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./why?
» Hamiltonian formulation of lattice gauge theories are becoming more
important
» Tensor Networks and Quantum Computing
» study dynamical phenomena

> real-time dynamics, string breaking, phase structure of gauge theories at finite
fermionic densities
> avoiding the sign problem
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./why?

» Hamiltonian formulation of lattice gauge theories are becoming more
important

» Tensor Networks and Quantum Computing
» study dynamical phenomena

> real-time dynamics, string breaking, phase structure of gauge theories at finite
fermionic densities
> avoiding the sign problem

» we have many architectures with many open questions
> e.g., quest for efficient discretization schemes

» common approach: choose basis of your Hilbert space that diagonalizes the
electric part of the Hamiltonian = character expansion/loop-string formulation
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./why?
» Hamiltonian formulation of lattice gauge theories are becoming more
important
» Tensor Networks and Quantum Computing
» study dynamical phenomena
> real-time dynamics, string breaking, phase structure of gauge theories at finite

fermionic densities
> avoiding the sign problem

» we have many architectures with many open questions
> e.g., quest for efficient discretization schemes
» common approach: choose basis of your Hilbert space that diagonalizes the
electric part of the Hamiltonian = character expansion/loop-string formulation
» our approach: diagonal gauge field operators
» natural generalization U(1) ~ SU(N)
» gauge links remain unitary = implementable as gates on quantum devices

: :
Canonical Momenta in Digitized SU(2) Lattice Gauge Theory T. Hartung




Introduction Triangulation Discrete Jacobi Transform 1+ 1D SU(2) with Fermions SU(2) Pure Gauge Theory Summary
0@00000 0000000000 0000 00 0000
:

Discrete Quantum Mechanics

» Usual idea: discretize phase space and replace derivatives with finite difference
operators

H(z,p) ~ H;j=(x;| H|zj)

» Example: non-relativistic particle in 1D box, discretized with N points at
lattice spacing a

-1 1 0 0 O

a 0 0 0 -1 1 0 0

0 2a 0 . d 0 0 -1 0 O

z ~ p=—i— ~ —i| o :
. . : : dx : : . - . :

0 0 - Na o o0 o0 - -1 1

0 0 0 0 -1
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Discrete Quantum Mechanics Problems

v

Continuum results often require multiple extrapolations

» Requires numerical testing of when IV is “sufficiently large”

v

Canonical commutation relations are broken for all N:
tr(AB) =tr(BA) = tr([4,B]) =0
» [z,p] =1 is only recoverable in a functional sense by its action on test functions

([z,p] =)y >0
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Discretized Gauge Theories?

» Canonical momenta are Lie derivatives

Lap(U) = =idut) (e“7U)| __,

» Be careful about gauge invariance!

» Need to impose Gauss’ Law.

N
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Discretized Gauge Theories?

» Canonical momenta are Lie derivatives

Lap(U) = =idut) (e“7U)| __,

» Be careful about gauge invariance!

» Need to impose Gauss’ Law.

» Advantages:
> conceptually simple
» Gauge links remain unitary operators ~ implementable as gates on quantum
computer
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Hamiltonian of Lattice Gauge Theories

2

g 1

H= ZO > (L2x(@) + B2 (2)) - 22 > trR Py (2)
iy 90 z,k<l

> go bare gauge coupling
» 1 spatial lattice coordinate, k direction, ¢ color index
» Plaquette operator
Pi(2) = Up(2)Uy(z + k)Uf (z + DU (2)
>

Suited for tensor networks and possibly quantum simulations
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Hamiltonian of Lattice Gauge Theories

2

1

H=%0 S (12 (2)+ B2\ (2)) - = 3 tuRPy(x)
4 295 ok

v

go bare gauge coupling
x spatial lattice coordinate, k direction, ¢ color index
Plaquette operator

Pa(x) = Up(2)Ui(x + k)T (z + U] (2)

Suited for tensor networks and possibly quantum simulations
Electric and magnetic part

common choice: diagonalize electric part

we investigate: diagonal magnetic part
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Group Manifold
» Gauge links: U,(z) € SU(2)
» canonical momenta: Lg, R, € su(2)

N

Canonical Momenta in Digitized SU(2) Lattice Gauge Theory T. Hartung




Introduction Triangulation Discrete Jacobi Transform 1+ 1D SU(2) with Fermions SU(2) Pure Gauge Theory Summary
0000080 0000000000 0000 00 0000 [}
: :

Group Manifold
» Gauge links: U,(z) € SU(2)
» canonical momenta: Lg, R, € su(2)

» Construction of link operators:
» choose finite set of N elements in S5 = SU(2)
» for each point, define a state [U) € H where U € SU(2):

],{1 0 0
T
0 0 MN

» Equivalently: consider U = ¢! in terms of the manifold coordinate operator a
where each element of the spectrum of « identifies a point on Sj3.
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Commutation Relations

[Lca Umn] = _(Tc)ijjn [Rca Umn] = Umj(Tc)jn

» 7. is one of the generators of SU(2)
» Lie algebra structure:

[Laa Lb] = ifabch [Rm Rb] = 7;fabcfzc
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Commutation Relations

[Lca Umn] = _(Tc)ijjn [Rca Umn] = Umj(Tc)jn

» 7. is one of the generators of SU(2)
» Lie algebra structure:

(La, Ly] = ifapeLe  [Ras Ro] = ifapeRe
» In the continuum manifold SU(2) these are solved by
Lep(U) = =idp (e7U)| _,
Rp(U) = -id,9 (Ue™™)
» How to define on finite subsets of SU(2)?
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L, from Delaunay triangulation nttps://inspirehep.net/literature/2649261
» Delaunay triangulation of point ins SU(2) yields a
set of simplices C = {ig, i1, 12,73}

N

/N
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L, from Delaunay triangulation nttps://inspirenep.net/literature/2649261
» Delaunay triangulation of point ins SU(2) yields a
set of simplices C = {ig, i1, 12,73}
> write arbitrary U as U = /{7 U;,

» approximate functions v as “
Y(U) =9 (Uiy) + (Vi @) + O(a)
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L, from Delaunay triangulation nttps://inspirenep.net/literature/2649261
» Delaunay triangulation of point ins SU(2) yields a
set of simplices C = {ig, i1, 42,13}
> write arbitrary U as U = /{7 U;,

» approximate functions v as “
Y(U) =9 (Uiy) + (Vi @) + O(a)

» [ = -V is obtained from imposing vertex conditions

(linear interpolation of 1 (ig), ¥ (i1), ¥(i2), ¥(i3))
of W(in) - (i) A -

ag | Viis = [ ¥(i2) - ¥ (io)
o ¥(i3) — ¥ (io)
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Remarks

» averaging over all simplices containing the point ¢ gives better estimates

> similar construction for R using U = Uj,e¥*7)

v

discretizing L? directly in the Hamiltonian converges faster than taking
product L, - L, of discretized L,

» in the continuum limit L? becomes the S3-Laplace-Beltrami operator

9 cos 1
02 + aw

L?=—cotd 9y — 0% - —— 2———0 -—
0 v sin29 ¥ sinZ 9 vEe sin? 9
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L? from Delaunay triangulation

» hat functions on triangulated lattice: ¢;, (U;) = 0, and
piece-wise linear interpolation

» test Laplace equation against these distributions
Lu=-Au=f = Vi —{dug)=(f) AN
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L? from Delaunay triangulation

» hat functions on triangulated lattice: ¢;, (U;) = 0, and
piece-wise linear interpolation

» test Laplace equation against these distributions
L*u=-Au=f = Vi: —(Au, ;) = {f, i) \

> (Au,p;) = Aup; = - Vu, Vo; , Vi %
(Au, i) = ¥ [o Aup e Jo{Vu, Vi) + Xe [oeln, Vi) W

B @
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L? from Delaunay triangulation

» hat functions on triangulated lattice: ¢;, (U;) = 0, and
piece-wise linear interpolation

» test Laplace equation against these distributions
L*u=-Au=f = Vi: —(Au, ;) = {f, i) \

> (Au, i) = Yc Jo Aupi = = ¢ [o(Vu, Vi) + 2e [oen, Vi) VW

=0

» expand u = Y ; ujp;: «\

(Au, i) ==Y uy £<V¢ja Vi) = Zsijuj

¢ J
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L? from Delaunay triangulation

» approximate right-hand side

(f,%)Z;fcfwaifi with v =) ——*

C1

vol(C )

and the Laplace equation L?u = —Au = f becomes

- z Sijuj = v f;
j
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L? from Delaunay triangulation

» approximate right-hand side

(f7¢i):%:Lf¢i“Uifi with v =) ——*

C1

vol(C )

and the Laplace equation L?u = —Au = f becomes

- z Sijuj = v f;
j

» discrete version of L? is given by
S,
L?j ==Y
Ui
» if 7 and j are not connected by a simplex, then S;; =0, so L? = R? are local
operators
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Triangulation recap

» What we do:

> select N points on sphere S
> map points to eigenstates of U
> asymptotically dense in the group manifold for N — oo

N
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Triangulation recap

» What we do:

> select N points on sphere S3

> map points to eigenstates of U

> asymptotically dense in the group manifold for N — oo
» Advantages:

» arbitrary number of elements to discretize SU(2)
> local operators
» generalizable to SU(n) and U(n)
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Triangulation recap

» What we do:

> select N points on sphere S3

> map points to eigenstates of U

> asymptotically dense in the group manifold for N — oo
» Advantages:

» arbitrary number of elements to discretize SU(2)
> local operators
» generalizable to SU(n) and U(n)

» To check:

» spectral convergence of L2
> convergence of commutation relations
» impact of choice of partitionings (choice of points in S3)
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Convergence of Discretized Gradient Vp and Laplace Ap

» Vp — V holds w.r.t strong operator topology using net of discretizations with
P’ < P if and only if every vertex of the triangulation P’ is also a vertex in P
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Convergence of Discretized Gradient Vp and Laplace Ap

» Vp — V holds w.r.t strong operator topology using net of discretizations with
P’ < P if and only if every vertex of the triangulation P’ is also a vertex in P

» insufficient for spectral convergence in Wi (SU(2)) @ La(SU(2))

> for every partition P: sup; |)\§3 - Aj| =00

:
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Convergence of Discretized Gradient Vp and Laplace Ap

» Vp — V holds w.r.t strong operator topology using net of discretizations with
P’ < P if and only if every vertex of the triangulation P’ is also a vertex in P

» insufficient for spectral convergence in Wi (SU(2)) @ La(SU(2))

> for every partition P: sup; |)\§3 - Aj| =00

> consider Ly g(g,5)(SU(2)): cone inside Ly(SU(2)) with asymptotic decay (soft
UV cutoff limiting Fourier coefficients of high energy states)
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Convergence of Discretized Gradient Vp and Laplace Ap

» Vp — V holds w.r.t strong operator topology using net of discretizations with
P’ < P if and only if every vertex of the triangulation P’ is also a vertex in P

» insufficient for spectral convergence in Wi (SU(2)) @ La(SU(2))

> for every partition P: sup; |)\§3 - Aj| =00

> consider Ly g(g,5)(SU(2)): cone inside Ly(SU(2)) with asymptotic decay (soft
UV cutoff limiting Fourier coefficients of high energy states)

> prove gap convergence Ap = A in Ly g(z,5)(SU(2))
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Convergence of Discretized Gradient Vp and Laplace Ap

» Vp — V holds w.r.t strong operator topology using net of discretizations with
P’ < P if and only if every vertex of the triangulation P’ is also a vertex in P

» insufficient for spectral convergence in Wi (SU(2)) @ La(SU(2))

> for every partition P: sup; |)\§3 - Aj| =00

> consider Ly g(g,5)(SU(2)): cone inside Ly(SU(2)) with asymptotic decay (soft
UV cutoff limiting Fourier coefficients of high energy states)

> prove gap convergence Ap = A in Ly g(z,5)(SU(2))

» implies convergence of low energy spectrum with arbitrarily large cutoffs
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Gap convergence of different partitioning schemes

> test different partitioning schemes for rate of
convergence (only 4 shown as an example here) -]

» Genz points: offer polynomially exact integration 0

» Linear: variation on Genz points ensuring uniform
scaling of simplex volumes

» Volleyball: generalization of Volleyball stitchings, i.e.,
uniformity of simplices

» RFCC: based on rotated face centered cubical lattice,
i.e., uniformity of chosen points

i =)~ = (p = Ap,)7 Y|

Linear * Volleyball
Genz = RFCC
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Gap convergence of different partitioning schemes

> test different partitioning schemes for rate of
convergence (only 4 shown as an example here) -]

» Genz points: offer polynomially exact integration 0

» Linear: variation on Genz points ensuring uniform
scaling of simplex volumes

» Volleyball: generalization of Volleyball stitchings, i.e.,
uniformity of simplices

» RFCC: based on rotated face centered cubical lattice,
i.e., uniformity of chosen points

i =)~ = (p = Ap,)7 Y|

» uniformity seems important for rate of spectral T
o
convergence © Linear « Volleyball
Genz = RFCC
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Spectral Convergence of —A with Linear Partitionings L,,

25 A
— Continuum
Las
20 Lio
. . = Lg
» Continuum eigenvalues are - L
s Ly
15 4
A=J(J+2) for JeN i
=
. . . e 10 4
with multiplicity (J +1)?
Eﬂﬂgﬁé
> low energy spectrum approaches the N
continuum spectrum with m — co B
04 =
0 o 2 a0 4 %
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Convergence of Eigenvalues

101 4 v:vzgﬂ:‘:nia#u
T
10*7-6"#60
At
10 T T
. ,,;,av”’af
» RFCC best performing oo |
» relative error of eigenvalues fit x|

Ap - Al

)\ cN™¢

with a ~ 0.6

Linear * Volleyball
Genz = RFCC
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Convergence of Commutators

» Y, 1, 4d-spherical harmonics

(Eigenfunctions of —A) 3
» rru mean deviation of

([La, Ujt] + (7a) iUit) Y71, 1, Weighted

by barycentric cell volume v;

» 7, mean deviation of L
([Las L] + 2i fapeLe) Y1, 1, Weighted )
by barycentric cell volume v; 0
» RFCC best performing on [L,U] B R
» Linear best performing on [Lg, L] znybll e
RFCC Yiss
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Derivatives on Sg S. Romiti, C. Urbach https://inspirehep.net/literature/2724218

» Eigenfunctions are Wigner D-functions Dfn# = su(2) irreducible
representations

Yo R2|j,m, p) = $o L2 |jsm, ) = (G +1) |j, m, )
Ls|j,m, p) =m|j,m, p), Rslj,m,mu)=—plj,m,u)
(L1 % iLo)|j,m, ) :Jj(j+1>—m(mi1)|j,mi1 n
(Ri=iRg)|j,m,p) = —/j(G+1) = p(uF 1) [j,m,u*1)

v

v

v

v
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Derivatives on Sg S. Romiti, C. Urbach https://inspirehep.net/literature/2724218

» Eigenfunctions are Wigner D-functions D{;w = su(2) irreducible
representations

Yo Raldym,u) = Lo L2 |j,m, p) = 3 (5 + 1) j,m, )

Lz |j,m, p) =mlj,m,p), Rg|j,m,mu) = —plj,m, p)
(L1 £iLa)|j,m, 1) =¢j(j+1>—m(mi1)|j,mi1 )
(Ri2iR2)|j,m, p) = —/§ (G +1) = u(uF 1), m, p ¥ 1)
Fix truncation j < ¢ and we get N, states with

(49+3)(2¢+2)(2¢+1)
6

v

v

v

v

v

Ny=>(2j+1)* = € O(¢*)

J<q

» How many eigenstates of U can be reproduced in discretized S37
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Frequencies on S3

» Non-abelian manifold + Shannon-Nyquist Theorem = N, points cannot
sample N, Fourier modes

» we need N, > N, or more precisely

(g+1/2)(4g+1)® , ¢ half-integer
(q+1)(4q+1)? , q integer
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Frequencies on S3

» Non-abelian manifold + Shannon-Nyquist Theorem = N, points cannot
sample N, Fourier modes

» we need N, > N, or more precisely

(g+1/2)(4g+1)® , ¢ half-integer
(q+1)(4q+1)? , q integer

» Physical consequences
» U unitary = 7 change of basis V' between electric and magnetic basis
» V at best embeds into a larger space of the first N, su(2) irreps
> presence of unwanted states
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Discrete Jacobi Transform (DJT)

» V satisfies

F@O) = o)=Y S Vi (@) PG m.p)

J=0m,p=-j

L (G+12ws =
Vinu(0) = \’ v~ Pmu(?)
M N¢N¢ M

» wy Gaussian weights of Legendre polynomials

» V is of size N, x Ny
» ViV = 1N, xN,
>

dimker VT = N, — Ny, s0 VVT £ 1y, wn,
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Properties of Discrete Momenta

> Lo=VLVT, Ry=VR VT
> exact Lie algebra: if,p.
» first N, eigenstates |j,m, i) are reproduced exactly

» Commutation relations fulfilled for the first Ny = N,_y/5 irreps
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Properties of Discrete Momenta

> Lo=VLVT, Ry=VR VT
> exact Lie algebra: if,p.
» first N, eigenstates |j,m, i) are reproduced exactly

» Commutation relations fulfilled for the first Ny = N,_y/5 irreps

» dense matrices for the momenta (local for ¢ - o)

» N, — N, states degenerate with the electric vacuum = decouple by lifting with
projector Pjsq
» Gauss law G [G*, H] # 0 on (N, — Ny )-dim subspace
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1+1D SU(2) with Fermions https://inspirehep.net/literature/2726571

» Hamiltonian
2

1 J /
H=p) Z( D"+ - 2 (U X +he )+ L L2
z c=1 2 o 2 &
» Gauss Law
G, =L%-RS - §X£7' Xz
» physical states are states with G¢ |¢) =

v

add Gauss law penalty term for non-physical states
HPenalty =K Z G?;
X

» no plaquette in 1D: magnetic Hamiltonian = 0 and Gauss law can be enforced
exactly by analytically integrating out the gauge fields
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Spectrum with DJT momenta
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10712 e 109102 107! A a8, m: 02 a0t |
» exact results recovered for O L Rt L L LT
large N for both “normal” 5
i =
and integrated Hamiltonian w0
» for small N Gauss law s e
P - I
operator G* shows
. . . 8 As 1078
discretization effects
Lo-14 5 s abs 4 o4 s aas 10-14
l()"" lﬂl’z I()"' ll)l’:’ 102 lll"‘
N7 NT!
a DJT
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Single Plaquette System nttps://inspirehep.net/literature/27265671

» Hamiltonian
PSS L, 2
H = e} Z Z(Lz) - —2131'(U0U1U2U3)
c=1i=0 g
> we compare against anaytic solutions: Bauer et al. (2023)
https://arxiv.org/abs/2307.11829
» Gauss Law

d
Galw) = 3 (L)) + (o) = ) = 5! (2)r"x ()

p=1
» G, |Y) =0 < |¢) physical: Gauss Law penalty

Hpenalty =K Z Z:(C;a)ﬂ(a;)2

0 a

: :
Canonical Momenta in Digitized SU(2) Lattice Gauge Theory T. Hartung



https://inspirehep.net/literature/2726571
https://arxiv.org/abs/2307.11829

Introduction Triangulation Discrete Jacobi Transform 1+ 1D SU(2) with Fermions SU(2) Pure Gauge Theory Summary
0000000 0000000000 0000 [o]e] 0®00 o

RFCC

. L 0
> coupling S = ;% v

g 0.4 L?
» plaquette (P) 0ol 10!
> vacuum energy 0.0 -
E() M8
. i 10—2 N
» residual Gauss = L6
. . E
law violation g =
Jsa) -4
(Hpenalty>//‘3 00
> . ; ; : : ; : — 2
mass gap M 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
1/8 1/8
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DJT convergence
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What have we got?
» Digitized SU(2) lattice Hamiltonian with discrete subsets of S
» 2 approaches: Delaunay Triangulation and Discrete Jacobi Transform
» well-understood applicability in terms of N and/or cutoff of the theory
» Convergence to exact results of Schwinger-like model and single plaquette

» DJT very good, but Triangulations can be improved
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What have we got?
» Digitized SU(2) lattice Hamiltonian with discrete subsets of S
» 2 approaches: Delaunay Triangulation and Discrete Jacobi Transform
» well-understood applicability in terms of N and/or cutoff of the theory
» Convergence to exact results of Schwinger-like model and single plaquette
» DJT very good, but Triangulations can be improved
Outlook
> larger systems
» going beyond exact diagonalization (QC, tensor networks)

» generalization to SU(3) and beyond
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