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Cosmic censorship

▶ Problem: the globally hyperbolic
Kerr and Reissner-Nordström
spacetimes can be extended
non-uniquely (and smoothly)
across an inner Cauchy horizon.

▶ This signals a breakdown of
determinism.

▶ The celebrated strong cosmic
censorship conjecture proposes
that this unwanted behaviour
can be overcome by perturbing
the spacetime at the level of
initial data.
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Initial value formulation

Theorem [Choquet-Bruhat, Geroch (‘69)]
Given any Riemannian manifold (Σ, g) equipped with a 2-tensor field K
such that (g, K) solve the constraint equations, there exists a unique
maximal spacetime (M, g) such that
1. (M, g) is a solution to the Einstein field equations in vacuum;
2. Σ embeds intoM as a Cauchy surface such that g and K are the

induced metric and second fundamental form respectively.

▶ The spacetime (M, g) arising from the initial data (Σ, g, K) is called the
maximal Cauchy evolution of the data.

▶ Idea: in the right gauge, the Einstein vacuum equations become a
system of quasilinear wave equations for the metric which can be
solved given the initial data (g, K).
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Cosmic censorship

Strong cosmic censorship conjecture [Penrose]
For ‘generic’ initial data for the Einstein field equations, the maximal Cauchy
development is inextendible as a (suitably regular) Lorentzian manifold.

▶ Proving this conjecture is hard because the meaning of the words
‘generic’ and ‘suitably regular’ is not so clear a priori.

Quinten Rutgers | Late-time asymptotics for dynamical black hole spacetimes



4

Cosmic censorship

▶ Example: the (extended) Schwarzschild spacetime is inextendible as a
C0-manifold because of the singularity at r = 0. It was thought for a
long time that this should be the generic scenario.

Figure: The extended Schwarzschild spacetime
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Blueshift effect

▶ A possible resolution of this conjecture is
provided by the blueshift effect: signals sent by
observer A at constant proper time intervals are
infinitely blueshifted as B approaches the
Cauchy horizon.

▶ This indicates that perturbations might exhibit
some instability at CH+ preventing
extendibility.
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The Kerr Cauchy horizon

Theorem [Dafermos, Luk (’17)]
Assuming the nonlinear stability of the Kerr exterior, small perturbations of
Kerr initial data will give rise to spacetimes with a (null) Cauchy horizon,
across which the metric is C0-extendible.

▶ This rules out the C0-formulation of strong cosmic censorship, and
means that the Schwarzschild picture is quite special.

▶ Current state of the conjecture: the perturbed spacetime metric will
have a null Cauchy horizon across which the metric extends in a
C0-fashion. However, the metric has non-square integrable Christoffel
symbols near CH+, making it a so-called weak null singularity.

▶ This is the lowest regularity class in which we can speak of a ‘weak
solution’ to the Einstein equations.
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Dynamical toy model

▶ To study instability of Cauchy horizons we will use a simpler toy model
for gravitational perturbations: the spherically symmetric
Einstein-Maxwell-scalar field (EMSF) system.

▶ Maxwell field F and a massless scalar field ϕ coupled to metric

g = −Ω2(u, v)dudv + r2�gS2

where (u, v) are double null coordinates.
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Dynamical toy model

▶ Einstein equations reduce to a system of null
transport equations and wave equations for ϕ
and the area radius r. We pose initial data on
two intersection null hypersurfaces.

▶ Hawking massm is characterized by

1− µ = 1− 2m
r

= g(∇r,∇r) = −4
∂ur∂vr
Ω2

i+

H+ I+

Cv0 Cu0
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Previous results

Theorem [Luk, Oh (‘21)]
Let (M, g, ϕ) be a solution to the EMSF system for which an L2-averaged
lower bound of the type ∫

H+

vα(∂vϕ)2dv = ∞

holds. ThenM is not C2-extendible across CH+. Furthermore, for generic
solutions this averaged lower bound holds.
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Previous results

Theorem [Dafermos (‘05)]
Let (M, g, ϕ) be a solution to the EMSF system for which a polynomial lower
bound for the scalar field ϕ of the type

|∂vϕ|H+ | ≳ v−q,

holds along the event horizonH+. ThenM is not C1-extendible across CH+.
In fact, the Hawking mass blows up identically along CH+, a phenomenon
calledmass inflation.

▶ What is still missing to complete Dafermos’ result, and hence to
establish the C1-version of SCC for this system, is a proof that such a
polynomial lower bound actually holds generically for this system.
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Price’s law

▶ Simplest toy model for gravitational perturbations: linear wave
equation

□gϕ = 0

on a (subextremal) Reissner-Nordström background.
▶ The polynomial lower bound can be obtained for the linear wave

equation through exact late-time asymptotics in the full exterior
(including I+ andH+) known in this context as Price’s law.
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Price’s Law

Theorem [Angelopoulos, Aretakis, Gajic (‘18)]
Let ϕ be a spherically symmetric solution to□gϕ = 0 with nonvanishing
Newman-Penrose constant I0[ϕ]. Along a hyperboloidal foliation Στ we
have

ϕΣτ
(τ, ·) ∼asym 4I0[ϕ]

1
τ 2

in the region {r ≤ R}, while in the near-infinity region {r ≥ R} we have

ϕΣτ
(τ, ·) ∼asym 4I0[ϕ]

(
1+

u
v

) 1
uv

.

NP-constant is given along a hypersurface terminating at I+ by the limit

I0[ϕ] = lim
r→∞

r2∂v(rϕ)

and is a conserved quantity along I+ which is generically nonvanishing.
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Price’s Law

Figure: Price’s Law for the linear wave equation
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Conjecture

Conjecture
Let (M, g, ϕ) be a solution to the spherically symmetric EMSF system with
nonvanishing Newman-Penrose constant I0[ϕ] and sufficiently small initial
data (in some higher Sobolev norm).

Then along a characteristic foliation Στ ofM, ϕ decays inverse polynomially
with decay rate and leading-order asymptotics the same as those for the
linear wave equation on Reissner-Nordström.
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Difficulties

▶ Lack of Killing vector fields: no timelike Killing field T, however in
spherical symmetry we have the Kodama vector field which in this
setting is given by

T =
1− µ

∂vr
∂v +

1− µ

−∂ur
∂u.

It is tangent to constant-r hypersurfaces and still gives a conserved
energy, however T does not commute with the d’Alembertian□g.

▶ Difficulties related to choice of gauge: a different choice of u and v
coordinates allows one to normalize certain quantities at different
points in the spacetime. For example, one could choose to set ∂ur = 1
either on the initial surface or on I+. However, it is not always clear
which choice of gauge is the right one for proving estimates.
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Difficulties

▶ Nonlinear structure of the equations: to deal with the nonlinearities
in the system we need to setup a bootstrap argument. This requires
weak decay assumptions for ϕ as input, which are then improved in
the course of the argument. These assumptions are consistent with
decay rates one would need to prove the stability of
Reissner-Nordström as a solution to the EMSF system.

▶ Decay on the event horizon: In the Reissner-Nordström spacetime the
event horizonH+ is foliated by marginally outer-trapped surfaces, i.e.
∂vr = 0 onH+. In our setting this is not the case and we require the
Raychaudhuri equation

∂v

(
∂vr
Ω2

)
= − r(∂vϕ)2

Ω2

to prove decay for ∂vr alongH+.
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Outlook

▶ The next step would be to consider compactly supported initial data,
which in particular has vanishing Newman-Penrose constant. For the
linear wave equation this requires the use of time-inversion where the
leading-order tail is now determined by the time-inverted
Newman-Penrose constant

I(1)0 [ϕ] := I0[ϕ(1)],

where ϕ(1) is a solution to the linear wave equation such that
Tϕ(1) = ϕ. This time-inversion theory would have to be extended to
this dynamical setting.
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Summary

▶ The strong cosmic censorship conjecture poses that spacetimes are
generically not extendible.

▶ We presented a toy model in which inextendibility can be shown
assuming polynomial lower bounds alongH+.

▶ We introduced Price’s Law in a linear setting and discussed the
difficulties of extending these asymptotics to the dynamical toy model.
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Thank you for your attention!
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