C.C.)

Monte Carlo result: Schwinger model + θ term

- Lagrangian $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{g\theta_0}{4\pi}\epsilon_{\mu\nu}F^{\mu\nu} + i\bar{\psi}\gamma^{\mu}(\partial_{\mu} + igA_{\mu})\psi - m\bar{\psi}\psi$
- non-zero θ_0 : Sign problem in conventional method

- In large θ , the signal is very noisy because of the sign problem
- . Difficult to find a heavy η -meson and σ -meson

Fukaya and Onogi Phys.Rev. D68 (2003) 074503

Three calculation methods (at $\theta = 0$) (1) (Spatial) correlation-function scheme (conventional method) $C(\tau) = \langle O(\tau)O(0) \rangle$, $\lim C(\tau) \sim e^{-m\tau}$ $\tau \rightarrow \infty$ (In $a \rightarrow 0$ and $N \rightarrow \infty$ since H formula breaks Lorentz sym.) (2) One-point-function scheme OBC = Wall source one-point fn. = correlation fn. with source state (SPT phase, at $\theta = 0$ iso-singlet state / at $\theta = 2\pi$ iso-triplet state)

(3) Dispersion-relation scheme quantum numbers

Construct excited states and measure energy, momentum and

(1) (Spatial) correlation-function scheme

log plot of $C_{\pi}(r) = \langle \pi(r)\pi(0) \rangle$

Plateau of effective mass = plon mass ??
High precision calculation shows a slope....
What's happen??

Effective mass

$$\tilde{M}_{\pi,\text{eff}}(r) = -\frac{1}{2a}\log\frac{C_{\pi}(r+2a)}{C_{\pi}(r)}$$

(1) Test calc. for Nf=1 massless fermion case

 $\langle \pi(x,t)\pi(y,t)\rangle \propto K_0(Mr)$

Why the convergence is slow? = DMRG can calculate exponential correlations and difficult to reproduce 1/r

(1+1)d. point-point correlation fn. has Yukawa-shape

$$\sim \frac{1}{\sqrt{Mr}} e^{-Mr}$$
 here $\pi = -i\bar{\psi}\gamma^5\psi$ for Nf=1

Effective mass has power correction:

$$M_{\text{eff}}(r) = -\frac{d}{dr}\log K_0(Mr) \sim \frac{1}{2r} + M$$

 $\ln r \rightarrow \infty$ limit, obtained M is almost consistent with the exact result

(1) Effective mass with a 1/r correction

(2) One-point-function scheme

Calculate $\langle O(x) \rangle$

precision-dependence is not observed

(2) One-point-function scheme : pion

 $\langle \pi(x) \rangle = 0$ everywhere, since the ground state is iso-singlet at $\theta = 0$

Haldane phase -> edge mode in OBC

isospin =1/2 at both edges = source of iso-triplet

(3) dispersion-relation scheme

Measure the quantum number (Iso-spin, G-parity, Parity) of generated MPS to identify each meson

 $\ell - 1$ MPS for ℓ -th excited state is given by the modified cost fn.: $H_{eff} = H + \lambda \sum |\psi_k\rangle \langle \psi_k|$ k=0

Upto 20-th excited state

(3) Momentum op. and Quantum number op.

Momentum op.(flavor-dependent, $[\hat{k}_f, H] \neq 0$) •

> 1st flavor 2nd flavor

Isospin operator (flavor SU(2) sym.), J^2 , J_7

$$[H, J_z] = 0$$
$$[H, \mathbf{J}^2] = \left[H, \left(\frac{1}{2}J_+J_- + \frac{1}{2}J_+J_- + J_z^2\right)\right] = 0$$

 $\hat{k}_{1,n} = \frac{i}{4a} (S_{1,n-1}^{-} Z_{2,n-1} Z_{1,n} Z_{2,n} S_{1,n+1}^{+} - S_{1,n-1}^{+} Z_{2,n-1} Z_{1,n} Z_{2,n} S_{1,n+1}^{-}),$

 $\hat{k}_{2,n} = \frac{i}{Aa} (S_{2,n-1}^{-} Z_{1,n} Z_{2,n} Z_{1,n+1} S_{2,n+1}^{+} - S_{2,n-1}^{+} Z_{1,n} Z_{2,n} Z_{1,n+1} S_{2,n+1}^{-}).$

$$J_{z} = \sum_{n=0}^{N-1} j_{z}(n) = \frac{1}{2} \sum_{n=0}^{N-1} \left(\chi_{1,n}^{\dagger} \chi_{1,n} - \chi_{2,n}^{\dagger} \chi_{2,n} \right) = \frac{1}{4} \sum_{n=0}^{N-1} \left(Z_{1,n} - Z_{2,n}^{\dagger} \chi_{2,n} \right)$$

(3) Quantum number op.

 \bullet

$$C := \prod_{f=1}^{N_f} \left(\prod_{n=0}^{N-1} \sigma_{f,n}^x \right) \left(\prod_{n=0}^{N-2} (\text{SWAP})_{f;N-2-n,N-1-n} \right)$$

Parity (broken due to OBC, N=even) ullet

$$\begin{split} P &:= \prod_{f=1}^{N_f} \left(\prod_{j=0}^{N/2-1} \sigma_{f,2j+1}^z \right) \\ &\times \left(\prod_{n=0}^{N-2} (\mathrm{SWAP})_{f;N-2-n,N-1-n} \right) \left(\prod_{n=0}^{N/2-1} (\mathrm{SWAP})_{f;n,N-1-n} \right) \\ &1 \text{ site translation } X <->L-X \\ &p <-> \text{ ap flip} \\ \end{split} \\ \textbf{G-Parity (commute with iso-spin)} \end{split}$$

$$G := C e^{i\pi J_y},$$

Charge conjugation (broken due to OBC and finite lattice spacing)

(3) Results: iso-triplet channel

ℓ	$oldsymbol{J}^2$	J_z	G	P				
1	2.00000004	0.99999997	0.27872443	-6.819×10^{-8}				
2	2.00000012	-0.00000000	0.27872416	-6.819×10^{-8}				
3	2.00000004	-0.99999996	0.27872443	-6.819×10^{-8}				
4	2.00000007	0.99999999	0.27736066	7.850×10^{-8}				
5	2.00000006	0.00000000	0.27736104	7.850×10^{-8}				
6	2.00000009	-0.99999998	0.27736066	7.850×10^{-8}				
7	2.0000010	1.00000000	0.27536687	-8.838×10^{-8}				
8	2.00000002	0.00000000	0.27536702	-8.837×10^{-8}				
9	2.00000007	-0.99999998	0.27536687	-8.838×10^{-8}				
10	2.00000007	0.99999998	0.27356274	9.856×10^{-8}				
11	2.00000005	0.00000001	0.27356277	9.856×10^{-8}				
12	2.00000007	-0.999999999	0.27356274	9.856×10^{-8}				
15	1.99999942	0.99999966	0.27173470	-1.077×10^{-7}				
16	2.00000052	0.00000000	0.27173482	-1.077×10^{-7}				
17	2.0000015	-1.0000003	0.27173470	-1.077×10^{-7}				
19	2.00009067	1.00004377	0.27717104	-3.022×10^{-8}				
20	2.00002578	-0.00000004	0.27717020	-3.023×10^{-8}				
21	2.00003465	-1.00001622	0.27717104	-3.023×10^{-8}				

zero-mode P < 0

 $J=1 \qquad J_z = \pm 1 \qquad G > 0 \qquad P < 0$

pion : $J^{PG} = 1^{-+}$

(3) Results: iso-singlet channel

zero-moo	P	G	J_z	J^2	ℓ
	3.896×10^{-7}	0.27984227	-0.00000000	0.00000003	0
P > 0	1.273×10^{-7}	0.27865844	0.00000000	0.0000003	13
	-2.765×10^{-8}	0.27508176	0.00000000	0.00000003	14
zero-moo	-6.372×10^{-7}	-0.27390909	0.00000006	0.0000028	18
	7.990×10^{-8}	0.26678987	0.00000115	0.00001537	22
P < 0	5.715×10^{-7}	-0.27664779	-0.00000482	0.00003607	23

J=0
$$J_z = 0$$
 $G > 0$ $P > 0$
sigma meson : $J^{PG} = 0^{++}$

$$J=0 \quad J_z=0 \quad G<0 \quad P<0$$

eta meson : $J^{PG} = 0^{--}$

(3) Results of dispersion-relation scheme

Plot ΔE_{ℓ} against ΔK_{ℓ}^2 for each meson

Fit the data u

using
$$\Delta E = \sqrt{M^2 + b^2 \Delta K^2}$$

Three meson masses obtained by three methods Theoretical predictions Coleman(1976), Dashen et al. (1975) $\checkmark M_{\pi} < M_{\sigma} < M_{\eta}$: U(1) problem

$$\sqrt{M_{\eta}} = \mu + O(m) \ (\mu = g \sqrt{N_f / \pi} \sim 0.8, \ m = 0.1$$

$\sqrt{M_{\sigma}/M_{\pi}} = \sqrt{3}$ (within 5% deviation)

	correlation fn.	one-point fn.	dispersion
Μσ/Μπ	1.68(2)	1.821(6)	1.75(1)

Short summary of scheme

- Three calculation methods for hadron spectra in Hamiltonian formalism (1)correlation-function scheme

 - applicability to broad class of theories \bigotimes sensitive to the bond dimension (DMRG) —> \bigotimes quantum computation
 - (2)one-point-function scheme

 - only the lowest state having given quantum numbers of Bdry state
 - (3) dispersion-relation scheme
 - obtain various states heuristically / directly see wave functions (s/pwave)

computational cost to generate excited states/ how to implement to QC?

4. $\theta \neq 0$

Preliminary

What is different from $\theta = 0$ (theoretical predictions)

- Sign problem appears in Lattice Monte Carlo
- operator mixing between Scalar and Pseudo-Scalar ops. occurs, $\mathcal{O} = C_{\rm S}S + C_{\rm PS}PS$
- decay mode: η meson -> 2 pions η meson is not a stable particle
- (almost) conformal theory at $\theta = \pi$ (level-1, SU(2) WZW theory) DMRG is hard, shape of correlation fn. is changed

• loss of quantum numbers (G-parity is broken, η -decay is no longer prohibited)

Two calculation methods (at $\theta \neq 0$)

- (1) 2-pt. correlation-function for mixed op. and find the mixing angle
 - $C(\tau) = \langle O(\tau)O(0) \rangle$, for $O = C_S S + C_{PS} PS$
- + (1') One-point-function scheme one-point fn. = correlation fn. with source state (SPT phase, at θ iso-singlet state / at $\theta + 2\pi$ iso-triplet state) near $\theta = \pi$, a shape of corr. fn. change to CFT-like
- (2) Dispersion-relation scheme Construct excited states and measure energy, momentum and (approximate) quantum numbers exact sym. is only isospin, e.g. iso-singlet and iso-triplet

(1) correlation fn. scheme

Diagonalise 2pt. correlation matrix: $C_+(x, x)$

---->
$$C_+(x, y) = R_+^{\mathrm{T}} \begin{pmatrix} \langle \sigma(x)\sigma(y) \rangle_c & 0 \\ 0 & \langle \eta(x)\eta(y) \rangle_c \end{pmatrix} R_+$$
 for iso-singlet mesons

$$----> C_{-}(x, y) = R_{-}^{\mathrm{T}} \begin{pmatrix} ** & 0\\ 0 & \langle \pi(x)\pi(y) \rangle_{c} \end{pmatrix} R_{-}$$

Operator mixing between Scalar and Psuedo-Scalar ops. occurs, $\mathcal{O} = C_S S + C_{PS} PS$

$$f(x,y) = \begin{pmatrix} \langle S_{\pm}(x)S_{\pm}(y) \rangle_c & \langle S_{\pm}(x)PS_{\pm}(y) \rangle_c \\ \langle PS_{\pm}(x)S_{\pm}(y) \rangle_c & \langle PS_{\pm}(x)PS_{\pm}(y) \rangle_c \end{pmatrix}$$

for iso-triplet mesons

The slope is slower in the larger θ .

(1) correlation fn. scheme

Effective mass as a function of 1/r at large θ ullet(large mixing angle, near conformal)

The mass becomes smaller (pion and sigma) Eta meson decays into a lighter mode over long distances.

(1') one-point fn. scheme in $\theta < \pi$

 $^{-1}$

- •
- To find the mixing of ops., $\mathcal{O} = C_S S + C_{PS} PS$, we use the rotation matrices by the 2-pt. fn. scheme : $\langle \mathcal{O}(x) \rangle \propto e^{-Mx}$ for $\theta < \pi$

$$\begin{pmatrix} * \\ \pi(x) \end{pmatrix} = R_{-} \begin{pmatrix} S_{-}(x) \\ PS_{-}(x) \end{pmatrix}$$

$$\begin{pmatrix} \sigma(x) \\ \eta(x) \end{pmatrix} = R_{+} \begin{pmatrix} S_{+}(x) \\ PS_{+}(x) \end{pmatrix}$$

Need to increase neither the bond dimension nor the system size L

 C_S

(1') one-point fn. scheme in $\theta < \pi$

- Need to increase neither the bond dimension nor the system size L
- No longer an independent scheme ulletTo find the mixing of ops., we use the mixing matrix by the 2-pt. fn.

scheme : $\langle \mathcal{O}(x) \rangle \propto e^{-Mx}$ for $\theta < \pi$

In middle x regime, there is a cusp

(1') one-point fn. scheme at $\theta = \pi$

Analytic form of one-point fn. with OBC $\langle \sigma(x) \rangle \sim \frac{1}{\sqrt{\sin(\pi x/L)}}$

cf.) 2-flavor Schwinger model at $\theta = \pi$ a small mass gap ~ e^{-Ag^2/m^2} remains (Not exact CFT if $m \neq 0$) Dempsey et al., 2023

(2) dispersion-relation scheme

G-parity is no longer exact quantum numbers •

We cannot distinguish between eta and sigma

(2) dispersion-relation scheme

fit the data for each meson using $\Delta E = \sqrt{M^2 + b^2 \Delta K^2}$ ullet

L=19.8, N=100, m=0.1 1.2 $\theta/2\pi = 0.2$ 1.0 0.8 0.6 0.4 Preliminary 0.2 0.0 0.0 0.6 0.8 0.2 0.4 0.4 0.6 0.8 $|\theta|^{1.2} = 0.5$ 1.00.8 0.6 0.4 0.2 0.0 0.4 0.8 0.0 0.2 0.4 0.8 0.6 0.6 $\langle K^2 \rangle_{\ell} - \langle K^2 \rangle_0$ $\langle K^2 \rangle_{\ell} - \langle K^2 \rangle_0$

 η disappear $\theta/2\pi > 0.2$

sigma (singlet) and pion (triplet) are degenerating at $\theta = \pi$

Summary plot correlation-fn. scheme (2-pt. and 1-pt.) L=79.6, N=320, m=0.1

$$m_{\sigma} = \sqrt{3}m_{\sigma}$$

dispersion-relation scheme

L=19.8, N=100, m=0.1

 η gets an unstable particle in large θ

 n_{π} is valid around $\theta = \pi$

Comparison with Monte Carlo Nf=2 Schwinger model w/ θ-term

Result by Monte Carlo

- In large θ , the signal is very noisy because of the sign problem
- . Difficult to find a heavy η -meson and σ -meson

L=19.8, N=100, m=0.1

5. Summary

- well even at $\theta \neq 0$
 - (1)correlation-function scheme (2pt + 1pt) resolve the op. mixing and obtain a precise result

(2) dispersion-relation scheme

- Future direction
 - Apply QCD theory w/ finite-density (op. mixing and loss of quantum number occurs!) relation scheme)

Our calculation methods for hadron spectra in Hamiltonian formalism works

- Efficient quantum algorithm to generate excited state (for dispersion-

Please come to Kyoto this autumn!!

Registration opens! <u>Here</u>

- 1st and 2nd weeks: Hadron interactions, scattering
- **3rd week : symposium for all subjects**
- 4th week : hot and dense QCD

5th week : Formal aspect and quantum computations

Invited speakers for 3rd and 5th weeks

- Zohreh Davoudi (Maryland U.)
- Erez Zohar (Hebrew U. of Jerusalem)
- Muhammad Asaduzzaman (U. of Iowa)
- Yahui Chai (DESY)
- Tomoya Hayata (Keio U.)
- Marc Illa (U. Washington)
- David B. Kaplan (Washington U.)
- Scott Lawrence(Los Alamos Natl. Lab.)
- Akira Matsumoto (YITP, Kyoto U.)
- Indrakshi Raychowdhury (BITS, Pilani)
- Pietro Silvi (Università di Padova)
- Judah Unmuth-Yockey (Fermilab)
- Uwe-Jens Wiese (Bern U.)
- Arata Yamamoto (U. Tokyo)
- Xiaojun Yao (U. Washington)
- Torsten V. Zache (Innsbruck U.) ... and more

backup

Introduction

May, 2023 @ U. of Minnesota

- QCD phenomena has been well understood for this 50 years
- Asymptotic freedom Topological objects Hadron mass Nuclear force
 Phase transition at finite-T Thermodynamics

 $\bullet \bullet \bullet \bullet$

From \mathscr{L} to \mathscr{H} for Quantum computer

Lagrangian in continuum

$$\mathscr{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{g\theta_0}{4\pi}\epsilon_{\mu\nu}F^{\mu\nu} + i\bar{\psi}\gamma^{\mu}(\partial_{\mu} + igA_{\mu})\psi$$

Hamiltonian in continuum

$$H_{\rm con} = \int dx \left[\frac{1}{2} \left(\Pi - \frac{g\theta_0}{2\pi} \right)^2 - i\bar{\psi}\gamma^1 (\partial_1 + igA_1)\psi + m\bar{\psi}\psi \right]$$

Hamiltonian on lattice (staggered fermion, link variable)

$$H = J \sum_{n=0}^{N-2} \left(L_n + \frac{\vartheta_n}{2\pi} \right)^2 - iw \sum_{n=0}^{N-2} \left(\chi_n^{\dagger} U_n \chi_{n+1} - \chi_{n+1}^{\dagger} U_n^{\dagger} \chi_n \right) + m \sum_{n=0}^{N-1} (-1)^n \chi_n^{\dagger}$$

Remove gauge d.o.f. (OBC and Gauss law constraint)

$$H = J \sum_{n=0}^{N-2} \left(\epsilon_{-1} + \sum_{i=0}^{n} \left(\chi_i^{\dagger} \chi_i - \frac{1 - (-1)^i}{2} \right) + \frac{\vartheta_n}{2\pi} \right)^2 - iw \sum_{n=0}^{N-2} \left(\chi_n^{\dagger} \chi_{n+1} - \chi_{n+1}^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_{n+1}^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_{n+1}^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_{n+1}^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi} \left(\chi_n^{\dagger} \chi_n + 1 - \chi_n^{\dagger} \chi_n \right) + \frac{\vartheta_n}{2\pi}$$

Spin Hamiltonian using Pauli matrices(Jordan-Wigner trans.) $H = J \sum_{n=0}^{N-2} \left[\sum_{i=0}^{n} \frac{Z_i + (-1)^i}{2} + \frac{\vartheta_n}{2\pi} \right]^2 + \frac{w}{2} \sum_{n=0}^{N-2} \left[X_n X_{n+1} + Y_n Y_{n+1} \right] + \frac{w}{2} \sum_{n=0}^{N-1} (-1)^n Z_n$

Ex) Schwinger model with open b.c.

PBC: Shaw et al. Quantum 4, 306 (2020) arXiv:2002.11146

 $-m\bar{\psi}\psi$

Canonical momentum: $\Pi = \partial_0 A^1 + \frac{g\theta}{2\pi}$

 $n^{\dagger}\chi_n$

 $+m\sum^{N-1}(-1)^n\chi_n^{\dagger}\chi_n$

Link variable: $L_n \leftrightarrow -\Pi(x)/g$, $U_n \leftrightarrow e^{-iagA^1(x)}$, **Staggered fermion:** $\frac{\chi_n}{\sqrt{a}} \leftrightarrow \begin{cases} \psi_u(x) & n : \text{even} \\ \psi_d(x) & n : \text{odd} \end{cases}$

Gauss law: $0 = \partial_1 \Pi + g \psi^{\dagger} \psi \rightarrow L_n - L_{n-1} = \chi_n^{\dagger} \chi_n - \frac{1 - (-1)^n}{2}$

Jordan-Wigner trans.: $\chi_n = \frac{X_n - Y_n}{2} \prod_{i=1}^{n-1} (-iZ_i)$

Apply quantum algorithms to this spin hamiltonian.

Depth of circuit

 $\sim \mathcal{O}(N^2)$

problems people want to solve

Lattice QCD: relevant users of supercomputer

- Confinement
- Hadron mass ulletcomposite particles of quarks
- Nuclear force/structure lacksquare
- Thermodynamics
- Nonperturbative calculation • for the standard model

Slide of Lena Funcke @ Lattice2022

Supercomputer usage for different fields (INCITE 2019)

 \rightarrow Lattice QCD: $\sim 40\%$

Lattice Monte Carlo QCD

. we want to know: $\langle \mathcal{O} \rangle = \left[D\phi \mathcal{O}[\phi] e^{-S_E[\phi]} \right]$

 $(dof=6 \times 10^9 in current calc. on supercomputer)$

• ex.) Area of fan shape: $S = \int_{0}^{1} \sqrt{1 - x^2} dx$

(1) Generate two sets of random number (x,y) (2) Count # of dots inside fan shape = s(N)total # of trial = N(3) $S = \lim_{N \to \infty} \frac{s(N)}{N}$

 MC is faster algorithm for multi-dim. integral than differentiation of product method (区分求積法)

s(N) = # of red pointN = # of trial

Sign Problem in Lattice Monte Carlo

Sign problem if S_E becomes complex

- real-time evolution
- finite-density QCD
- topological theta-term
- Sign problem is NP-hard Troyer and Wiese, 2005 Recent review: K.Nagata, Prog.Part.Nucl.Phys. 127 (2022) 103991, e-Print: 2108.12423 [hep-lat]
- Alternative methods....?
- => Simulation w/ Hamiltonian formalism
- Quantum computing
- Tensor network (DMRG, PEPs...)

ullet

Multi-flavor Schwinger model: ordering(2) staggered fermion -> spin variable Nf=1 $\{\chi_n^{\dagger}, \chi_m\} = \delta_{n,m}$ $\chi_n = \frac{\sigma_n^x - \sigma_n^y}{2} \prod_{i=0}^{n-1} (-i\sigma_j^z)$ $\{\chi_n,\chi_m\}=\{\chi_n^{\dagger},\chi_m^{\dagger}\}=0$

$$Nf=2 \quad \begin{cases} \chi_{f,n}^{\dagger}, \chi_{\tilde{f},m} \end{cases} = \delta_{f,\tilde{f}} \delta_{n,m} \\ \{\chi_{f,n}, \chi_{\tilde{f},m} \end{cases} = \{\chi_{f,n}^{\dagger}, \chi_{\tilde{f},m}^{\dagger} \} = 0 \end{cases}$$

$$\chi_{f,n} = \frac{\sigma_{f,n}^{x} - \sigma_{f,n}^{y}}{2} \prod_{j=0}^{n-1} (-i\sigma_{f,j}^{z}) \prod_{f'=1}^{f-1} \prod_{k=0}^{N-1} (-i\sigma_{f',k}^{z})$$

local op. (isospin and so on) expresses highly non-local Pauli matrices

Multi-flavor Schwinger model: ordering(2) staggered fermion -> spin variable Nf=1 $\{\chi_n^{\dagger}, \chi_m\} = \delta_{n,m}$ $\chi_n = \frac{\sigma_n^x - \sigma_n^y}{2} \prod_{i=0}^{n-1} (-i\sigma_j^z)$ $\{\chi_n,\chi_m\}=\{\chi_n^{\dagger},\chi_m^{\dagger}\}=0$

$$Nf=2 \quad \begin{cases} \chi_{f,n}^{\dagger}, \chi_{\tilde{f},m} \end{cases} = \delta_{f,\tilde{f}} \delta_{n,m} \\ \{\chi_{f,n}, \chi_{\tilde{f},m} \end{cases} = \{\chi_{f,n}^{\dagger}, \chi_{\tilde{f},m}^{\dagger} \} = 0 \end{cases}$$

$$\chi_{f,n} = \frac{\sigma_{f,n}^{x} - \sigma_{f,n}^{y}}{2} \prod_{j=0}^{n-1} (-i\sigma_{f,j}^{z}) \prod_{f'=1}^{f-1} \prod_{k=0}^{N-1} (-i\sigma_{f',k}^{z})$$

local op. (isospin and so on) expresses highly non-local Pauli matrices

Why QCD in Hamiltonian formalism?

So far, Lattice MC QCD is the most powerful tool $\langle \mathcal{O} \rangle = D\phi \mathcal{O}[\phi] e^{-S_E[\phi]}$

- Sign problem emerges real-time evolution finite-density QCD topological theta-term
- Sign problem is NP-hard Troyer and Wiese, 2005

Recent review: K.Nagata, Prog.Part.Nucl.Phys. 127 (2022) 103991

Alternative methods....? => Simulation w/ Hamiltonian formalism Sign problem is absent from the beginning

In importance sampling, e^{-S_E} : Boltzmann weight Should be real and positive

©RHIC

60

Hamiltonian formalism for Gauge theory Kogut-Susskind Hamiltonian of gauge theory (1975)

 \downarrow Natural formula to see real-time evolution : $|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$

No additional difficulty emerges by finite-density and topological theta-term

- \neg -dim. of Hilbert space of gauge field
- truncate Hilbert space (naive truncation breaks gauge sym. / q-deformation Zache et al. arXiv:2304.02527)
- change the continuous gauge to finite gauge group (Z_N, D_N, \cdots)
- Quantum computer will "solve" this problem?
- N-qubit system describes 2^N-dim. Hilbert space cf.) classical N-bit : O(N)-dim.

Review on Quantum Computing for Lattice Field Theory Lena Funcke, arXiv:2302.00467

1-qubit:
$$|\psi_1\rangle = \binom{*}{*}$$

N-qubit: $|\Psi\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_N\rangle = \begin{pmatrix} * \\ \vdots \\ * \end{pmatrix}$

Moore's law for quantum devices

Figure given by Keisuke Fujii @QIQB, Osaka U.

Moore's law for quantum devices

Total memory: 4.85PiByte ~2⁵⁰Byte

Figure given by Keisuke Fujii @QIQB, Osaka U.