Three ways of calculating mass spectra in the Hamiltonian formalism
 Etsuko Itou
 (YITP, Kyoto University / RIKEN iTHEMS)

 based on JHEP1 1 (2023)231 w/ A.Matsumoto and Y.Tanizaki work in progress

Towards quantum simulation of gauge/gravity duality and lattice gauge theory, 2024/03/06

Outline

1. Introduction
2. 2-flavor Schwinger model
3. Our proposal for calculating "Hadron" spectra ($\theta=0$) Correlation-function scheme One-point function scheme
Dispersion-relation scheme
4. "Hadron" spectra ($\theta \neq 0$, preliminary)

Correlation-fn. + one-point-fn. scheme Dispersion-relation shceme
5. Summary

1.Introduction

New calculation method for QCD observables

Introduction: Sucesses of Lattice MC QCD

G.Bali, Phys.Rept.343:1 (2000)

©Derek B. Leinweber

Z.Fodor and C.Hoelbling arXiv:1203.4789

t hadron spectrum Experimental data is reproduced from on of the PACS-CS

Aoki, Ishii, Hatsuda HAL QCD coll. (2007-)

QCD (gauge theories) in Hamiltonian formalism

- How to deal with gauge d.o.f.?
(In LQCD, introducing link variable, $e^{i A_{\mu}}$, is compact reps. instead of $-\infty \leq A_{\mu} \leq \infty$)
- How to generate state? (In LQCD: PHB, HMC, RHMC)
quantum algorithm (adiabatic state preparation, variational..) tensor network (DMRG, PEPs..)
- How to measure physical observables? conceptually and technically confinement (In LQCD: Polyakov loop, Wilson loop, smearing tech.) hadron spectrum (In LQCD: 2pt. fn, several source improvement) hadron scattering (In LQCD: Luscher method, HAL QCD method $\cdot \cdot$) thermodynamic quantities (In LQCD: integration method, fixed scale, gradient flow)

New calculation method for QCD observables

- In Hamiltonian formalism, different calculation method is available

Ex.) $q-\bar{q}$ potential

- Lagrangian formalism: Wilson loop
$\underset{T \rightarrow \infty}{\langle W(C)\rangle \approx e^{-T V(r)}}=\operatorname{tr}\left[\prod_{i \in C} U_{i}\right]$

T			

Measure the product of link variables

New calculation method for QCD observables

- In Hamiltonian formalism, different calculation method is available

Ex.) $q-\bar{q}$ potential

- Lagrangian formalism: Wilson loop
$\underset{T \rightarrow \infty}{\langle W(C)\rangle \approx e^{-T V(r)}}=\operatorname{tr}\left[\prod_{i \in C} U_{i}\right]$
G.Bali, Phys.Rept.343:1 (2000)

New calculation method for QCD observables

In Hamiltonian formalism, different calculation method is available

Ex.) $q-\bar{q}$ potential

- Lagrangian formalism: Wilson loop

$$
\underset{T \rightarrow \infty}{\langle W(C)\rangle \approx e^{-T V(r)}}=\operatorname{tr}\left[\prod_{i \in C} U_{i}\right]
$$

G.Bali, Phys.Rept.343:1 (2000)

- Hamiltonian formalism (for Schwinger model) ground state energy w/probe charges system Measure $E(\ell)=\langle\Omega| H(\ell)|\Omega\rangle$ with several ℓ
potential $V(\ell)=E(\ell)-E(0)$

New calculation method for QCD observables

- In Hamiltonian formalism, different calculation method is available

Ex.) $q-\bar{q}$ potential

- Lagrangian formalism: Wilson loop

$$
\underset{T \rightarrow \infty}{\langle W(C)\rangle \approx e^{-T V(r)}=\operatorname{tr}\left[\prod_{i \in C} U_{i}\right]}
$$

G.Bali, Phys.Rept.343:1 (2000)

- Hamiltonian formalism (for Schwinger model) ground state energy w/probe charges system Measure $E(\ell)=\langle\Omega| H(\ell)|\Omega\rangle$ with several ℓ

$$
\text { potential } V(\ell)=E(\ell)-E(0)
$$

M.Honda, E.I., Y.Kikuchi, L.Nagano, T.Okuda Phys.Rev.D 105 (2022) 1, 01450

Today's main subject

- How to calculate "hadron" spectrum in Hamiltonian formalism
- Hadron spectrum calc. in conventional Lattice MC

$C(\tau)=\langle O(\tau) O(0)\rangle$
$\lim C(\tau) \sim e^{-m \tau}$ $\tau \rightarrow \infty$
pion: $O=\bar{\psi} \gamma_{5} \psi$
rho meson: $O=\bar{\psi} \gamma_{1} \psi$
u,d quark mass $\sim 2-5 \mathrm{MeV}$ proton mass $\sim 938 \mathrm{MeV}$
Z.Fodor and C.Hoelbling

FIG. 20 The extrapolated $N_{f}=2+1$ light hadron spectrum results from the PACS-CS collaboration. Experimental data are from (Amsler et al., 2008). The plot is reproduced from (Aoki et al., 2009a) with friendly permission of the PACS-CS collaboration.

Our work

- To test Hamiltonian formalism, tensor network method is also useful Density Matrix Renormalization Group (DMRG) method ($\mathrm{N} \sim 1000$ is doable)

White (1992)
ITensor , Fishman et al.(2022)

Find ground state (Matrix Product State, MPS) w/ variational algorithm: cost fn. is try $\langle\Psi| H|\Psi\rangle_{\text {try }}$
Also obtain excited states by modified cost fn. $H \rightarrow H+\lambda \sum_{k=0}^{\ell-1}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$

- Non-abelian gauge and/or higher dim. QFT suffers from several problems
$\mathrm{Nf}=2$ Schwinger model, namely $1+1 \mathrm{~d}$. QED is a good testing ground

2. Schwinger model

Schwinger model

- Toy model of QCD
(discrete) chiral symmetry breaking confinement / screening potential composite states
- 1+1d U(1) gauge theory (QED)

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{g \theta_{0}}{4 \pi} \epsilon_{\mu \nu} F^{\mu \nu}+i \bar{\psi} \gamma^{\mu}\left(\partial_{\mu}+i g A_{\mu}\right) \psi-m \bar{\psi} \psi
$$

- w/ θ term
sign problem in conventional MC method

Schwinger model $+\theta$ term ($\mathrm{Nf}=1$)

- Lagrangian
$\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{g \theta_{0}}{4 \pi} \epsilon_{\mu \nu} F^{\mu \nu}+i \bar{\psi} \gamma^{\mu}\left(\partial_{\mu}+i g A_{\mu}\right) \psi-m \bar{\psi} \psi$
non-zero θ_{0} : Sign problem in conventional method

Gauge fixing
Gauss law
Open BC
Jourdan-Winger trans.

- Hamiltonian by spin variables

$$
H=J \sum_{n=0}^{J-2}\left[\sum_{i=0}^{n} \frac{Z_{i}+(-1)^{i}}{2}+\frac{\theta_{0}}{2 \pi}\right]^{2}+\frac{w}{2} \sum_{n=0}^{N-2}\left[X_{n} X_{n+1}+Y_{n} Y_{n+1}\right]+\frac{m_{\text {lat. }}}{2} \sum_{n=0}^{N-1}(-1)^{n} Z_{n}
$$

- θ_{0} is constant shift of electric field

$$
m_{\mathrm{lat}}:=m-\frac{N_{f} g^{2} a}{8}
$$

- all-to-all interaction of Z

Gaped system (even in massless case for $\mathrm{Nf}_{\mathrm{in}}=1$)

Recent study on Schwinger model w/ Hamiltonian formalism

$\mathrm{Nf}=1$ Schwinger model

- Real-time evolution

```
Schwinger effect, C.Muschik et al. NJ of Physics 19103020
    Martinez et al.,Nature 534, 516-519 (2016)
    L.Nagano et al., arXiv:2302.10933
```

Finite-density
Variational algorithm, A. Yamamoto Phys. Rev. D 104, 014506 (2021), Tomiya arXiv:2205.08860 Entangelement entropy, K.Ikeda et al. arXiv:2305.00996

- Topological theta term chiral condensate

Phase structure (DMRG): M.C.Banuls et al, PRD 93,094512 (2016)
L.Funcke et al. PRD 101, 054507 (2020)

Adiabatic state preparation: B.Chakraborty et al., PRD 105, 094503 (2022) potential between probe charges charge-q Schwinger model ('t Hooft anomaly matching) Mass spectrum M.C.Banuls et al., JHEP 11 (2013)158

Multi-flavor Schwinger model: ordering

- Dirac fermion -> lattice fermion (staggered fermion)

M.C. Banuls et al, PRL 1 18, 071601 (2017)
R.Dempsey et al., arXiv:2305.00437
M.Rigobello et al., arXiv:2308.04488
- lattice fermion -> spin variable (Jordan-Wigner trans.)

Multi-flavor Schwinger model: ordering

- Dirac fermion -> lattice fermion (staggered fermion)

M.C. Banuls et al, PRL 1 18, 071601 (2017) R.Dempsey et al., arXiv:2305.00437
M.Rigobello et al., arXiv:2308.04488

Flavor ordering ($\mathrm{n}=\mathrm{k}+\mathrm{N}(\mathrm{f}-\mathrm{l})$)

Staggered ordering ($n=2 k+(f-1)$)

- lattice fermion -> spin variable (Jordan-Wigner trans.)

Multi-flavor Schwinger model: ordering

- Dirac fermion -> lattice fermion (staggered fermion)

M.C. Banuls et al, PRL 1 18, 071601 (2017) R.Dempsey et al., arXiv:2305.00437
M.Rigobello et al., arXiv:2308.04488

Flavor ordering ($n=k+N(f-1)$)

Staggered ordering ($n=2 k+(f-1)$)

Multi-flavor Schwinger model: ordering

- Dirac fermion -> lattice fermion (staggered fermion)

M.C. Banuls et al, PRL 1 18, 071601 (2017) R.Dempsey et al., arXiv:2305.00437
M.Rigobello et al., arXiv:2308.04488

Flavor ordering ($n=k+N(f-1)$)

Staggered ordering ($\mathrm{n}=2 \mathrm{k}+(\mathrm{f}-1)$)

- lattice fermion -> spin variable (Jordan-Wigner trans.)

Conditions for Nf -fermion our choice

$$
\begin{aligned}
& \left\{\chi_{f, n}^{\dagger}, \chi_{\tilde{f}, m}\right\}=\delta_{f, \tilde{f}} \delta_{n, m} \\
& \left\{\chi_{f, n}, \chi_{\tilde{f}, m}\right\}=\left\{\chi_{f, n}^{\dagger}, \chi_{\tilde{f}, m}^{\dagger}\right\}=0
\end{aligned} \quad \square \quad \begin{aligned}
& \chi_{1, n}=\frac{\sigma_{1, n}^{x}-\sigma_{1, n}^{y}}{2} \prod_{j=0}^{n-1}\left(-\sigma_{2, j}^{z} \sigma_{1, j}^{z}\right) \quad \text { local op. (isospin and so on) } \\
& \chi_{2, n}=\frac{\sigma_{2, n}^{x}-\sigma_{2, n}^{y}}{2}\left(-i \sigma_{1, n}^{z} \prod_{i=0}^{n-1}\left(-\sigma_{2, j}^{z} \sigma_{1, j}^{z}\right)\right.
\end{aligned} \quad \text { becomes only a few \# of Pauli matrices }
$$

3. Mass spectra in the Hamiltonian formalism

JHEP1 1 (2023)231

"Hadron" state in Nf=2 Schwinger model

- Prediction by analytical study (Coleman, 1976) at $\theta=0$
(1)pion (Iso-triplet pseudo-scalar meson)
$\pi=-i\left(\bar{\psi}_{1} \gamma^{5} \psi_{1}-\bar{\psi}_{2} \gamma^{5} \psi_{2}\right)$
$J^{P G}=1^{-+}\left(J_{z}=-1,0,1\right)$
(2)sigma(Iso-singlet scalar meson)
$\sigma=\bar{\psi}_{1} \psi_{1}+\bar{\psi}_{2} \psi_{2}, J^{P G}=0^{++}$

Quantum numbers:
J^{2}, J_{z} Isospin
associate with SU(2) flavor sym.
$\binom{\psi_{1}}{\psi_{2}} \rightarrow u\binom{\psi_{1}}{\psi_{2}}$
P: Parity
G-parity (generalized C.C.)

(3)eta(Iso-singlet pseudo-scalar meson)
$\eta=-i\left(\bar{\psi}_{1} \gamma^{5} \psi_{1}+\bar{\psi}_{2} \gamma^{5} \psi_{2}\right), J^{P G}=0^{--}$

Monte Carlo result: Schwinger model $+\theta$ term

- Lagrangian
$\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{g \theta_{0}}{4 \pi} \epsilon_{\mu \nu} F^{\mu \nu}+i \bar{\psi} \gamma^{\mu}\left(\partial_{\mu}+i g A_{\mu}\right) \psi-m \bar{\psi} \psi$
non-zero θ_{0} : Sign problem in conventional method

Fukaya and Onogi
Phys.Rev. D68 (2003) 074503

- In large θ, the signal is very noisy because of the sign problem
. Difficult to find a heavy η-meson and σ-meson

Three calculation methods (at $\theta=0$)

(1) (Spatial) correlation-function scheme (conventional method)
$C(\tau)=\langle O(\tau) O(0)\rangle, \lim _{\tau \rightarrow \infty} C(\tau) \sim e^{-m \tau}$
(In $a \rightarrow 0$ and $N \rightarrow \infty$ since H formula breaks Lorentz sym.)
(2) One-point-function scheme

OBC = Wall source
one-point $\mathrm{fn} .=$ correlation fn . with source state
(SPT phase, at $\theta=0$ iso-singlet state / at $\theta=2 \pi$ iso-triplet state)
(3) Dispersion-relation scheme

Construct excited states and measure energy, momentum and quantum numbers

(1) (Spatial) correlation-function scheme

log plot of $C_{\pi}(r)=\langle\pi(r) \pi(0)\rangle$

Effective mass
$\tilde{M}_{\pi, \text { eff }}(r)=-\frac{1}{2 a} \log \frac{C_{\pi}(r+2 a)}{C_{\pi}(r)}$

rıateau ot emectıve mass = pıon mass $!$
High precision calculation shows a slope....
What's happen??

(1) Test calc. for $N f=1$ massless fermion case

$(1+1) d$. point-point correlation fn. has Yukawa-shape

$$
\langle\pi(x, t) \pi(y, t)\rangle \propto K_{0}(M r) \sim \frac{1}{\sqrt{M r}} e^{-M r} \quad \text { here } \pi=-i \bar{\psi} \gamma \gamma^{5} \psi \text { for } \mathrm{Nf}=1
$$

Effective mass has power correction:
$M_{\text {eff }}(r)=-\frac{d}{d r} \log K_{0}(M r) \sim \frac{1}{2 r}+M$
In $r \rightarrow \infty$ limit, obtained M is almost consistent with the exact result
=> DMRG can calculate exponential correlations and difficult to reproduce $1 / r$

(1) Effective mass with a $1 / r$ correction

(2) One-point-function scheme

Calculate $\langle\mathcal{O}(x)\rangle$
$\sum\left\langle\mathcal{O}(x, \tau) \mathcal{O}_{\text {wall }}(x=0)\right\rangle \equiv\langle$ Vac. $| \mathcal{O}(x) \mid$ Bdry $\rangle \sim e^{-M x}$
${ }^{\tau} \quad$ Wall-point correlation function

precision-dependence is not observed

(2) One-point-function scheme : pion

$\langle\pi(x)\rangle=0$ everywhere, since the ground state is iso-singlet at $\theta=0$

$$
\theta=0
$$

$$
\theta=2 \pi
$$

$\xrightarrow[\theta=\pi]{\text { trivially gapped } \quad \text { Haldane phase }} \theta$
Haldane phase -> edge mode in OBC
isospin $=1 / 2$ at both edges $=$ source of iso-triplet

(3) dispersion-relation scheme

MPS for ℓ-th excited state is given by the modified cost fn.: $H_{e f f}=H+\lambda \sum_{k=0}^{\ell-1}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$
Upto 20-th excited state

Measure the quantum number (Iso-spin, G-parity, Parity) of generated MPS to identify each meson

(3) Momentum op. and Quantum number op.

- Momentum op.(flavor-dependent, $\left[\hat{k}_{f}, H\right] \neq 0$)
$\begin{array}{ll}\text { 1st flavor } & \hat{k}_{1, n}=\frac{i}{4 a}\left(S_{1, n-1}^{-} Z_{2, n-1} Z_{1, n} Z_{2, n} S_{1, n+1}^{+}-S_{1, n-1}^{+} Z_{2, n-1} Z_{1, n} Z_{2, n} S_{1, n+1}^{-}\right), \\ \text {2nd flavor } & \hat{k}_{2, n}=\frac{i}{4 a}\left(S_{2, n-1}^{-} Z_{1, n} Z_{2, n} Z_{1, n+1} S_{2, n+1}^{+}-S_{2, n-1}^{+} Z_{1, n} Z_{2, n} Z_{1, n+1} S_{2, n+1}^{-}\right) .\end{array}$

Isospin operator (flavor $\operatorname{SU}(2)$ sym.), $\mathbf{J}^{\mathbf{2}}, J_{z}$

$$
\left[H, J_{z}\right]=0
$$

$$
J_{z}=\sum_{n=0}^{N-1} j_{z}(n)=\frac{1}{2} \sum_{n=0}^{N-1}\left(\chi_{1, n}^{\dagger} \chi_{1, n}-\chi_{2, n}^{\dagger} \chi_{2, n}\right)=\frac{1}{4} \sum_{n=0}^{N-1}\left(Z_{1, n}-Z_{2, n}\right)
$$

$$
\left[H, \mathbf{J}^{2}\right]=\left[H,\left(\frac{1}{2} J_{+} J_{-}+\frac{1}{2} J_{+} J_{-}+J_{z}^{2}\right)\right]=0
$$

(3) Quantum number op.

- Charge conjugation (broken due to OBC and finite lattice spacing)

$$
C:=\prod_{f=1}^{N_{f}}\left(\prod_{n=0}^{N-1} \sigma_{f, n}^{x}\right)\left(\prod_{n=0}^{N-2}(\mathrm{SWAP})_{f ; N-2-n, N-1-n}\right)
$$

- Parity (broken due to OBC, N=even)

$$
\begin{aligned}
P:= & \prod_{f=1}^{N_{f}}\left(\prod_{j=0}^{N / 2-1} \sigma_{f, 2 j+1}^{z}\right) \\
& \times\left(\prod_{n=0}^{N-2}(\mathrm{SWAP})_{f ; N-2-n, N-1-n}\right)\left(\prod_{n=0}^{N / 2-1}(\mathrm{SWAP})_{f ; n, N-1-n}\right) \\
& 1 \text { site translation } \quad \mathrm{x}<->\text { L-X } \\
& \mathrm{P}<->\text { ap flip }
\end{aligned}
$$

- G-Parity (commute with iso-spin)

Free theory w/ PBC
In cont. lim., $\langle C\rangle= \pm 1$
the sign of $\operatorname{Re}\langle C\rangle$ is
a remnant of exact C

(3) Results: iso-triplet channel

ℓ	J^{2}	J_{z}	G	P
1	2.00000004	0.99999997	0.27872443	-6.819×10^{-8}
2	2.00000012	-0.00000000	0.27872416	-6.819×10^{-8}
3	2.00000004	-0.99999996	0.27872443	-6.819×10^{-8}
4	2.00000007	0.99999999	0.27736066	7.850×10^{-8}
5	2.00000006	0.00000000	0.27736104	7.850×10^{-8}
6	2.00000009	-0.99999998	0.27736066	7.850×10^{-8}
7	2.00000010	1.00000000	0.27536687	-8.838×10^{-8}
8	2.00000002	0.00000000	0.27536702	-8.837×10^{-8}
9	2.00000007	-0.99999998	0.27536687	-8.838×10^{-8}
10	2.00000007	0.99999998	0.27356274	9.856×10^{-8}
11	2.00000005	0.00000001	0.27356277	9.856×10^{-8}
12	2.00000007	-0.99999999	0.27356274	9.856×10^{-8}
15	1.99999942	0.99999966	0.27173470	-1.077×10^{-7}
16	2.00000052	0.00000000	0.27173482	-1.077×10^{-7}
17	2.00000015	-1.00000003	0.27173470	-1.077×10^{-7}
19	2.00009067	1.00004377	0.27717104	-3.022×10^{-8}
20	2.00002578	-0.00000004	0.27717020	-3.023×10^{-8}
21	2.00003465	-1.00001622	0.27717104	-3.023×10^{-8}

$$
\text { pion : } J^{P G}=1^{-+}
$$

(3) Results: iso-singlet channel

ℓ	J^{2}	J_{z}	G	P	zero-mode
0	0.00000003	-0.00000000	0.27984227	3.896×10^{-7}	
13	0.00000003	0.00000000	0.27865844	1.273×10^{-7}	$P>0$
14	0.00000003	0.00000000	0.27508176	-2.765 $\times 10^{-8}$	
18	0.00000028	0.00000006	-0.27390909	-6.372×10^{-7}	ero-mode
22	0.00001537	0.00000115	0.26678987	7.990×10^{-8}	
23	0.00003607	-0.00000482	-0.27664779	5.715×10^{-7}	$P<0$
	$\begin{aligned} & \mathrm{J}=0 \\ & \text { sign } \end{aligned}$	$J_{z}=0$ a meso	$\begin{gathered} G>0 \\ \mathrm{n}: J^{P G} \end{gathered}$	$\begin{gathered} >0 \\ 0^{++} \end{gathered}$	

$$
\begin{gathered}
J=0 \quad J_{z}=0 \quad G<0 \quad P<0 \\
\text { eta meson : } J^{P G}=0^{--}
\end{gathered}
$$

(3) Results of dispersion-relation scheme

Plot ΔE_{ℓ} against ΔK_{ℓ}^{2} for each meson
Fit the data using $\Delta E=\sqrt{M^{2}+b^{2} \Delta K^{2}}$

 \title{
Three meson masses obtained by three methods
}
 \title{
Three meson masses obtained by three methods
}

Theoretical predictions

Coleman(1976), Dashen et al. (1975)

$\checkmark M_{\pi}<M_{\sigma}<M_{\eta}: \mathrm{U}(1)$ problem
$\checkmark M_{\eta}=\mu+O(m)\left(\mu=g \sqrt{N_{f} / \pi} \sim 0.8, \quad m=0.1\right)$
$\sqrt{ } M_{\sigma} / M_{\pi}=\sqrt{3}$ (within 5\% deviation)

	correlation $\mathbf{f n}$.	one-point fn.	dispersion
$\mathrm{M}_{\boldsymbol{\sigma}} / \mathrm{M}_{\boldsymbol{\pi}}$	$1.68(2)$	$1.821(6)$	$1.75(1)$

Short summary of scheme

Three calculation methods for hadron spectra in Hamiltonian formalism
(1)correlation-function scheme
applicability to broad class of theories
: sensitive to the bond dimension (DMRG) \rightarrow (:) quantum computation
(2)one-point-function scheme
need to increase neither the bond dimension nor the system size L
: only the lowest state having given quantum numbers of Bdry state
(3)dispersion-relation scheme
obtain various states heuristically / directly see wave functions (s/pwave)
computational cost to generate excited states/ how to implement to QC?

$$
\text { 4. } \theta \neq 0
$$

Preliminary

What is different from $\theta=0$ (theoretical predictions)

- Sign problem appears in Lattice Monte Carlo
- operator mixing between Scalar and Pseudo-Scalar ops. occurs, $\mathcal{O}=C_{S} S+C_{P S} P S$
- loss of quantum numbers (G-parity is broken, η-decay is no longer prohibited)
- decay mode: η meson -> 2 pions
η meson is not a stable particle
(almost) conformal theory at $\theta=\pi$ (level-1, SU(2) WZW theory)
DMRG is hard, shape of correlation fn . is changed

Two calculation methods (at $\theta \neq 0$)

(1) 2-pt. correlation-function for mixed op. and find the mixing angle

$$
C(\tau)=\langle O(\tau) O(0)\rangle, \text { for } O=C_{S} S+C_{P S} P S
$$

+ (1^{\prime}) One-point-function scheme one-point fn . = correlation fn . with source state
(SPT phase, at θ iso-singlet state $/$ at $\theta+2 \pi$ iso-triplet state) near $\theta=\pi$, a shape of corr. fn. change to CFT-like
(2) Dispersion-relation scheme

Construct excited states and measure energy, momentum and (approximate) quantum numbers
exact sym. is only isospin, e.g. iso-singlet and iso-triplet

(1) correlation fn. scheme

Operator mixing between Scalar and Psuedo-Scalar ops. occurs, $\mathcal{O}=C_{S} S+C_{P S} P S$
Diagonalise 2pt. correlation matrix: $C_{ \pm}(x, y)=\left(\begin{array}{cc}\left\langle S_{ \pm}(x) S_{ \pm}(y)\right\rangle_{c} & \left\langle S_{ \pm}(x) P S_{ \pm}(y)\right\rangle_{c} \\ \left\langle P S_{ \pm}(x) S_{ \pm}(y)\right\rangle_{c} & \left\langle P S_{ \pm}(x) P S_{ \pm}(y)\right\rangle_{c}\end{array}\right)$
$\cdots-\cdots C_{+}(x, y)=R_{+}^{\mathrm{T}}\left(\begin{array}{cc}\langle\sigma(x) \sigma(y)\rangle_{c} & 0 \\ 0 & \langle\eta(x) \eta(y)\rangle_{c}\end{array}\right) R_{+}$for iso-singlet mesons
-------> $C_{-}(x, y)=R_{-}^{\mathrm{T}}\left(\begin{array}{cc}* * & 0 \\ 0 & \langle\pi(x) \pi(y)\rangle_{c}\end{array}\right) R_{-} \quad$ for iso-triplet mesons

The slope is slower in the larger θ.

(1) correlation fn. scheme

- Effective mass as a function of $1 / r$ at large θ
(large mixing angle, near conformal)

The mass becomes smaller (pion and sigma)
Eta meson decays into a lighter mode over long distances.

(l^{\prime}) one-point fn. scheme in $\theta<\pi$

- Need to increase neither the bond dimension nor the system size L

To find the mixing of ops., $\mathcal{O}=C_{S} S+C_{P S} P S$, we use the rotation matrices by the 2-pt. fn. scheme : $\langle\mathcal{O}(x)\rangle \propto e^{-M x}$ for $\theta<\pi$

$$
\begin{aligned}
& \binom{*}{\pi(x)}=R_{-}\binom{S_{-}(x)}{P S_{-}(x)} \\
& \binom{\sigma(x)}{\eta(x)}=R_{+}\binom{S_{+}(x)}{P S_{+}(x)}
\end{aligned}
$$

(l') one-point fn. scheme in $\theta<\pi$

- Need to increase neither the bond dimension nor the system size L
- No longer an independent scheme

To find the mixing of ops., we use the mixing matrix by the 2-pt. fn. scheme : $\langle\mathcal{O}(x)\rangle \propto e^{-M x}$ for $\theta<\pi$
pion

eta meson

(l^{\prime}) one-point fn. scheme at $\theta=\pi$

Analytic form of one-point fn. with $\mathrm{OBC}\langle\sigma(x)\rangle \sim \frac{1}{\sqrt{\sin (\pi x / L)}}$

cf.) 2-flavor Schwinger model at $\theta=\pi$ a small mass gap $\sim e^{-A g^{2} / m^{2}}$ remains
(Not exact CFT if $m \neq 0$)

Dempsey et al., 2023

(2) dispersion-relation scheme

 - G-parity is no longer exact quantum numbers

(2) dispersion-relation scheme

- fit the data for each meson using $\Delta E=\sqrt{M^{2}+b^{2} \Delta K^{2}}$

sigma (singlet) and pion (triplet) are degenerating at $\theta=\pi$

Summary plot

correlation-fn. scheme
(2-pt. and 1-pt.)

dispersion-relation scheme

η gets an unstable particle in large θ

$$
m_{\sigma}=\sqrt{3} m_{\pi} \text { is valid around } \theta=\pi
$$

Comparison with Monte Carlo

$\mathrm{Nf}=2$ Schwinger model w/ θ-term

- In large θ, the signal is very noisy because of the sign problem
. Difficult to find a heavy η-meson and σ-meson

5. Summary

- Our calculation methods for hadron spectra in Hamiltonian formalism works well even at $\theta \neq 0$
(1)correlation-function scheme (2pt + 1pt)
resolve the op. mixing and obtain a precise result
(2)dispersion-relation scheme
- Future direction
- Apply QCD theory w/ finite-density (op. mixing and loss of quantum number occurs!)
- Efficient quantum algorithm to generate excited state (for dispersionrelation scheme)

Please come to Kyoto this autumn!!

Registration opens! Here
1st and 2nd weeks: Hadron interactions, scattering
3rd week : symposium for all subjects
4th week: hot and dense QCD
5th week: Formal aspect and quantum computations

Invited speakers for 3rd and 5th weeks

- Zohreh Davoudi (Maryland U.)
- Erez Zohar (Hebrew U. of Jerusalem)
- Muhammad Asaduzzaman (U. of Iowa)
- Yahui Chai (DESY)
- Tomoya Hayata (Keio U.)
- Marc Illa (U. Washington)
- David B. Kaplan (Washington U.)
- Scott Lawrence(Los Alamos Natl. Lab.)
- Akira Matsumoto (YITP, Kyoto U.)
- Indrakshi Raychowdhury (BITS, Pilani)
- Pietro Silvi (Università di Padova)
- Judah Unmuth-Yockey (Fermilab)
- Uwe-Jens Wiese (Bern U.)
- Arata Yamamoto (U. Tokyo)
- Xiaojun Yao (U. Washington)
- Torsten V. Zache (Innsbruck U.)
\ldots and more

backup

Introduction

May, 2023 @ U. of Minnesota

- QCD phenomena has been well understood for this 50 years
- Asymptotic freedom Topological objects Hadron mass
Nuclear force
Phase transition at finite-T
Thermodynamics
....

From \mathscr{L} to \mathscr{H} for Quantum computer

Ex) Schwinger model with open b.c.

- Lagrangian in continuum

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{g \theta_{0}}{4 \pi} \epsilon_{\mu \nu} F^{\mu \nu}+i \bar{\psi} \gamma^{\mu}\left(\partial_{\mu}+i g A_{\mu}\right) \psi-m \bar{\psi} \psi
$$

PBC: Shaw et al. Quantum 4, 306 (2020) arXiv:2002.11146

- Hamiltonian in continuum

$$
\left.H_{\mathrm{con}}=\int d x\left[\frac{1}{2}\left(\Pi-\frac{g \theta_{0}}{2 \pi}\right)^{2}-i \bar{\psi} \gamma^{1}\left(\partial_{1}+i g A_{1}\right) \psi+m \bar{\psi} \psi\right]\right]
$$

- Hamiltonian on lattice (staggered fermion, link variable)

$$
H=J \sum_{n=0}^{N-2}\left(L_{n}+\frac{\vartheta_{n}}{2 \pi}\right)^{2}-i w \sum_{n=0}^{N-2}\left(x_{n}^{*} U_{n} x_{n+1}-x_{n+1}^{*} U_{n}^{\dagger} x_{n}\right)+m \sum_{n=0}^{N-1}(-1)^{n} x_{n}^{\dagger} x_{n}
$$

- Remove gauge d.o.f. (OBC and Gauss law constraint)

$$
H=J \sum_{n=0}^{N-2}\left(e_{-1}+\sum_{i=0}^{n}\left(x_{i}^{i} x_{i}-\frac{1-(-1)^{i}}{2}\right)+\frac{g_{n}}{2 \pi}\right)^{2}-i w \sum_{n=0}^{N-2}\left(x_{n}^{i} x_{n+1}-x_{n+1}^{*}+x_{n}\right)+m \sum_{n=0}^{N-1}(-1)^{n} x_{n}^{n} x_{n}^{n}
$$

- Spin Hamiltonian using Pauli matrices(Jordan-Wigner trans.)

$$
H=J \sum_{n=0}^{N-2}\left[\sum_{i=0}^{n} \frac{Z_{i}+(-1)^{i}}{2}+\frac{\theta_{n}}{2 \pi}\right]^{2}+\frac{w^{N-2}}{2} \sum_{n=0}^{N-2}\left[X_{n} X_{n+1}+Y_{n} Y_{n+1}\right]+\frac{m}{2} \sum_{n=0}^{n-1}(-1)^{Z_{n}} Z_{n}
$$

Apply quantum algorithms to this spin hamiltonian.

General problems of quantum computer

- Current quantum device

Small qubit size ($N=10-30$)
Quantum errors
Depth of circuit

Lattice QCD: relevant users of supercomputer

Confinement

\rightarrow Lattice QCD: ~ 40\%

- Nuclear force/structure

Thermodynamics

- Nonperturbative calculation for the standard model

Lattice Monte Carlo QCD

we want to know: $\langle\mathcal{O}\rangle=D \phi \phi[\phi] e^{-S_{E}[\phi]}$

$$
\text { (dof }=6 \times 10^{9} \text { in current calc. on supercomputer) }
$$

ex.) Area of fan shape: $S=\int_{0}^{1} \sqrt{1-x^{2}} d x$
(1) Generate two sets of random number (x, y)
(2) Count \# of dots inside fan shape $=s(N)$
total \# of trial $=N$
(3) $S=\lim _{N \rightarrow \infty} s(N) / N$

$$
\begin{aligned}
& s(N)=\text { \# of red point } \\
& N=\# \text { of trial }
\end{aligned}
$$

Sign Problem in Lattice Monte Carlo

- Sign problem if S_{E} becomes complex real-time evolution finite-density QCD topological theta-term
- Sign problem is NP-hard Troyer and Wiese, 2005 Recent review: K.Nagata, Prog.Part.Nucl.Phys. 127 (2022) 103991, e-Print: 2108.12423 [hep-lat]
- Alternative methods....?
=> Simulation w/ Hamiltonian formalism
Quantum computing
Tensor network (DMRG, PEPs...)

Multi-flavor Schwinger model: ordering(2)

- staggered fermion -> spin variable

$$
\begin{array}{ll}
\mathrm{Nf}=1 & \left\{\chi_{n}^{\dagger}, \chi_{m}\right\}=\delta_{n, m} \\
& \left\{\chi_{n}, \chi_{m}\right\}=\left\{\chi_{n}^{\dagger}, \chi_{m}^{\dagger}\right\}=0 \\
\mathrm{Nf}=2 & \left\{\chi_{f, n}^{\dagger}, \chi_{\tilde{f}, m}\right\}=\delta_{f, \tilde{f}} \delta_{n, m} \\
& \left\{\chi_{f, n}, \chi_{\tilde{f}, m}\right\}=\left\{\chi_{f, n}^{\dagger}, \chi_{\tilde{f}, m}^{\dagger}\right\}=0
\end{array}
$$

$$
\chi_{f, n}=\frac{\sigma_{f, n}^{x}-\sigma_{f, n}^{y}}{2} \prod_{j=0}^{n-1}\left(-i \sigma_{f, j}^{z}\right) \prod_{f^{\prime}=1}^{f-1} \prod_{k=0}^{N-1}\left(-i \sigma_{f^{\prime}, k}^{z}\right)
$$

local op. (isospin and so on)
expresses highly non-local Pauli matrices

becomes only a few \# of Pauli matrices

Multi-flavor Schwinger model: ordering(2)

- staggered fermion -> spin variable

$$
\begin{array}{ll}
\mathrm{Nf}=1 & \left\{\chi_{n}^{\dagger}, \chi_{m}\right\}=\delta_{n, m} \\
& \left\{\chi_{n}, \chi_{m}\right\}=\left\{\chi_{n}^{\dagger}, \chi_{m}^{\dagger}\right\}=0 \\
\mathrm{Nf}=2 & \left\{\chi_{f, n}^{\dagger}, \chi_{\tilde{f}, m}\right\}=\delta_{f, \tilde{f}} \delta_{n, m} \\
& \left\{\chi_{f, n}, \chi_{\tilde{f}, m}\right\}=\left\{\chi_{f, n}^{\dagger}, \chi_{\tilde{f}, m}^{\dagger}\right\}=0
\end{array}
$$

$$
\chi_{f, n}=\frac{\sigma_{f, n}^{x}-\sigma_{f, n}^{y}}{2} \prod_{j=0}^{n-1}\left(-i \sigma_{f, j}^{z}\right) \prod_{f^{\prime}=1}^{f-1} \prod_{k=0}^{N-1}\left(-i \sigma_{f^{\prime}, k}^{z}\right)
$$

local op. (isospin and so on)
expresses highly non-local Pauli matrices

Why QCD in Hamiltonian formalism?

. So far, Lattice MC QCD is the most powerful tool $\left.\langle\mathcal{O}\rangle=\int D \phi \mathcal{O}[\phi] e^{-S_{E}[\phi]}\right)$

- Sign problem emerges real-time evolution finite-density QCD topological theta-term
- Sign problem is NP-hard Troyer and Wiese, 2005

Recent review: K.Nagata, Prog.Part.Nucl.Phys. 127 (2022) 103991

- Alternative methods....??

©RHIC/BNL

=> Simulation w/ Hamiltonian formalism

In importance sampling,
$e^{-S_{E}}$: Boltzmann weight
Should be real and positive

Sign problem is absent from the beginning

Hamiltonian formalism for Gauge theory

Kogut-Susskind Hamiltonian of gauge theory (1975)

Review on Quantum Computing for Lattice Field Theory Lena Funcke, arXiv:2302.00467
\downarrow Natural formula to see real-time evolution : $\left.\left|\langle\psi(t)\rangle=e^{-i H t}\right| \psi(0)\right\rangle$
No additional difficulty emerges by finite-density and topological theta-term
\&-dim. of Hilbert space of gauge field

- truncate Hilbert space (naive truncation breaks gauge sym. / q-deformation Zache et al. arxiv:2304.02527)
- change the continuous gauge to finite gauge group (Z_{N}, D_{N}, \cdots)

QQuantum computer will "solve" this problem?
N -qubit system describes 2^{N}-dim. Hilbert space

$$
\text { 1-qubit: }\left|\psi_{1}\right\rangle=\binom{*}{*}
$$

cf.) classical N -bit : O(N)-dim.

$$
\text { N-qubit: }|\Psi\rangle=\left|\psi_{1}\right\rangle \otimes \cdots \otimes\left|\psi_{N}\right\rangle=\left(\begin{array}{c}
* \\
\vdots \\
*
\end{array}\right)
$$

Moore's law for quantum devices

Figure given by Keisuke Fujii @QIQB, Osaka U.

Moore's law for quantum devices

Figure given by Keisuke Fujii @QIQB, Osaka U.

