Renormalization of Scalar Field Theories in Riemannian Manifolds with Boundaries Physik Combo Talk

Robert Schlesier

Institute of Theoretical Physics Leipzig TET Group

19. September 2023

< ロ > < 同 > < 回 > < 回 >

Table of Contents

3 General Form of Coefficients and Explicit Calculation

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation and Problem Setting

Boundary Heat Kernel a' la Grieser General Form of Coefficients and Explicit Calculation Further Considerations and Outlook

Motivation

Motivation Problem and Setting Goal and Approach

- Investigation of QFT in the presence of branes
- Description of defects or junctions, e.g. in the context of conformal field theory
- Quantifying Casimir effect in curved backgrounds
- Deriving critical boundary exponents

< ロ > < 同 > < 回 > < 回 >

General Problem

Motivation Problem and Setting Goal and Approach

• Divergence of non-linear field operators, e.g. $\langle \hat{\phi}^2(\mathbf{x})
angle$

Pointsplit Renormalization (without boundary)

Let H(x, x') the Hadamard parametrix (divergent part of 2pt correlator) then the regularized squared field operator is defined as:

$$\langle \hat{\phi}^2(\mathbf{x}) \rangle_H := \lim_{\mathbf{x}' \to \mathbf{x}} \left[\langle \hat{\phi}(\mathbf{x}) \hat{\phi}(\mathbf{x}') \rangle - H(\mathbf{x}, \mathbf{x}') \right]$$

In 4D one has: $H(x, x') = \frac{U(x, x')}{\sigma(x, x')} + V(x, x') \log(\sigma(x, x'))$ with $\sigma(x, x')$ as the half squared geodesic distance.

• Introduction of boundary creates additional divergences \Rightarrow find universal divergent structure on boundary: find $H_{\partial}(x, x')$

・ロト ・四ト ・ヨト ・ヨト

Motivation Problem and Setting Goal and Approach

Our Model under Consideration

- Riemannian manifold M with boundary ∂M and field ϕ defined by: $\mathscr{L} = -\frac{1}{2}g^{\mu\nu}(\nabla_{\mu}\phi)(\nabla_{\nu}\phi) - \frac{m^{2}}{2}\phi^{2} - \frac{\zeta}{2}R\phi^{2} - \frac{\lambda}{4!}\phi^{4}$ • Free dynamics:
 - $\hat{\mathscr{K}}\phi := (\bigtriangleup_g m^2 \zeta R)\phi = 0$
- Use Gaussian coordinates where:
- ξ is Riemannian normal coordinate from \overline{x} to \overline{x}'
- z, z' affine parameters of normal geodesics from $\overline{x}, \overline{x}'$ to x, x'
- Metric expansion:

 $ds^2 = dz^2 + g_{ab}(x)d\xi^a d\xi^b$

 $g_{ab}(x) = \delta_{ab} + [2\overline{K}_{ab}z] + [[\overline{K}_{ac}\overline{K}_{b}^{c} - \overline{R}_{a0b0}]z^{2} + 2D_{c}\overline{K}_{ab}\xi^{c}z - \frac{1}{3}\hat{\overline{R}}_{acbd}\xi^{c}\xi^{d}] + \dots$

FIG.1: Sketch of the coordinates.

Motivation Problem and Setting Goal and Approach

Goal and Approach

- Goal of this talk: find a local, covariant parametrix H_∂ for pointsplit
- First candidate: singular part of Greens function G(x, x') to $\hat{\mathscr{K}}$
- From spectral calculus: $G(x, x') = \int_0^\infty K(\tau | x, x') d\tau$
- $K(\tau|x, x')$ is the heat kernel satisfying:

$$\begin{aligned} (\partial_{\tau} - \hat{\mathscr{K}}) \mathcal{K}(\tau | \mathbf{x}, \mathbf{x}') &= 0\\ \mathcal{K}(\tau | \mathbf{x}, \mathbf{x}')|_{(\mathbf{x} \lor \mathbf{x}') \in \partial M} &= 0\\ \lim_{\tau \to 0} \mathcal{K}(\tau | \mathbf{x}, \mathbf{x}') &= \delta(\mathbf{x}, \mathbf{x}') \end{aligned}$$

- Note: divergent part is encoded in lower integration boundary ⇒ asymptotic expansion of heat kernel suffices
- Asymptotic expansion of heat kernel already investigated by Grieser (2004) (⇒ existence, uniqueness)

< ロ > < 同 > < 回 > < 回 >

The Space Ψ^{α}_{∂} and its properties Existence of an Asymptotic Expansion Can we satisfy the necessary Conditions

Defining Function Space Ψ^{lpha}_{∂}

Definition

Let $\alpha \leq 0$ then $\Psi_{\partial}^{\alpha} \subset \mathcal{C}^{\infty}((0,\infty) \times M^2)$ such that $\forall A \in \Psi_{\partial}^{\alpha}$ holds that:

- (a) $D^{\gamma}_{\tau,x,y}\mathcal{A}(\tau,x,y)$ decays rapidly for $x \neq y$ at $t \rightarrow 0$
- (b) $\forall p \in M/\partial M \exists$ local coordinate system $U \ni p$ and a function $\tilde{A}^{int} \in C^{\infty}([0,\infty) \times \mathbb{R}^4 \times U)$ with rapid decay for $\tilde{A}^{int}(\tau, X, Z, y)$ and its derivatives as $(|X| + |Z|) \to \infty$ such that: $A(\tau, x, y) = \tau^{-3-\alpha} \tilde{A}^{int}(\tau, \frac{\xi - \eta}{\sqrt{\tau}}, \frac{z - w}{\sqrt{\tau}}, y)$
- (c) $\forall p \in \partial M \exists$ local coordinate system $U \ni p$ and functions $\tilde{A}^{dir} \in C^{\infty}([0,\infty) \times \mathbb{R}^4 \times U), \ \tilde{A}^{refl} \in C^{\infty}([0,\infty) \times \mathbb{R}^3 \times \mathbb{R}^2_+ \times U \cap \partial M)$ with rapid decay for \tilde{A}^{dir} as in (b) and for $\tilde{A}^{refl}(\tau, X, Z, W, \hat{y})$ as $(|X| + |Z| + |W|) \to \infty$ such that: $A(\tau, x, y) = \tau^{-3-\alpha} [\tilde{A}^{dir}(\tau, \frac{\xi - \eta}{\sqrt{\tau}}, \frac{z - w}{\sqrt{\tau}}, y) - \tilde{A}^{refl}(\tau, \frac{\xi - \eta}{\sqrt{\tau}}, \frac{z}{\sqrt{\tau}}, \frac{w}{\sqrt{\tau}}, \hat{y})]$ $=: \tau^{-3-\alpha} \tilde{A}^{bd}(\tau, \frac{\xi - \eta}{\sqrt{\tau}}, \frac{z}{\sqrt{\tau}}, \frac{w}{\sqrt{\tau}}, \hat{y})$

The Space Ψ^{α}_{∂} and its properties Existence of an Asymptotic Expansion Can we satisfy the necessary Conditions

Properties of Ψ^{α}_{∂}

• For $A \in \Psi^{\alpha}_{\partial}$ define interior and boundary leading parts of A as: - $\Phi^{int}_{\alpha}(A) := \tilde{A}^{int}(0, X, Z, y)$ and $\Phi^{bd}_{\alpha}(A) := \tilde{A}^{bd}(0, X, Z, W, \hat{y})$

Lemma: Properties of $\overline{\Psi}^{\alpha}_{\partial}$

Let $A \in \Psi_{\partial}^{\alpha}$ and $B \in \Psi_{\partial}^{\beta}$ for $\alpha, \beta \leq 0$ then: (a) $\Psi_{\partial}^{\alpha-\frac{1}{2}} \subset \Psi_{\partial}^{\alpha}$ and if $\Phi_{\alpha}^{int/bd}(A) = 0 \Rightarrow A \in \Psi_{\partial}^{\alpha-\frac{1}{2}}$ (b) If $\alpha \leq -1$ then $R := (\partial_{\tau} - \hat{\mathscr{K}})A \in \Psi_{\partial}^{\alpha+1}$ (c) The convolution $(A * B) \in \Psi_{\partial}^{\alpha+\beta}$ with $(A * B)(\tau|x, x') := \int_{0}^{\tau} d\tau' \int_{M} dV(y)A(\tau - \tau'|x, y)B(\tau'|y, x')$

The Space Ψ^{α}_{α} and its properties Existence of an Asymptotic Expansion Can we satisfy the necessary Conditions

Existence Theorem by Grieser

Theorem: Existence of an Asymptotic Expansion

Assume $K_1 \in \Psi_{\partial}^{-1}$ satisfying:

(i)
$$(\partial_{\tau} - \hat{\mathscr{K}})K_1 = R \in \Psi_{\partial}^{-\frac{1}{2}}$$

(ii) $K_1(\tau, x, x') = 0$ for $x \lor x' \in \partial M$
(iii) $\lim_{\tau \to 0^+} K_1(\tau, x, x') = \delta(x, y)$

Then we have that:

- (a) Volterra series $K := K_1 (K_1 * R) + (K_1 * (R * R)) (K_1 * (R * (R * R))) + ...$ converges in $C^{\infty}((0, \infty) \times M^2)$ and $K \in \Psi_{\partial}^{-1}$
- (b) K is a Dirichlet heat kernel
- (c) The Volterra series is an asymptotic series as $\tau \to 0$

э

The Space Ψ^α_∂ and its properties Existence of an Asymptotic Expansion Can we satisfy the necessary Conditions

Can we find a suitable K_1

• Yes! Let K_1 be the euclidean heat kernel satisfying our boundary conditions, meaning that (*ii*) and (*iii*) are fulfilled:

$$\mathcal{K}_{1}(\tau|\mathbf{x},\mathbf{x}') := \frac{e^{-\frac{\xi^{2}\epsilon^{b}}{4\tau}}g_{ab}(\mathbf{x}')}{(4\pi\tau)^{2}} \left[e^{\frac{-(z-z')^{2}}{4\tau}} - e^{\frac{-(z+z')^{2}}{4\tau}}\right] \in \Psi_{\partial}^{-1}$$

- One would expect $(\partial_{ au} \hat{\mathscr{K}}) \mathcal{K}_1 = \mathcal{R} \in \Psi^0_\partial$
- However, since K₁ is an euclidean heat kernel ⇒ Φ₀^{int/bd}(R) = 0 and hence R ∈ Ψ_∂^{-1/2}, which is precisely requirement (i)
- Volterra series gives rise to asymptotic expansion of a heat kernel K
 ⇒ need to compute contributions up to a given order of interest

イロト イボト イヨト イヨト

Explicit Calculation General Form of the Coefficients Subtleties of the Calculation

Explicit Calculation

- Calculate $R = (\partial_{\tau} \hat{\mathscr{K}})K_1$ and $(K_1 * (R * (R * ...)))$ up to a given order of interest
- Calculating convolutions in bulk is no problem (Gaussian integrals over $\mathbb{R}^4,$ and τ' integration leads to beta functions)
- Calculating convolutions at the boundary introduces some subtleties, due to the restriction of integrating over half space

イロト イボト イヨト イヨト

Explicit Calculation General Form of the Coefficients Subtleties of the Calculation

Explicit Calculation

- Calculate $R = (\partial_{\tau} \hat{\mathscr{K}})K_1$ and $(K_1 * (R * (R * ...)))$ up to a given order of interest
- Calculating convolutions in bulk is no problem (Gaussian integrals over $\mathbb{R}^4,$ and τ' integration leads to beta functions)
- Calculating convolutions at the boundary introduces some subtleties, due to the restriction of integrating over half space
- $\Rightarrow\,$ However, it can be shown that all integrals can be solved explicitely
- \Rightarrow At each order, K can be expressed as linear combinations of error functions and Gaussians

イロト イボト イヨト イヨト

Explicit Calculation General Form of the Coefficients Subtleties of the Calculation

General Form of the Coefficients

Theorem: General structure of the Coefficients

Let $N, M, n, m \in \mathbb{N}_0$, $k \in \mathbb{Z}$, $\tilde{N} \in \mathbb{Z}_2$ and $\delta = N + \tilde{N} - 1$. At order M in curvature quantities, K takes the form:

$$\mathcal{K}^{(M)} = \left([\mathcal{P}]_{-}^{M} e^{\frac{-(z-z')^{2}}{4\tau}} + [\mathcal{P}]_{+}^{M} e^{\frac{-(z+z')^{2}}{4\tau}} + [\mathcal{P}]_{0}^{M} \frac{1}{\sqrt{\tau}} \operatorname{erfc}\left[\frac{z+z'}{2\sqrt{\tau}}\right] \right) \frac{e^{\frac{-|\xi|^{2}}{4\tau}}}{(4\pi\tau)^{2}}$$

$$\begin{split} & [P]_{-}^{M} \in \operatorname{Span}\{z^{n}z'^{m}\tau^{k+\tilde{N}/2}f(\frac{\xi}{\sqrt{\tau}})|f \in \Gamma_{N,\tilde{N}}^{(M)}, N \leq M - \tilde{N} = n + m + 2k, k \geq 0\} \\ & [P]_{+}^{M} \in \operatorname{Span}\{z^{n}z'^{m}\tau^{k+\tilde{N}/2}f(\frac{\xi}{\sqrt{\tau}})|f \in \Gamma_{N,\tilde{N}}^{(M)}, N \leq M - \tilde{N} = n + m + 2k, k \geq -\delta\} \\ & [P]_{0}^{M} \in \operatorname{Span}\{z^{n}z'^{m}\tau^{k+\tilde{N}/2}f(\frac{\xi}{\sqrt{\tau}})|f \in \Gamma_{N,\tilde{N}}^{(M)}, N \leq M - \tilde{N} = n + m + 2k - 1, k \geq -\delta\} \\ & \text{where } \Gamma_{N,\tilde{N}}^{(M)} \text{ is the set of order } 2N + \tilde{N} \text{ polynomials at curvature quantity} \\ & \text{order } M \text{ with a "regularizing effect"}. \end{split}$$

イロト イポト イヨト イヨト

Э

Explicit Calculation General Form of the Coefficients Subtleties of the Calculation

Tensor Structure

Definition: Regularizing Effect

For $N, M \in \mathbb{N}_0$, $\tilde{N} \in \mathbb{Z}_2$, $s \in (0, 1)$, let $f \in \Gamma_{N, \tilde{N}}^{(M)}$, then the "regularizing effect" means that:

$$I[f] := \int_{R^3} s^{\tilde{N}/2} f(Y/\sqrt{s}) \frac{e^{\frac{-|Y-sX|^2}{4s(1-s)}}}{\sqrt{4\pi s(1-s)^3}} d^3Y = s^{N+\tilde{N}} f(X)$$

- Concrete example: let's consider $g \in \Gamma_{2,0}^{(2)}$ $g(\frac{Y}{\sqrt{s}}) := \frac{Y^a Y^b Y^c Y^d}{s^2} \overline{K}_{ab} \overline{K}_{cd} - \frac{Y^a Y^b}{s} [8 \overline{K}_{ac} \overline{K}_b^c + 4 \overline{K}_{ab}] + [8 \overline{K}_{ab} \overline{K}^{ab} + 4 \overline{K}^2]$
- One can check: I[g] = s²g(X) (note: changing one of the coefficients would generate additional terms linear in s and independent of s)

Explicit Calculation General Form of the Coefficients Subtleties of the Calculation

What are the Subtleties of the Calculation

• Difficulties can be traced back to the occurence of the following family of integrals:

$$I_{l,k}^{(a,b)} := \int_0^1 (1-s)^{\frac{l}{2}} s^{\frac{k}{2}} \operatorname{erfc}\left[\frac{a}{2}\sqrt{\frac{s}{1-s}}Z + \frac{b}{2}\sqrt{\frac{1-s}{s}}Z'\right] ds$$

where $a, b = \pm 1$ and $l, k \in \mathbb{Z}$.

• Origin of error function is integral over the half space

< ロ > < 同 > < 三 > < 三 >

Explicit Calculation General Form of the Coefficients Subtleties of the Calculation

What are the Subtleties of the Calculation

• Difficulties can be traced back to the occurence of the following family of integrals:

$$I_{l,k}^{(a,b)} := \int_0^1 (1-s)^{\frac{l}{2}} s^{\frac{k}{2}} \operatorname{erfc}\left[\frac{a}{2}\sqrt{\frac{s}{1-s}}Z + \frac{b}{2}\sqrt{\frac{1-s}{s}}Z'\right] ds$$

where $a, b = \pm 1$ and $l, k \in \mathbb{Z}$.

- Origin of error function is integral over the half space
- One can show the following:
 - \Rightarrow only need $l \in 2\mathbb{N}_0 \Rightarrow$ w.l.o.g. set l = 0
 - \Rightarrow k is even, e.g. k = 2q with $q \in \mathbb{Z}$
 - \Rightarrow *q* is non negative, e.g. $q \in \mathbb{N}_0$ (requires the "regularizing effect")
- $I_{0.2q}^{(a,b)}$ for $q\in\mathbb{N}_0$ can be solved explicitly

イロト イヨト イヨト

Further Considerations Outlook

Further Considerations

- We saw that there are negative powers of τ in the prefactors of $\mathcal{K} = \frac{e^{-\frac{|\xi|^2}{4\tau}}}{(4\pi\tau)^2} \left([P]_{-}e^{\frac{-(z-z')^2}{4\tau}} + [P]_{+}e^{\frac{-(z+z')^2}{4\tau}} + [P]_{0}\frac{\operatorname{erfc}\left[\frac{z+z'}{2\sqrt{\tau}}\right]}{\sqrt{\tau}} \right)$
- Can we absorb the negative au powers into the exponentials?

・ロト ・回ト ・ヨト ・ヨト

Further Considerations Outlook

Further Considerations

• We saw that there are negative powers of au in the prefactors of

$$\mathcal{K} = \frac{e^{\frac{-|\xi|^2}{4\tau}}}{(4\pi\tau)^2} \left([P]_{-} e^{\frac{-(z-z')^2}{4\tau}} + [P]_{+} e^{\frac{-(z+z')^2}{4\tau}} + [P]_{0} \frac{\operatorname{erfc}\left[\frac{z+z'}{2\sqrt{\tau}}\right]}{\sqrt{\tau}} \right)$$

• Can we absorb the negative au powers into the exponentials?

FIG.2: Sketch of $\sigma/\overline{\sigma}$

Theorem

Let $\sigma/\overline{\sigma}$ the direct/reflected half squared geodesic distence between x and x' then one can rewrite:

$$\mathcal{K} = \frac{1}{(4\pi\tau)^2} \left[\Omega(\tau|\mathbf{x},\mathbf{x}') e^{\frac{-\sigma(\mathbf{x},\mathbf{x}')}{2\tau}} + \overline{\Omega}(\tau|\mathbf{x},\mathbf{x}') e^{\frac{-\overline{\sigma}(\mathbf{x},\mathbf{x}')}{2\tau}} \right]$$

here $\Omega/\overline{\Omega}$ contain only non negative powers of τ

イロト イポト イヨト イヨト

• the expression above was also investigated by McAvity and Osborn

Further Considerations Outlook

Outlook

- What was achived?
- Showed that asymptotic coefficients can be expressed analytically at each order
- Showed symmetry of asymptotic coefficients
- Concrete calculation up to fourth order in curvature quantities via Mathematica

< ロ > < 同 > < 三 > < 三 >

Further Considerations Outlook

Outlook

- What was achived?
- Showed that asymptotic coefficients can be expressed analytically at each order
- Showed symmetry of asymptotic coefficients
- Concrete calculation up to fourth order in curvature quantities via Mathematica
- What are the next steps?
- Perform au integration to obtain singular structure of $G(\mathbf{x},\mathbf{x}')$
- Check that this gives rise to a Hadamard parametrix
- Compute physical quantities (energy densities, critical boundary exponents)

References

Further Considerations Outlook

D. Grieser,

"Notes on heat kernel asymptotics," (2004) http://www.staff.uni-oldenburg.de/daniel.grieser/wwwlehre/Schriebe/heat.pdf

D. M. McAvity, H. Osborn "A DeWitt expansion of the heat kernel for manifolds with a boundary," Classical and Quantum Gravity (1991) doi:10.1088/0264-9381/8/4/008

- S. Hollands and R. M. Wald, "Local Wick polynomials and time ordered products of quantum fields in curved space-time," Commun. Math. Phys. 223, 289-326 (2001) doi:10.1007/s002200100540. [arXiv:gr-qc/0103074 [gr-qc]].
- S. Hollands and R. M. Wald,

"Existence of local covariant time ordered products of quantum fields in curved spacetime," Commun. Math. Phys. **231**, 309-345 (2002) doi:10.1007/s00220-002-0719-y. [arXiv:gr-qc/0111108 [gr-qc]].

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・