Canonical Momenta in Digitized SU(2) Lattice Gauge Theory

Tobias Hartung

Northeastern University - London

In collaboration with M. Garofalo (Bonn), T. Jakobs (Bonn), K. Jansen (DESY, Zeuthen), J. Ostmeyer (Liverpool), S. Romiti (Bonn), and C. Urbach (Bonn)

2024/03/04

Introduction •000000	Triangulation 0000000000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary o
				/ · · · · · · · · · · · · · · · · · · ·

./why?

- Hamiltonian formulation of lattice gauge theories are becoming more important
 - ▶ Tensor Networks and Quantum Computing
 - study dynamical phenomena
 - real-time dynamics, string breaking, phase structure of gauge theories at finite fermionic densities
 - avoiding the sign problem

Introduction •000000	Triangulation 0000000000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary o
				/ · · · · · · · · · · · · · · · · · · ·

./why?

- Hamiltonian formulation of lattice gauge theories are becoming more important
 - ▶ Tensor Networks and Quantum Computing
 - study dynamical phenomena
 - real-time dynamics, string breaking, phase structure of gauge theories at finite fermionic densities
 - avoiding the sign problem
- ▶ we have many architectures with many open questions
 - e.g., quest for efficient discretization schemes
 - ▶ common approach: choose basis of your Hilbert space that diagonalizes the electric part of the Hamiltonian ⇒ character expansion/loop-string formulation

Introduction •000000	Triangulation 0000000000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary o

./why?

- Hamiltonian formulation of lattice gauge theories are becoming more important
 - ▶ Tensor Networks and Quantum Computing
 - study dynamical phenomena
 - real-time dynamics, string breaking, phase structure of gauge theories at finite fermionic densities
 - avoiding the sign problem
- ▶ we have many architectures with many open questions
 - e.g., quest for efficient discretization schemes
 - ▶ common approach: choose basis of your Hilbert space that diagonalizes the electric part of the Hamiltonian ⇒ character expansion/loop-string formulation
- our approach: diagonal gauge field operators
 - natural generalization $U(1) \rightsquigarrow SU(N)$
 - ▶ gauge links remain unitary \Rightarrow implementable as gates on quantum devices

Introduction $0 \bullet 00000$	Triangulation 0000000000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary 0

Discrete Quantum Mechanics

 Usual idea: discretize phase space and replace derivatives with finite difference operators

$$H(x,p) \rightsquigarrow H_{ij} = \langle x_i | H | x_j \rangle$$

 \blacktriangleright Example: non-relativistic particle in 1D box, discretized with N points at lattice spacing a

1

$$x \rightsquigarrow \begin{pmatrix} a & 0 & \cdots & 0 \\ 0 & 2a & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & Na \end{pmatrix} \qquad p = -i\frac{d}{dx} \rightsquigarrow -i \begin{pmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ 0 & 0 & -1 & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & -1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & -1 \end{pmatrix}$$

	Introduction 000000	Triangulation 000000000		1 + 1D SU(2) with Fermions 00	SU(2) Pure Gauge Theory 0000	Summary 0
--	-----------------------	----------------------------	--	-------------------------------	------------------------------	--------------

Discrete Quantum Mechanics Problems

- ▶ Continuum results often require multiple extrapolations
- \blacktriangleright Requires numerical testing of when N is "sufficiently large"
- Canonical commutation relations are broken for all N:

$$\operatorname{tr}(AB) = \operatorname{tr}(BA) \Rightarrow \operatorname{tr}([A, B]) = 0$$

• [x, p] = i is only recoverable in a functional sense by its action on test functions

$$([x,p]-i)\psi \to 0$$

Introduction Triangulation Discrete Jacobi Transform 1+1D SU(2) with Fermions SU(2) Pure Gauge Theory Summa 00000000000000000000000000000000000	ary
---	-----

Discretized Gauge Theories?

Canonical momenta are Lie derivatives

$$L_a\psi(U) = -i\partial_\omega\psi\left(e^{i\omega\tau_a}U\right)\Big|_{\omega=0}$$

- ▶ Be careful about gauge invariance!
- ▶ Need to impose Gauss' Law.

		Triangulation 0000000000		1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	$_{\rm 0}^{\rm Summary}$
--	--	-----------------------------	--	----------------------------	------------------------------	--------------------------

Discretized Gauge Theories?

Canonical momenta are Lie derivatives

$$L_a\psi(U) = -i\partial_\omega\psi\left(e^{i\omega\tau_a}U\right)\big|_{\omega=0}$$

- ▶ Be careful about gauge invariance!
- ▶ Need to impose Gauss' Law.
- ► Advantages:
 - conceptually simple
 - ▶ Gauge links remain unitary operators ~ implementable as gates on quantum computer

Introduction 0000000	Triangulation 0000000000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary 0

Hamiltonian of Lattice Gauge Theories

$$H = \frac{g_0^2}{4} \sum_{x,c,k} \left(L_{c,k}^2(x) + R_{c,k}^2(x) \right) - \frac{1}{2g_0^2} \sum_{x,k < l} \operatorname{tr} \mathfrak{R} P_{kl}(x)$$

- g_0 bare gauge coupling
- \blacktriangleright x spatial lattice coordinate, k direction, c color index
- Plaquette operator

$$P_{kl}(x) = U_k(x)U_l(x+k)U_k^{\dagger}(x+l)U_l^{\dagger}(x)$$

▶ Suited for tensor networks and possibly quantum simulations

Introduction 0000000	Triangulation 0000000000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary 0

Hamiltonian of Lattice Gauge Theories

$$H = \frac{g_0^2}{4} \sum_{x,c,k} \left(L_{c,k}^2(x) + R_{c,k}^2(x) \right) - \frac{1}{2g_0^2} \sum_{x,k < l} \operatorname{tr} \mathfrak{R} P_{kl}(x)$$

- g_0 bare gauge coupling
- \blacktriangleright x spatial lattice coordinate, k direction, c color index
- Plaquette operator

$$P_{kl}(x) = U_k(x)U_l(x+k)U_k^{\dagger}(x+l)U_l^{\dagger}(x)$$

- ▶ Suited for tensor networks and possibly quantum simulations
- Electric and magnetic part
- ▶ common choice: diagonalize electric part
- ▶ we investigate: diagonal magnetic part

Introduction 0000000	Triangulation 0000000000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary o

Group Manifold

- Gauge links: $U_{\mu}(x) \in SU(2)$
- canonical momenta: $L_a, R_a \in \mathfrak{su}(2)$

Triangulation 0000000000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary 0

Group Manifold

- Gauge links: $U_{\mu}(x) \in SU(2)$
- canonical momenta: $L_a, R_a \in \mathfrak{su}(2)$
- Construction of link operators:
 - choose finite set of N elements in $S_3 \cong SU(2)$
 - for each point, define a state $|\mathcal{U}\rangle \in \mathcal{H}$ where $\mathcal{U} \in SU(2)$:

$$U = \begin{pmatrix} \mathcal{U}_1 & 0 & \cdots & 0 \\ 0 & \mathcal{U}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathcal{U}_N \end{pmatrix}$$

• Equivalently: consider $U = e^{i\alpha_a \tau_a}$ in terms of the manifold coordinate operator α where each element of the spectrum of α identifies a point on S_3 .

				1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	$_{\rm O}^{\rm Summary}$
--	--	--	--	----------------------------	------------------------------	--------------------------

Commutation Relations

$$[L_c, U_{mn}] = -(\tau_c)_{mj}U_{jn} \qquad [R_c, U_{mn}] = U_{mj}(\tau_c)_{jn}$$

- τ_c is one of the generators of SU(2)
- Lie algebra structure:

$$[L_a, L_b] = if_{abc}L_c \qquad [R_a, R_b] = if_{abc}R_c$$

Canonical Momenta in Digitized SU(2) Lattice Gauge Theory

				1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	$_{\rm O}^{\rm Summary}$
--	--	--	--	----------------------------	------------------------------	--------------------------

Commutation Relations

$$[L_c, U_{mn}] = -(\tau_c)_{mj}U_{jn} \qquad [R_c, U_{mn}] = U_{mj}(\tau_c)_{jn}$$

- τ_c is one of the generators of SU(2)
- Lie algebra structure:

$$[L_a, L_b] = i f_{abc} L_c \qquad [R_a, R_b] = i f_{abc} R_c$$

• In the continuum manifold SU(2) these are solved by

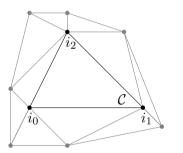
$$L_{c}\psi(U) = -i\partial_{\omega}\psi\left(e^{i\omega\tau_{c}}U\right)\big|_{\omega=0}$$
$$R_{c}\psi(U) = -i\partial_{\omega}\psi\left(Ue^{i\omega\tau_{c}}\right)\big|_{\omega=0}$$

• How to define on finite subsets of SU(2)?

	Introduction 0000000	$\substack{\text{Triangulation}\\\bullet000000000}$		1 + 1D SU(2) with Fermions 00	SU(2) Pure Gauge Theory 0000	Summary 0
--	-------------------------	---	--	-------------------------------	------------------------------	--------------

 L_a from Delaunay triangulation https://inspirehep.net/literature/2649261

Delaunay triangulation of point ins SU(2) yields a set of simplices C = {i₀, i₁, i₂, i₃}

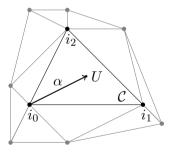


Introduction 0000000	Discrete Jacobi Transform 0000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary 0
(

 L_a from Delaunay triangulation https://inspirehep.net/literature/2649261

- Delaunay triangulation of point ins SU(2) yields a set of simplices C = {i₀, i₁, i₂, i₃}
- write arbitrary U as $U = e^{i\langle \alpha, \tau \rangle} U_{i_0}$
- \blacktriangleright approximate functions ψ as

$$\psi(U) = \psi(U_{i_0}) + \langle \nabla \psi_{i_0}, \alpha \rangle + \mathcal{O}(\alpha^2)$$



$\underset{0000000}{\text{Introduction}}$	$ \begin{array}{c} {\rm Triangulation} \\ \bullet 000000000 \end{array} $	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	$_{\rm 0}^{\rm Summary}$

 L_a from Delaunay triangulation https://inspirehep.net/literature/2649261

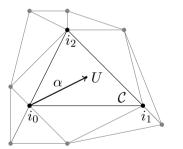
- Delaunay triangulation of point ins SU(2) yields a set of simplices C = {i₀, i₁, i₂, i₃}
- write arbitrary U as $U = e^{i(\alpha,\tau)}U_{i_0}$
- approximate functions ψ as

$$\psi(U) = \psi(U_{i_0}) + \langle \nabla \psi_{i_0}, \alpha \rangle + \mathcal{O}(\alpha^2)$$

• $L = -\nabla$ is obtained from imposing vertex conditions (linear interpolation of $\psi(i_0), \psi(i_1), \psi(i_2), \psi(i_3)$)

$$\begin{pmatrix} \alpha_1^T \\ \alpha_2^T \\ \alpha_3^T \end{pmatrix} \nabla \psi_{i_0} = \begin{pmatrix} \psi(i_1) - \psi(i_0) \\ \psi(i_2) - \psi(i_0) \\ \psi(i_3) - \psi(i_0) \end{pmatrix}$$

Canonical Momenta in Digitized SU(2) Lattice Gauge Theory



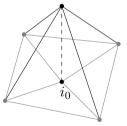
Remarks

- \blacktriangleright averaging over all simplices containing the point *i* gives better estimates
- similar construction for R using $U = U_{i_0} e^{i \langle \alpha, \tau \rangle}$
- \blacktriangleright discretizing L^2 directly in the Hamiltonian converges faster than taking product $L_a\cdot L_a$ of discretized L_a
- ▶ in the continuum limit L^2 becomes the S₃-Laplace-Beltrami operator

$$L^{2} = -\cot\vartheta \,\,\partial_{\vartheta} - \partial_{\vartheta}^{2} - \frac{1}{\sin^{2}\vartheta}\partial_{\varphi}^{2} + 2\frac{\cos\vartheta}{\sin^{2}\vartheta}\partial_{\psi}\partial_{\varphi} - \frac{1}{\sin^{2}\vartheta}\partial_{\psi}^{2}$$

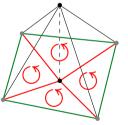
Introduction 0000000	$ \begin{array}{c} {\rm Triangulation} \\ {\rm oo} \bullet {\rm oo} {\rm oo} {\rm oo} {\rm oo} \\ \end{array} $	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary 0

- hat functions on triangulated lattice: $\varphi_{i_0}(U_i) = \delta_{i_0,i}$ and piece-wise linear interpolation
- ► test Laplace equation against these distributions $L^2u = -\Delta u = f \implies \forall i : -\langle \Delta u, \varphi_i \rangle = \langle f, \varphi_i \rangle$



Introduction 0000000	$ \begin{array}{c} {\rm Triangulation} \\ {\rm oo} \bullet {\rm oo} {\rm oo} {\rm oo} {\rm oo} \\ \end{array} $	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary 0

- ▶ hat functions on triangulated lattice: $\varphi_{i_0}(U_i) = \delta_{i_0,i}$ and piece-wise linear interpolation
- ► test Laplace equation against these distributions $L^2u = -\Delta u = f \implies \forall i: -\langle \Delta u, \varphi_i \rangle = \langle f, \varphi_i \rangle$



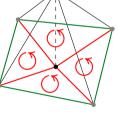
=0

Introduction 0000000	$ \begin{array}{c} {\rm Triangulation} \\ {\rm 000000000} \end{array} $	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary o

- ▶ hat functions on triangulated lattice: $\varphi_{i_0}(U_i) = \delta_{i_0,i}$ and piece-wise linear interpolation
- ► test Laplace equation against these distributions $L^2u = -\Delta u = f \implies \forall i: -\langle \Delta u, \varphi_i \rangle = \langle f, \varphi_i \rangle$

• expand $u = \sum_j u_j \varphi_j$:

$$\langle \Delta u, \varphi_i \rangle = -\sum_{\mathcal{C}} \sum_j u_j \int_{\mathcal{C}} \langle \nabla \varphi_j, \nabla \varphi_i \rangle = \sum_j S_{ij} u_j$$



=0

Introduction 0000000	$ \begin{array}{c} {\rm Triangulation} \\ {\rm 000} \bullet {\rm 0000000} \end{array} \end{array} $	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary 0

▶ approximate right-hand side

$$\langle f, \varphi_i \rangle = \sum_{\mathcal{C}} \int_{\mathcal{C}} f \varphi_i \approx v_i f_i \quad \text{with} \quad v_i = \sum_{\mathcal{C} \ni i} \frac{\operatorname{vol}(\mathcal{C})}{4}$$

and the Laplace equation $L^2 u = -\Delta u = f$ becomes

$$-\sum_{j}S_{ij}u_{j} = v_{i}f_{i}$$

Introduction 0000000	$ \begin{array}{c} {\rm Triangulation} \\ {\rm 000} {\bullet} {\rm 000000} \end{array} \end{array} $	Discrete Jacobi Transform 0000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	$_{\rm 0}^{\rm Summary}$

▶ approximate right-hand side

$$\langle f, \varphi_i \rangle = \sum_{\mathcal{C}} \int_{\mathcal{C}} f \varphi_i \approx v_i f_i \quad \text{with} \quad v_i = \sum_{\mathcal{C} \ni i} \frac{\operatorname{vol}(\mathcal{C})}{4}$$

and the Laplace equation $L^2 u = -\Delta u = f$ becomes

$$-\sum_{j}S_{ij}u_{j} = v_{i}f_{i}$$

• discrete version of L^2 is given by

$$L_{ij}^2 = -\frac{S_{ij}}{v_i}$$

• if *i* and *j* are not connected by a simplex, then $S_{ij} = 0$, so $L^2 = R^2$ are local operators

Canonical Momenta in Digitized SU(2) Lattice Gauge Theory

Introduction 0000000	Triangulation 0000€00000	Discrete Jacobi Transform 0000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary 0

Triangulation recap

- What we do:
 - select N points on sphere S_3
 - map points to eigenstates of U
 - \blacktriangleright asymptotically dense in the group manifold for $N \to \infty$

	Introduction Triangulation Discrete Jacobi Transform $1+1D SU(2) = 0$	
--	---	--

Triangulation recap

- What we do:
 - select N points on sphere S_3
 - map points to eigenstates of U
 - \blacktriangleright asymptotically dense in the group manifold for $N \to \infty$
- Advantages:
 - arbitrary number of elements to discretize SU(2)
 - local operators
 - generalizable to SU(n) and U(n)

Triangulation recap

- What we do:
 - select N points on sphere S_3
 - map points to eigenstates of U
 - \blacktriangleright asymptotically dense in the group manifold for $N \to \infty$
- Advantages:
 - arbitrary number of elements to discretize SU(2)
 - local operators
 - generalizable to SU(n) and U(n)
- ► To check:
 - \blacktriangleright spectral convergence of L^2
 - convergence of commutation relations
 - impact of choice of partitionings (choice of points in S_3)

$ \begin{array}{c ccccc} Introduction \\ 0000000 \end{array} \begin{array}{c} Discrete Jacobi Transform \\ 0000 \end{array} \begin{array}{c} 1+1D \ SU(2) \ with \ Fermions \\ 00 \end{array} \begin{array}{c} SU(2) \ Pure \ Gauge \ Theory \\ 0000 \end{array} \begin{array}{c} Sum \\ 0000 \end{array} \end{array} $	ımmary
---	--------

• $\nabla_P \rightarrow \nabla$ holds w.r.t strong operator topology using net of discretizations with $P' \leq P$ if and only if every vertex of the triangulation P' is also a vertex in P

Introduction Triangulation Ococooooo Discrete Jacobi Transform 1+1D SU(2) with Fermions SU(2) Pure Gauge Th	eory Summary o
---	-------------------

- $\nabla_P \to \nabla$ holds w.r.t strong operator topology using net of discretizations with $P' \leq P$ if and only if every vertex of the triangulation P' is also a vertex in P
- insufficient for spectral convergence in $W_2^1(SU(2)) \oplus L_2(SU(2))$
- for every partition P: $\sup_j |\lambda_j^P \lambda_j| = \infty$

$ \begin{array}{c ccccc} Introduction \\ 0000000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 000 $	ntroduction 2000000	n Discrete Jacobi Transform 0000	1 + 1D SU(2) with Fermions 00		Summary 0
---	------------------------	-------------------------------------	-------------------------------	--	--------------

- $\nabla_P \to \nabla$ holds w.r.t strong operator topology using net of discretizations with $P' \leq P$ if and only if every vertex of the triangulation P' is also a vertex in P
- insufficient for spectral convergence in $W_2^1(SU(2)) \oplus L_2(SU(2))$
- for every partition P: $\sup_j |\lambda_j^P \lambda_j| = \infty$
- consider $L_{2,0(\beta,\delta)}(SU(2))$: cone inside $L_2(SU(2))$ with asymptotic decay (soft UV cutoff limiting Fourier coefficients of high energy states)

$ \begin{array}{c ccccc} Introduction \\ 0000000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 000 $	ntroduction 2000000	n Discrete Jacobi Transform 0000	1 + 1D SU(2) with Fermions 00		Summary 0
---	------------------------	-------------------------------------	-------------------------------	--	--------------

- $\nabla_P \to \nabla$ holds w.r.t strong operator topology using net of discretizations with $P' \leq P$ if and only if every vertex of the triangulation P' is also a vertex in P
- insufficient for spectral convergence in $W_2^1(SU(2)) \oplus L_2(SU(2))$
- for every partition P: $\sup_j |\lambda_j^P \lambda_j| = \infty$
- consider $L_{2,0(\beta,\delta)}(SU(2))$: cone inside $L_2(SU(2))$ with asymptotic decay (soft UV cutoff limiting Fourier coefficients of high energy states)
- ▶ prove gap convergence $\Delta_P \to \Delta$ in $L_{2,0(\beta,\delta)}(SU(2))$

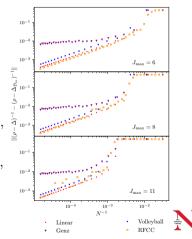
$ \begin{array}{c ccccc} Introduction \\ 0000000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 000 $	ntroduction 2000000	n Discrete Jacobi Transform 0000	1 + 1D SU(2) with Fermions 00		Summary 0
---	------------------------	-------------------------------------	-------------------------------	--	--------------

- $\nabla_P \to \nabla$ holds w.r.t strong operator topology using net of discretizations with $P' \leq P$ if and only if every vertex of the triangulation P' is also a vertex in P
- insufficient for spectral convergence in $W_2^1(SU(2)) \oplus L_2(SU(2))$
- for every partition P: $\sup_j |\lambda_j^P \lambda_j| = \infty$
- consider $L_{2,0(\beta,\delta)}(SU(2))$: cone inside $L_2(SU(2))$ with asymptotic decay (soft UV cutoff limiting Fourier coefficients of high energy states)
- ▶ prove gap convergence $\Delta_P \to \Delta$ in $L_{2,0(\beta,\delta)}(SU(2))$
- ▶ implies convergence of low energy spectrum with arbitrarily large cutoffs

Introduction Triange	ulation Discrete Jac	cobi Transform $1 + 1D SU(2)$	with Fermions $SU(2)$ Pu 0000	re Gauge Theory Summary
0000000 000000	0000 0000	00		o

Gap convergence of different partitioning schemes

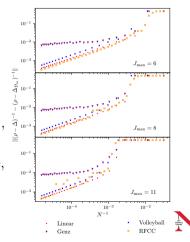
- test different partitioning schemes for rate of convergence (only 4 shown as an example here)
- ▶ Genz points: offer polynomially exact integration
- Linear: variation on Genz points ensuring uniform scaling of simplex volumes
- Volleyball: generalization of Volleyball stitchings, i.e., uniformity of simplices
- RFCC: based on rotated face centered cubical lattice, i.e., uniformity of chosen points



Introduction 0000000	Triangulation 000000●000	Discrete Jacobi Transform 0000	1 + 1D SU(2) with Fermions 00	SU(2) Pure Gauge Theory 0000	$_{\rm 0}^{\rm Summary}$

Gap convergence of different partitioning schemes

- test different partitioning schemes for rate of convergence (only 4 shown as an example here)
- ▶ Genz points: offer polynomially exact integration
- Linear: variation on Genz points ensuring uniform scaling of simplex volumes
- Volleyball: generalization of Volleyball stitchings, i.e., uniformity of simplices
- RFCC: based on rotated face centered cubical lattice, i.e., uniformity of chosen points
- uniformity seems important for rate of spectral convergence



Spectral Convergence of $-\Delta$ with Linear Partitionings L_m

▶ Continuum eigenvalues are

$$\lambda = J(J+2) \quad \text{for} \quad J \in \mathbb{N}_0$$

with multiplicity $(J+1)^2$

▶ low energy spectrum approaches the continuum spectrum with $m \to \infty$



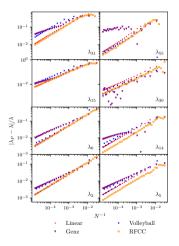
Introduction 0000000	$ \begin{array}{c} {\rm Triangulation} \\ {\rm 00000000} \bullet 0 \end{array} \end{array} $	Discrete Jacobi Transform 0000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary 0

Convergence of Eigenvalues

- ▶ RFCC best performing
- ▶ relative error of eigenvalues fit

$$\frac{|\lambda_P - \lambda|}{\lambda} \approx c N^{-c}$$

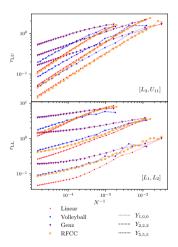
with $\alpha\approx 0.6$



Introduction 0000000	Discrete Jacobi Transform 0000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary o

Convergence of Commutators

- Y_{J,l_1,l_2} 4d-spherical harmonics (Eigenfunctions of $-\Delta$)
- ▶ r_{LU} mean deviation of $([L_a, U_{jl}] + (\tau_a)_{ji}U_{il})Y_{J,l_1,l_2}$ weighted by barycentric cell volume v_i
- ▶ r_{LL} mean deviation of $([L_a, L_b] + 2if_{abc}L_c)Y_{J,l_1,l_2}$ weighted by barycentric cell volume v_i
- RFCC best performing on [L, U]
- Linear best performing on $[L_a, L_b]$



Introduction 0000000	Triangulation 0000000000	Discrete Jacobi Transform •000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary o
					/ · · · · · · · · · · · · · · · · · · ·

Derivatives on S_3 S. Romiti, C. Urbach https://inspirehep.net/literature/2724218

- Eigenfunctions are Wigner D-functions $D^j_{m\mu} \Rightarrow \mathfrak{su}(2)$ irreducible representations
- $\blacktriangleright \sum_{a} R_{a}^{2} \left| j, m, \mu \right\rangle = \sum_{a} L_{a}^{2} \left| j, m, \mu \right\rangle = j(j+1) \left| j, m, \mu \right\rangle$
- $\blacktriangleright L_{3} \left| j,m,\mu \right\rangle = m \left| j,m,\mu \right\rangle, \ R_{3} \left| j,m,mu \right\rangle = -\mu \left| j,m,\mu \right\rangle$
- $(L_1 \pm iL_2) |j, m, \mu\rangle = \sqrt{j(j+1) m(m \pm 1)} |j, m \pm 1, \mu\rangle$
- $(R_1 \pm iR_2) |j, m, \mu\rangle = -\sqrt{j(j+1) \mu(\mu \mp 1)} |j, m, \mu \mp 1\rangle$

Triangulation 0000000000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary o

Derivatives on S_3 S. Romiti, C. Urbach https://inspirehep.net/literature/2724218

- Eigenfunctions are Wigner D-functions $D^j_{m\mu} \Rightarrow \mathfrak{su}(2)$ irreducible representations
- $\blacktriangleright \sum_{a} R_{a}^{2} \left| j, m, \mu \right\rangle = \sum_{a} L_{a}^{2} \left| j, m, \mu \right\rangle = j(j+1) \left| j, m, \mu \right\rangle$
- $\blacktriangleright L_{3} |j, m, \mu\rangle = m |j, m, \mu\rangle, R_{3} |j, m, mu\rangle = -\mu |j, m, \mu\rangle$
- $(L_1 \pm iL_2) |j, m, \mu\rangle = \sqrt{j(j+1) m(m \pm 1)} |j, m \pm 1, \mu\rangle$
- $(R_1 \pm iR_2) |j, m, \mu\rangle = -\sqrt{j(j+1) \mu(\mu \mp 1)} |j, m, \mu \mp 1\rangle$
- Fix truncation $j \leq q$ and we get N_q states with

$$N_q = \sum_{j \le q} (2j+1)^2 = \frac{(4q+3)(2q+2)(2q+1)}{6} \in \mathcal{O}(q^3)$$

• How many eigenstates of U can be reproduced in discretized S_3 ?

Introduction 0000000	Triangulation 0000000000	Discrete Jacobi Transform $0 \bullet 00$	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary 0
					/

Frequencies on S_3

- ▶ Non-abelian manifold + Shannon-Nyquist Theorem = N_{α} points cannot sample N_{α} Fourier modes
- we need $N_{\alpha} > N_q$ or more precisely

$$N_{\alpha} \ge \begin{cases} (q+1/2)(4q+1)^2 & , \ q \text{ half-integer} \\ (q+1)(4q+1)^2 & , \ q \text{ integer} \end{cases}$$

Introduction 0000000	Triangulation 0000000000	Discrete Jacobi Transform $0 \bullet 00$	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary 0
					/

Frequencies on S_3

- ▶ Non-abelian manifold + Shannon-Nyquist Theorem = N_{α} points cannot sample N_{α} Fourier modes
- we need $N_{\alpha} > N_q$ or more precisely

$$N_{\alpha} \ge \begin{cases} (q+1/2)(4q+1)^2 & , \ q \text{ half-integer} \\ (q+1)(4q+1)^2 & , \ q \text{ integer} \end{cases}$$

- Physical consequences
 - ▶ U unitary \Rightarrow \nexists change of basis V between electric and magnetic basis
 - V at best embeds into a larger space of the first $N_q \mathfrak{su}(2)$ irreps
 - presence of unwanted states

Introduction Triangulation Discrete Jacobi Transform $1+1D SU(2)$ with Fermions $SU(2)$ Pure Gauge Theory Summar of $00000000000000000000000000000000000$	Introduction 0000000
---	-------------------------

Discrete Jacobi Transform (DJT)

 $\blacktriangleright~V$ satisfies

$$\begin{split} f(\vec{\vartheta}) &= f(\vartheta, \varphi, \psi) = \sum_{j=0}^{q} \sum_{m,\mu=-j}^{j} V_{m,\mu}^{j}(\vec{\vartheta}) \hat{f}(j,m,\mu) \\ V_{m,\mu}^{j}(\vec{\vartheta}) &= \sqrt{\frac{(j+1/2)w_s}{N_{\varphi}N_{\psi}}} D_{m,\mu}^{j}(\vec{\vartheta}) \end{split}$$

- ▶ w_s Gaussian weights of Legendre polynomials
- V is of size $N_{\alpha} \times N_q$

•
$$V^{\dagger}V = \mathbf{1}_{N_q \times N_q}$$

• dim ker
$$V^{\dagger} = N_{\alpha} - N_q$$
, so $VV^{\dagger} \neq \mathbf{1}_{N_{\alpha} \times N_{\alpha}}$

$ \begin{array}{cccc} \text{Introduction} & \text{Triangulation} \\ \text{00000000} & \text{0000} \end{array} \end{array} \begin{array}{c} \text{Discrete Jacobi Transform} & 1+1\text{D} SU(2) \text{ with Fermions} & SU(2) \text{ Pure Gauge Theory} & \text{Summa operation} \\ \text{0000} & \text{0000} & \text{0000} \end{array} \end{array}$	
--	--

Properties of Discrete Momenta

- $\blacktriangleright \ L_a = V \hat{L}_a V^{\dagger}, \ R_a = V \hat{R}_a V^{\dagger}$
- exact Lie algebra: if_{abc}
- ▶ first N_q eigenstates $|j, m, \mu\rangle$ are reproduced exactly
- Commutation relations fulfilled for the first $N_{q'} = N_{q-1/2}$ irreps

$ \begin{array}{cccc} Introduction \\ 0000000 \\ 00000000 \\ 0000 \\ \end{array} \begin{array}{cccc} \textbf{Discrete Jacobi Transform} \\ 000 \\ 000 \\ \end{array} \begin{array}{ccccc} 1+1D \ SU(2) \ \text{with Fermions} \\ 00 \\ 000 \\ 000 \\ \end{array} \begin{array}{cccccc} SU(2) \ \text{Pure Gauge Theory} \\ 000 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{ccccccccccccccccccccccccccccccccccc$	ımary
---	-------

Properties of Discrete Momenta

- $\blacktriangleright \ L_a = V \hat{L}_a V^\dagger, \ R_a = V \hat{R}_a V^\dagger$
- exact Lie algebra: if_{abc}
- first N_q eigenstates $|j, m, \mu\rangle$ are reproduced exactly
- Commutation relations fulfilled for the first $N_{q'} = N_{q-1/2}$ irreps
- ▶ dense matrices for the momenta (local for $q \to \infty$)
- ▶ $N_{\alpha} N_q$ states degenerate with the electric vacuum \Rightarrow decouple by lifting with projector $P_{j>q}$
- ▶ Gauss law G^a : $[G^a, H] \neq 0$ on $(N_\alpha N_{q'})$ -dim subspace

Introduction 0000000	Triangulation 0000000000	Discrete Jacobi Transform 0000	$1 + 1D SU(2)$ with Fermions $\bullet \circ$	SU(2) Pure Gauge Theory 0000	Summary 0

1 + 1D SU(2) with Fermions https://inspirehep.net/literature/2726571

Hamiltonian

$$H = \mu \sum_{x} \sum_{c=1}^{2} (-1)^{x} \chi_{x}^{c\dagger} \chi_{x}^{c} + \frac{1}{2} \sum_{a,x} \left(\chi_{x}^{c\dagger} U_{x}^{cc'} \chi_{x}^{c'} + h.c. \right) + \frac{g^{2}}{2} \sum_{x} L_{x}^{2}$$

Gauss Law

$$G_x^a = L_x^a - R_x^a - \frac{1}{2}\chi_x^\dagger \tau^a \chi_x$$

- physical states are states with $G^{a} |\psi\rangle = 0$
- ▶ add Gauss law penalty term for non-physical states

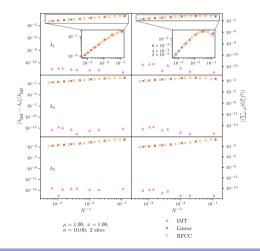
$$H_{Penalty} = \kappa \sum_{x} G_{x}^{2}$$

 no plaquette in 1D: magnetic Hamiltonian = 0 and Gauss law can be enforced exactly by analytically integrating out the gauge fields

	$\underset{0000000}{\text{Introduction}}$	Triangulation 0000000000	Discrete Jacobi Transform 0000	$1 + 1D SU(2)$ with Fermions $0 \bullet$	SU(2) Pure Gauge Theory 0000	$_{\rm 0}^{\rm Summary}$
--	---	-----------------------------	-----------------------------------	--	------------------------------	--------------------------

Spectrum with DJT momenta

- exact results recovered for large N for both "normal" and integrated Hamiltonian
- for small N Gauss law operator G^a shows discretization effects



	Introduction Triangulation Discrete Jacobi Transform $1+1D SU(2)$ with Fe occords on $00000000000000000000000000000000000$	
--	--	--

Single Plaquette System https://inspirehep.net/literature/2726571

Hamiltonian

$$H = \frac{g^2}{2} \sum_{c=1}^{3} \sum_{i=0}^{3} (L_i^c)^2 - \frac{2}{g^2} \operatorname{tr}(U_0 U_1 U_2 U_3)$$

- we compare against anaytic solutions: Bauer et al. (2023) https://arxiv.org/abs/2307.11829
- Gauss Law

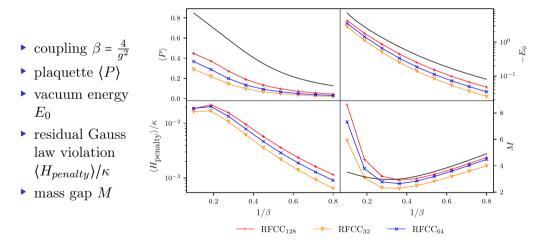
$$G_a(x) = \sum_{\mu=1}^d (L_a)_{\mu}(x) + (R_a)_{\mu}(x-\mu) - \frac{1}{2}\chi^{\dagger}(x)\tau^a\chi(x)$$

▶ $G_a |\psi\rangle = 0 \iff |\psi\rangle$ physical: Gauss Law penalty

$$H_{penalty} = \kappa \sum_{x,\mu} \sum_{a} (G_a)_{\mu} (x)^2$$

	Introduction 0000000	Triangulation 0000000000	Discrete Jacobi Transform 0000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary 0
--	-------------------------	-----------------------------	-----------------------------------	----------------------------	------------------------------	--------------

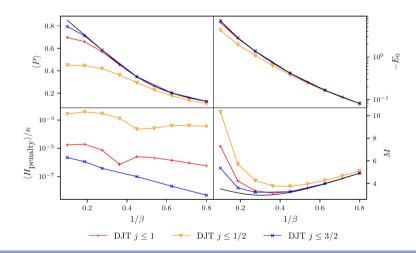
RFCC



Canonical Momenta in Digitized SU(2) Lattice Gauge Theory

$\underset{0000000}{\text{Introduction}}$	Triangulation 000000000	Discrete Jacobi Transform 0000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	Summary 0

DJT

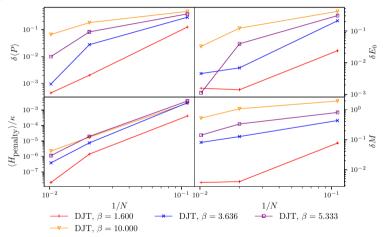


Canonical Momenta in Digitized SU(2) Lattice Gauge Theory

T. Hartung

Introduction 0000000	Triangulation 0000000000	Discrete Jacobi Transform 0000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 000•	$_{\circ}^{\mathrm{Summary}}$

DJT convergence



Canonical Momenta in Digitized SU(2) Lattice Gauge Theory

T. Hartung

Introduction 0000000	Triangulation 0000000000	Discrete Jacobi Transform 0000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	${}^{\rm Summary}_{\bullet}$

What have we got?

- Digitized SU(2) lattice Hamiltonian with discrete subsets of S_3
- ▶ 2 approaches: Delaunay Triangulation and Discrete Jacobi Transform
- \blacktriangleright well-understood applicability in terms of N and/or cutoff of the theory
- ▶ Convergence to exact results of Schwinger-like model and single plaquette
- ▶ DJT very good, but Triangulations can be improved

Introduction 0000000	Triangulation 0000000000	Discrete Jacobi Transform 0000	1 + 1D SU(2) with Fermions	SU(2) Pure Gauge Theory 0000	$_{\bullet}^{\rm Summary}$

What have we got?

- Digitized SU(2) lattice Hamiltonian with discrete subsets of S_3
- ▶ 2 approaches: Delaunay Triangulation and Discrete Jacobi Transform
- \blacktriangleright well-understood applicability in terms of N and/or cutoff of the theory
- ▶ Convergence to exact results of Schwinger-like model and single plaquette
- ▶ DJT very good, but Triangulations can be improved

Outlook

- larger systems
- ▶ going beyond exact diagonalization (QC, tensor networks)
- generalization to SU(3) and beyond