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Motivation
• Real time dynamics in classical simulation

• Conventional Monte Carlo: sign problem

• Tensor Network : increasing entanglement with time--
increasing computation  resource

• Quantum computers promise to efficiently simulate real-time 

dynamics

• Necessary steps for simulating scattering 

① Preparing the ground state 

② Creating wave packets on top, which represent particles 

③ Evolving the resulting state in time 

④ Measuring relevant observables



Outline

• Theoretical set up

➢ The Thirring model

➢ Preparation for wave packet using quantum circuit

• Simulation results

➢ Classical simulation for noninteracting and interacting case

➢Quantum simulation for noninteracting case



The Thirring model

• Exactly solvable fermionic model in 1+1 dimension,  Kogut-Susskind formula

• 𝜉𝑛
†, 𝜉𝑛 : fermionic creation or annihilation operators

• a: lattice spacing, a = 1 

• Periodic boundary condition: 𝜉𝑁 = 𝜉0
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Scattering process

✓Vacuum state |Ω⟩ : ground state of Hamiltonian 𝐻

• Initial state |𝜓 0 ⟩ : wave packets of particles

✓Time evolution : 𝜓 𝑡 = 𝑒−𝑖𝐻𝑡|𝜓 0 ⟩



• Creation operators for fermion and antifermion wave packets

Define wave packets in momentum space

• Amplitude of Gaussian Wave packet in momentum space

𝜇𝑘
𝑐 𝜇𝑛

𝑐
Position Momentum Width 



• Momentum space • Position space

Fourier transformation:

c𝑘
† → 𝜉𝑛

†

𝑑𝑘
† → 𝜉𝑛

𝑣𝑘 ≤ 1

Define wave packets in position space



Preparation of wave packets

𝜇𝑘
𝑐

𝑚 ↑, |𝑣𝑘| ↓

• Fermions mainly locate at even site
• Antifermions mainly locate at odd site



• Initial state: 𝜓 0 = 𝐷†(𝜙𝑑) 𝐶† 𝜙𝑐 |Ω⟩

𝜙𝑛
𝑐 𝜇𝑘
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𝑐 , 𝜎𝑘

𝑐 , 𝜙𝑛
𝑑 (𝜇𝑘

𝑑 , 𝜇𝑛
𝑑 , 𝜎𝑘

𝑑)

• How to implement the linear combination of operators in a quantum 
computing?

Summary for operators



Operator for linear transformation

• Suppose 𝜙𝑛
𝑐 is the first column of an unitary matrix

• Unitary operators for linear transformation

Four sites example



Decompose 𝑉(𝑢)
• The unitary transformation is a homomorphism under matrix multiplication

• If we can decompose u in a product of matrices acting only on a few sites nontrivially, 

V(u) can be represented as series of local gates

➢ The matrix u can be decomposed using Givens rotation 

➢ Translate the fermions to spins using a Jordan-Wigner transformation

Z. Jiang et al., Phys. Rev. Appl. 9, 044036 (2018)



Decompose 𝑉(𝑢)

𝑉 𝜙𝑐 : =

Jordan-Wigner 
transformation



Summary of wave packet preparation

• Initial state:

• Unitary operator 𝑉 𝜙𝑐 𝑑

• Decompose 𝑉 𝜙𝑐 𝑑 using Givens rotation



Circuit for wave packet preparation
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• Jordan-Wigner transformation



Circuit for scattering process

• Acting time evolution on initial state:

𝑞1
𝑞2
𝑞3

𝑞0

• Since 𝜎+, 𝜎−is nonunitary, the circuit cannot be directly implemented 
• We only care about expectation values of observables 𝑂 which have the form

➢ The 𝑃𝑘 are just Pauli matrices, 𝑃𝑘 ∈ {𝑋, 𝑌}, the coefficients are 𝛾𝑃1𝑃2𝑃3𝑃4 ∈ {±1, ±𝑖}

➢ The individual terms can be measured with a variant of the Hadamard test



Observables

• Focus on the sector of  σ𝑛 𝜉𝑛
† 𝜉𝑛 = 𝑁/2

• Monitor the excess fermion density with respect to the ground state |Ω⟩ over time

• Entropy difference with respect to the ground state

• Monitor the entropy production over time compared to two wave packets moving 
individually 



Classical simulation for the noninteracting case



Free fermion propagation: 𝒈 = 𝟎

• Wave packets show up as excess/lack in 

fermion density

• Particles move freely without interacting

• Larger mass leads to slower dynamics



Free fermion propagation: 𝒈 = 𝟎

• 𝛥𝑆1(𝑛, 𝑡) has a nonzero value, entropy change with respect to the ground state

• 𝛥𝑆2(𝑛, 𝑡) is essentially zero

• No difference in entropy compared to two wave packets moving individually



Classical simulation for the interacting case



Fermionic scattering: 𝒈 ≠ 𝟎

• Elastic scattering between the fermion and antifermion for large values of |𝑔|



Fermionic scattering: 𝒈 ≠ 𝟎

• We again observe excess entropy
with respect to the vacuum



Fermionic scattering: 𝒈 ≠ 𝟎

• We again observe excess entropy
with respect to the vacuum

• This time Δ𝑆2 𝑛, 𝑡 after the Collision:
➢ Effect of the interaction

• Entropy production is larger for larger
values of |𝑔|



Quantum simulation for the noninteracting case



Quantum simulation: 𝒈 = 𝟎
• Results from ibmq_peekskill after applying Pauli twirling, dynamical decoupling and
zero noise extrapolation
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Quantum simulation: 𝒈 = 𝟎
• Results from ibmq_peekskill after applying Pauli twirling, dynamical decoupling and
zero noise extrapolation



Summary and outlooks

• Propose the framework to simulate fermionic scattering on a digital quantum 
computing approach.

➢Simulated the elastic scattering process in the Thirring model classicaly

➢Successful implementation for the noninteracting case on quantum hardware

• Outlook:

➢Study the interacting Thirring model on quantum hardware

➢Apply the method to other fermionic models

➢Extension to gauge models
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