Interplay of Chiral Transitions in the Standard Model

Physik Combo 2023

Richard Schmieden

Supervisor: Holger Gies and Luca Zambelli

[arXiv:2306.05943]

Theoretisch-Physikalisches-Institut

September 18, 2023

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

Motivation - Mass Generation in the Standard Model

• Fundamental fermionic degrees of freedom in the Standard Model are massless while all matter particles possess mass

Two symmetry breaking mechanisms:

- · Higgs mechanism, spontaneously breaks gauge and chiral symmetry
- Chiral symmetry breaking in the strong interaction
- Investigate interplay of these two mechanisms in a suitable toy model

The Functional Renormalization Group

Modified generating functional

$$\mathbf{e}^{W_k[J]} = \int \mathcal{D}\varphi \mathbf{e}^{-S[\varphi] - \Delta S_k[\varphi] + \int_x J\varphi}$$

where:

 $S[\varphi]$: action of the theory

 $\Delta S_k[\varphi] = \int_x \frac{1}{2} \varphi(x) R_k(x) \varphi(x) :$ momentum dependent mass term

Typical form of the regulator $R_k(p^2)$ and its derivative [Gies '06].

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

The Functional Renormalization Group

Effective average action

$$\Gamma_{k}[\phi] = \sup_{J} \left(\int d^{d} x J \phi - W_{k}[J] \right) - \Delta S_{k}[\phi]$$

⇒Wetterich equation [Wetterich '93]

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \operatorname{STr} \left[\partial_t R_k \left(\Gamma_k^{(2)}[\Phi] + R_k \right)^{-1} \right]$$

Typical form of the regulator $R_k(p^2)$ and its derivative [Gies '06].

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

Flow Equations

Truncate the effective average action

 $\rightarrow \mbox{restrict}$ to manageable amount of operators

Extract flow equations of operators by suitable projection

Compare different truncation schemes as convergence checks

Figure: RG flow of the effective action in theory space [Gies '06].

Higgs mechanism

The Higgs mechanism induces masses for all Fermions as well as the weak bosons through the scalar potential acquiring a non-zero vacuum expectation value (vev)

E.g. look at the flow of a scalar potential in a Higgs-Yukawa toy model

$$\Gamma_{k} = \int_{x} (\partial_{\mu}\phi)^{2} + U(\phi^{2}) + \bar{\psi}i\partial\!\!\!/\psi + ih\bar{\psi}\phi\psi$$

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

Mass Generation

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

Mass Generation

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

Mass Generation

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

Mass Generation

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

Higgs mechanism - second order phase transition

Varying the couplings in the UV changes the obtained vev

 $\epsilon_{\Lambda} = \frac{m^2}{\Lambda^2}$

Larger values of ϵ_{Λ} : Potential stays symmetric

Smaller values of ϵ_{Λ} : Potential develops minimum at non-vanishing field.

The vev as a function of the control parameter is described by a second order quantum phase transition (tied to the fine tuning problem)

Quantum Chromodynamics I

Fundamental QCD action

$$S_{\rm QCD} = \int_{\times} \bar{\psi}^{\rm a}_i (\mathrm{i}\partial\!\!\!/ \delta_{ij} + \bar{g} A_{ij}) \psi^{\rm a}_j + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{(\partial_\mu A^\mu)^2}{2\xi}$$

induces effective four-fermion vertices through quantum fluctuations

\Rightarrow At intermediate scales: NJL-type interactions included

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

Quantum Chromodynamics II

$$\begin{split} \Gamma_{k} &= \int_{x} \bar{\psi}_{i}^{a} (\mathsf{i} Z_{\psi} \partial \!\!\!/ \delta_{ij} + \bar{g} A_{ij}) \psi_{j}^{a} + \frac{Z_{F}}{4} F_{\mu\nu} F^{\mu\nu} + \frac{(\partial_{\mu} A^{\mu})^{2}}{2\xi} + \frac{1}{2} \bar{\lambda}_{\sigma} (\mathsf{S} - \mathsf{P}). \\ & \text{where} \ (\mathsf{S} - \mathsf{P}) = \left(\bar{\psi}_{i}^{a} \psi_{i}^{b} \right)^{2} - \left(\bar{\psi}_{i}^{a} \gamma_{5} \psi_{i}^{b} \right)^{2} \end{split}$$

Flow of four fermion coupling $\partial_t \lambda_\sigma \sim g^4$

Towards IR: $g \nearrow$ due to asymptotic freedom, hence $\lambda_{\sigma} \nearrow$

 \rightarrow Non-perturbative effects like $\chi {\rm SB}$ require effective low energy description

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

Dynamical Bosonization

Translate microscopic degrees of freedom to macroscopic ones (quarks, gluons \rightarrow mesons)

 $\bar{\psi}^{\rm a}_i\psi^{\rm b}_i \ \rightarrow \ \varphi^{\rm ab}$

Encode four-fermion interaction in Yukawa interaction

On all scales *k*: Additional contributions to the flow eqs. of the Yukawa model to compensate the 4-Fermi coupling

χ SB: from quarks and gluons to mesons and bound states

Flow equation for $\tilde{\epsilon} \sim m^2$ of the auxiliary field φ [Gies '06].

As long as $g < g_{cr}$: $\tilde{\epsilon}$ controlled by fixed point structure

If $g > g_{\rm cr}$: Fixed points annihilate, $\tilde{\epsilon}$ runs fast towards negative values ($m^2 < 0$: χ SB)

ightarrow Scale at which χ SB is triggered ($\sim \Lambda_{\rm QCD}$) is set by the strong gauge coupling.

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

Reparametrization of the scalar field Reparametrization of the auxiliary scalar field φ as

$$\begin{split} \Phi^{ab} &= \frac{1}{\sqrt{2}} \left(\varphi^{ab} + \epsilon^{ac} \epsilon^{bd} \varphi^{*cd} \right) \\ \tilde{\Phi}^{ab} &= \frac{1}{\sqrt{2}} \left(\varphi^{*ab} - \epsilon^{ac} \epsilon^{bd} \varphi^{cd} \right) \end{split}$$

and setting

$$\phi^{a} \equiv \Phi^{a2}$$
$$\tilde{\phi}^{a} \equiv \tilde{\Phi}^{2a}$$

allows us to identify the $SU(2)_L$ doublet (ϕ), which acquires its own dynamics through standard model interactions

$$\begin{aligned} \mathscr{L}_{\text{Yuk}} = & \frac{\mathsf{i}h_b}{\sqrt{2}} \left(\bar{\psi}_{\mathsf{L},i}^a \phi^a b_{\mathsf{R},i} + \mathsf{h.c.} \right) + \frac{\mathsf{i}h_t}{\sqrt{2}} \left(\bar{\psi}_{\mathsf{L},i}^a \phi_{\mathcal{C}}^a t_{\mathsf{R},i} + \mathsf{h.c.} \right) \\ & + \frac{\mathsf{i}h}{\sqrt{2}} \left(\bar{\psi}_{\mathsf{R},i}^a \tilde{\phi}^a b_{\mathsf{L},i} + \bar{\psi}_{\mathsf{R},i}^a \tilde{\phi}_{\mathcal{C}}^a t_{\mathsf{L},i} + \mathsf{h.c.} \right) \end{aligned}$$

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

The Full Model

Reparametrization of the meson field to isolate the $SU(2)_L$ doublet (Φ) yields

$$\begin{split} \Gamma_{k} &= \int_{x} Z_{\phi} |\partial_{\mu}\phi|^{2} + Z_{\tilde{\phi}} \Big| \partial_{\mu}\tilde{\phi} \Big|^{2} + \bar{\psi}_{i}^{a} \mathbf{i} \mathcal{D}_{ij}\psi_{j}^{a} + \frac{Z_{\mathsf{F}}}{4} F_{\mu\nu}^{z} F_{z}^{\mu\nu} \\ &+ \frac{(\partial_{\mu}A^{\mu})^{2}}{2\xi} + (\mathsf{Ghosts}) + U(\rho, \tilde{\rho}) \\ &+ \frac{\mathbf{i}h_{t}}{\sqrt{2}} \left(\bar{\psi}_{\mathsf{L},i}^{a} \phi_{\mathcal{C}}^{a} \mathbf{t}_{\mathsf{R},i} + \mathbf{h.c.} \right) + \frac{\mathbf{i}h_{b}}{\sqrt{2}} \left(\bar{\psi}_{\mathsf{L},i}^{a} \phi^{a} b_{\mathsf{R},i} + \mathbf{h.c.} \right) \\ &+ \frac{\mathbf{i}h}{\sqrt{2}} \left(\bar{\psi}_{\mathsf{R},i}^{a} \tilde{\phi}^{a} b_{\mathsf{L},i} + \bar{\psi}_{\mathsf{R},i}^{a} \tilde{\phi}_{\mathcal{C}}^{a} \mathbf{t}_{\mathsf{L},i} + \mathbf{h.c.} \right) \end{split}$$

 \Rightarrow analyze parametric dependence of phase transitions in this model

 $\begin{array}{l} \mbox{Scaling near quantum phase transition described by critical exponents} \\ \mbox{For the order parameter we have $\mathbf{v} \propto |\delta \epsilon_{\Lambda}|^{\beta}$} \\ \beta \mbox{ can be related to the critical exponent η which measures the deviation of the} \\ \mbox{RG scaling exponent from its canonical value } \Theta = 2 - \eta \end{array}$

Phase Transitions for different Model Parameters

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

Critical Exponents for different Model Parameters

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

Phase transitions for increasing QCD coupling

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

Critical Exponents for increasing QCD coupling

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

Conclusions

Able to quantify interplay of the two breaking mechanisms through (pseudo-)critical exponents:

- Stronger gauge interactions lessen the fine-tuning necessary
- Other parameters have little influence on the phase transition

Further points of interest:

- \Rightarrow Study influence of the electroweak sector on the phase transition
- \Rightarrow Analyze fine tuning for asymptotically free solutions [Gies '19]

Thank you for your attention

Are there any questions?

Interplay of Chiral Transitions in the Standard Model Richard Schmieden

Literature I

- Holger Gies. Introduction to the Functional RG and Applications to Gauge Theories. *Lecture Notes in Physics*, 2006.
- Christof Wetterich. Exact evolution equation for the effective potential. *Phys. Lett. B*, 1993.
- Clemens Gneiting. *Higgs mass bounds from renormalization flow* Diploma Thesis, 2005.
- René Sondenheimer *Renormalization group flow of the Higgs sector*, PhD Thesis 2016.
- Holger Gies et al. Towards a renormalizable standard model without fundamental Higgs scalar. *Phys. Rev. D*, 2004.

Literature II

- Holger Gies and Christof Wetterich. Renormalization flow of bound states. *Phys. Rev. D*, 2002.
- Holger Gies and René Sondenheimer. Higgs Mass Bounds from Renormalization Flow for a Higgs-top-bottom model. *Eur. Phys. J*, 2015.
- Dirk Jungnickel and Christof Wetterich. Effective action for the chiral quark-meson model *Phys. Rev. D*, 1995.
- Holger Gies and Christof Wetterich. Universality of spontaneous chiral symmetry breaking in gauge theories, *Phys. Rev. D*, 2004.
- Holger Gies. Running coupling in Yang-Mills theory: A flow equation study. *Phys. Rev. D*, 2002.

