Renormalization of Scalar Field Theories in Riemannian Manifolds with Boundaries
 Physik Combo Talk

Robert Schlesier

Institute of Theoretical Physics Leipzig
TET Group
19. September 2023

Table of Contents

(1) Motivation and Problem Setting
(2) Boundary Heat Kernel a' la Grieser
(3) General Form of Coefficients and Explicit Calculation

4 Further Considerations and Outlook

Motivation

- Investigation of QFT in the presence of branes
- Description of defects or junctions, e.g. in the context of conformal field theory
- Quantifying Casimir effect in curved backgrounds
- Deriving critical boundary exponents

General Problem

- Divergence of non-linear field operators, e.g. $\left\langle\hat{\phi}^{2}(x)\right\rangle$

Pointsplit Renormalization (without boundary)

Let $H\left(x, x^{\prime}\right)$ the Hadamard parametrix (divergent part of 2pt correlator) then the regularized squared field operator is defined as:

$$
\left\langle\hat{\phi}^{2}(x)\right\rangle_{H}:=\lim _{x^{\prime} \rightarrow x}\left[\left\langle\hat{\phi}(x) \hat{\phi}\left(x^{\prime}\right)\right\rangle-H\left(x, x^{\prime}\right)\right]
$$

In 4D one has: $H\left(x, x^{\prime}\right)=\frac{U\left(x, x^{\prime}\right)}{\sigma\left(x, x^{\prime}\right)}+V\left(x, x^{\prime}\right) \log \left(\sigma\left(x, x^{\prime}\right)\right)$ with $\sigma\left(x, x^{\prime}\right)$ as the half squared geodesic distance.

- Introduction of boundary creates additional divergences \Rightarrow find universal divergent structure on boundary: find $H_{\partial}(x, x)$

Our Model under Consideration

- Riemannian manifold M with boundary ∂M and field ϕ defined by:

$$
\mathscr{L}=-\frac{1}{2} g^{\mu \nu}\left(\nabla_{\mu} \phi\right)\left(\nabla_{\nu} \phi\right)-\frac{m^{2}}{2} \phi^{2}-\frac{\zeta}{2} R \phi^{2}-\frac{\lambda}{4!} \phi^{4}
$$

- Free dynamics:
$\hat{\mathscr{K}} \phi:=\left(\Delta_{g}-m^{2}-\zeta R\right) \phi=0$
- Use Gaussian coordinates where:
- ξ is Riemannian normal coordinate from \bar{x} to \bar{x}^{\prime}
- z, z^{\prime} affine parameters of normal geodesics from $\bar{x}, \bar{x}^{\prime}$ to x, x^{\prime}

FIG.1: Sketch of the coordinates.

- Metric expansion:

$$
\begin{aligned}
d s^{2} & =d z^{2}+g_{a b}(x) d \xi^{a} d \xi^{b} \\
g_{a b}(x) & =\delta_{a b}+\left[2 \bar{K}_{a b} z\right]+\left[\left[\bar{K}_{a c} \bar{K}_{b}^{c}-\bar{R}_{a 0 b 0}\right] z^{2}+2 D_{c} \bar{K}_{a b} \xi^{c} z-\frac{1}{3} \hat{\bar{R}}_{a c b d} \xi^{c} \xi^{d}\right]+\ldots
\end{aligned}
$$

Goal and Approach

- Goal of this talk: find a local, covariant parametrix H_{∂} for pointsplit
- First candidate: singular part of Greens function $G\left(x, x^{\prime}\right)$ to $\hat{\mathscr{K}}$
- From spectral calculus: $G\left(x, x^{\prime}\right)=\int_{0}^{\infty} K\left(\tau \mid x, x^{\prime}\right) d \tau$
- $K\left(\tau \mid x, x^{\prime}\right)$ is the heat kernel satisfying:

$$
\begin{aligned}
\left(\partial_{\tau}-\hat{\mathscr{K}}\right) K\left(\tau \mid x, x^{\prime}\right) & =0 \\
\left.K\left(\tau \mid x, x^{\prime}\right)\right|_{\left(x \vee x^{\prime}\right) \in \partial M} & =0 \\
\lim _{\tau \rightarrow 0} K\left(\tau \mid x, x^{\prime}\right) & =\delta\left(x, x^{\prime}\right)
\end{aligned}
$$

- Note: divergent part is encoded in lower integration boundary \Rightarrow asymptotic expansion of heat kernel suffices
- Asymptotic expansion of heat kernel already investigated by Grieser (2004) (\Rightarrow existence, uniqueness)

Defining Function Space Ψ_{∂}^{α}

Definition

Let $\alpha \leq 0$ then $\Psi_{\partial}^{\alpha} \subset C^{\infty}\left((0, \infty) \times M^{2}\right)$ such that $\forall A \in \Psi_{\partial}^{\alpha}$ holds that:
(a) $D_{\tau, x, y}^{\gamma} A(\tau, x, y)$ decays rapidly for $x \neq y$ at $t \rightarrow 0$
(b) $\forall p \in M / \partial M \exists$ local coordinate system $U \ni p$ and a function
$\tilde{A}^{\text {int }} \in C^{\infty}\left([0, \infty) \times \mathbb{R}^{4} \times U\right)$ with rapid decay for $\tilde{A}^{\text {int }}(\tau, X, Z, y)$ and its derivatives as $(|X|+|Z|) \rightarrow \infty$ such that: $A(\tau, x, y)=\tau^{-3-\alpha} \tilde{A}^{i n t}\left(\tau, \frac{\xi-\eta}{\sqrt{\tau}}, \frac{z-w}{\sqrt{\tau}}, y\right)$
(c) $\forall p \in \partial M \exists$ local coordinate system $U \ni p$ and functions
$\tilde{A}^{\text {dir }} \in C^{\infty}\left([0, \infty) \times \mathbb{R}^{4} \times U\right), \tilde{A}^{\text {refl }} \in C^{\infty}\left([0, \infty) \times \mathbb{R}^{3} \times \mathbb{R}_{+}^{2} \times U \cap \partial M\right)$ with rapid decay for $\tilde{A}^{\text {dir }}$ as in (b) and for $\tilde{A}^{\text {refl }}(\tau, X, Z, W, \hat{y})$ as $(|X|+|Z|+|W|) \rightarrow \infty$ such that:

$$
\begin{aligned}
A(\tau, x, y) & =\tau^{-3-\alpha}\left[\tilde{A}^{\operatorname{dir}}\left(\tau, \frac{\xi-\eta}{\sqrt{\tau}}, \frac{z-w}{\sqrt{\tau}}, y\right)-\tilde{A}^{\text {refl }}\left(\tau, \frac{\xi-\eta}{\sqrt{\tau}}, \frac{z}{\sqrt{\tau}}, \frac{w}{\sqrt{\tau}}, \hat{y}\right)\right] \\
& =: \tau^{-3-\alpha} \tilde{A}^{b d}\left(\tau, \frac{\xi-\eta}{\sqrt{\tau}}, \frac{z}{\sqrt{\tau}}, \frac{w}{\sqrt{\tau}}, \hat{y}\right)
\end{aligned}
$$

Properties of Ψ_{∂}^{α}

- For $A \in \Psi_{\partial}^{\alpha}$ define interior and boundary leading parts of A as:
- $\Phi_{\alpha}^{i n t}(A):=\tilde{A}^{\text {int }}(0, X, Z, y)$ and $\Phi_{\alpha}^{b d}(A):=\tilde{A}^{b d}(0, X, Z, W, \hat{y})$

Lemma: Properties of Ψ_{∂}^{α}

Let $A \in \Psi_{\partial}^{\alpha}$ and $B \in \Psi_{\partial}^{\beta}$ for $\alpha, \beta \leq 0$ then:
(a) $\Psi_{\partial}^{\alpha-\frac{1}{2}} \subset \Psi_{\partial}^{\alpha}$ and if $\Phi_{\alpha}^{i n t / b d}(A)=0 \Rightarrow A \in \Psi_{\partial}^{\alpha-\frac{1}{2}}$
(b) If $\alpha \leq-1$ then $R:=\left(\partial_{\tau}-\hat{\mathscr{K}}\right) A \in \Psi_{\partial}^{\alpha+1}$
(c) The convolution $(A * B) \in \Psi_{\partial}^{\alpha+\beta}$ with

$$
(A * B)\left(\tau \mid x, x^{\prime}\right):=\int_{0}^{\tau} d \tau^{\prime} \int_{M} d V(y) A\left(\tau-\tau^{\prime} \mid x, y\right) B\left(\tau^{\prime} \mid y, x^{\prime}\right)
$$

Existence Theorem by Grieser

Theorem: Existence of an Asymptotic Expansion

Assume $K_{1} \in \Psi_{\partial}^{-1}$ satisfying:

$$
\begin{array}{rlrl}
& \text { (i) } & \left(\partial_{\tau}-\hat{\mathscr{K}}\right) K_{1} & =R \in \Psi_{\partial}^{-\frac{1}{2}} \\
\text { (ii) } & K_{1}\left(\tau, x, x^{\prime}\right) & =0 \text { for } x \vee x^{\prime} \in \partial M \\
\text { (iii) } \lim _{\tau \rightarrow 0^{+}} K_{1}\left(\tau, x, x^{\prime}\right) & =\delta(x, y)
\end{array}
$$

Then we have that:
(a) Volterra series $K:=K_{1}-\left(K_{1} * R\right)+\left(K_{1} *(R * R)\right)-\left(K_{1} *(R *(R * R))\right)+\ldots$ converges in $C^{\infty}\left((0, \infty) \times M^{2}\right)$ and $K \in \Psi_{\partial}^{-1}$
(b) K is a Dirichlet heat kernel
(c) The Volterra series is an asymptotic series as $\tau \rightarrow 0$

Can we find a suitable K_{1}

- Yes! Let K_{1} be the euclidean heat kernel satisfying our boundary conditions, meaning that (ii) and (iii) are fulfilled:

$$
K_{1}\left(\tau \mid x, X^{\prime}\right):=\frac{e^{-\frac{\xi^{a} \xi^{b}}{4 \tau} g_{a b}\left(x^{\prime}\right)}}{(4 \pi \tau)^{2}}\left[e^{\frac{-\left(z-z^{\prime}\right)^{2}}{4 \tau}}-e^{\frac{-\left(z+z^{\prime}\right)^{2}}{4 \tau}}\right] \in \Psi_{\partial}^{-1}
$$

- One would expect $\left(\partial_{\tau}-\hat{\mathscr{K}}\right) K_{1}=R \in \Psi_{\partial}^{0}$
- However, since K_{1} is an euclidean heat kernel $\Rightarrow \Phi_{0}^{i n t / b d}(R)=0$ and hence $R \in \Psi_{\partial}^{-\frac{1}{2}}$, which is precisely requirement (i)
- Volterra series gives rise to asymptotic expansion of a heat kernel K \Rightarrow need to compute contributions up to a given order of interest

Explicit Calculation

- Calculate $R=\left(\partial_{\tau}-\hat{\mathscr{K}}\right) K_{1}$ and $\left(K_{1} *(R *(R * \ldots))\right)$ up to a given order of interest
- Calculating convolutions in bulk is no problem (Gaussian integrals over \mathbb{R}^{4}, and τ^{\prime} integration leads to beta functions)
- Calculating convolutions at the boundary introduces some subtleties, due to the restriction of integrating over half space

Explicit Calculation

- Calculate $R=\left(\partial_{\tau}-\hat{\mathscr{K}}\right) K_{1}$ and $\left(K_{1} *(R *(R * \ldots))\right)$ up to a given order of interest
- Calculating convolutions in bulk is no problem (Gaussian integrals over \mathbb{R}^{4}, and τ^{\prime} integration leads to beta functions)
- Calculating convolutions at the boundary introduces some subtleties, due to the restriction of integrating over half space
\Rightarrow However, it can be shown that all integrals can be solved explicitely
\Rightarrow At each order, K can be expressed as linear combinations of error functions and Gaussians

General Form of the Coefficients

Theorem: General structure of the Coefficients

Let $N, M, n, m \in \mathbb{N}_{0}, k \in \mathbb{Z}, \tilde{N} \in \mathbb{Z}_{2}$ and $\delta=N+\tilde{N}-1$.
At order M in curvature quantities, K takes the form:

$$
K^{(M)}=\left([P]_{-}^{M} e^{\frac{-(z-z)^{2}}{4 \tau}}+[P]_{+}^{M} e^{-\frac{(z+z)^{2}}{4 \tau}}+[P]_{0}^{M} \frac{1}{\sqrt{\tau}} \operatorname{erfc}\left[\frac{z+z}{2 \sqrt{\tau}}\right]\right) \frac{e^{-\frac{1 \xi \xi)^{2}}{4 \tau}}}{(4 \pi \tau)^{2}}
$$

$[P]_{-}^{M} \in \operatorname{Span}\left\{\left.z^{n} z^{\prime m} \tau^{k+\tilde{N} / 2} f\left(\frac{\xi}{\sqrt{\tau}}\right) \right\rvert\, f \in \Gamma_{N, \tilde{N}}^{(M)}, N \leq M-\tilde{N}=n+m+2 k, k \geq 0\right\}$
$[P]_{+}^{M} \in \operatorname{Span}\left\{\left.z^{n} z^{\prime m} \tau^{k+\tilde{N} / 2} f\left(\frac{\xi}{\sqrt{\tau}}\right) \right\rvert\, f \in \Gamma_{N, \tilde{N}}^{(M)}, N \leq M-\tilde{N}=n+m+2 k, k \geq-\delta\right\}$
$[P]_{0}^{M} \in \operatorname{Span}\left\{\left.z^{n} z^{\prime m} \tau^{k+\tilde{N} / 2} f\left(\frac{\xi}{\sqrt{\tau}}\right) \right\rvert\, f \in \Gamma_{N, \tilde{N}}^{(M)}, N \leq M-\tilde{N}=n+m+2 k-1, k \geq-\delta\right\}$ where $\Gamma_{N, \tilde{N}}^{(M)}$ is the set of order $2 N+\tilde{N}$ polynomials at curvature quantity order M with a "regularizing effect".

Tensor Structure

Definition: Regularizing Effect

For $N, M \in \mathbb{N}_{0}, \tilde{N} \in \mathbb{Z}_{2}, s \in(0,1)$, let $f \in \Gamma_{N, \tilde{N}^{\prime}}^{(M)}$ then the "regularizing effect" means that:

$$
I[f]:=\int_{R^{3}} s^{\tilde{N} / 2} f(Y / \sqrt{s}) \frac{e^{\frac{-|Y-s|^{2}}{4 s(1-s)}}}{\sqrt{4 \pi s(1-s)^{3}}} d^{3} Y=s^{N+\tilde{N}} f(X)
$$

- Concrete example: let's consider $g \in \Gamma_{2,0}^{(2)}$

$$
g\left(\frac{Y}{\sqrt{s}}\right):=\frac{Y^{\rho} Y^{b} \gamma^{c} Y^{d}}{s^{2}} \bar{K}_{a b} \bar{K}_{c d}-\frac{Y^{p} \gamma^{b}}{s}\left[8 \bar{K}_{a c} \bar{K}_{b}^{c}+4 \overline{K K}_{a b}\right]+\left[8 \bar{K}_{a b} \bar{K}^{a b}+4 \bar{K}^{2}\right]
$$

- One can check: $l[g]=s^{2} g(X)$ (note: changing one of the coefficients would generate additional terms linear in s and independent of s)

What are the Subtleties of the Calculation

- Difficulties can be traced back to the occurence of the following family of integrals:

$$
I_{l, k}^{(a, b)}:=\int_{0}^{1}(1-s)^{\frac{1}{2}} s^{\frac{k}{2}} \operatorname{erfc}\left[\frac{a}{2} \sqrt{\frac{s}{1-s}} Z+\frac{b}{2} \sqrt{\frac{1-s}{s}} Z^{\prime}\right] d s
$$

where $a, b= \pm 1$ and $I, k \in \mathbb{Z}$.

- Origin of error function is integral over the half space

What are the Subtleties of the Calculation

- Difficulties can be traced back to the occurence of the following family of integrals:

$$
I_{l, k}^{(a, b)}:=\int_{0}^{1}(1-s)^{\frac{1}{2}} s^{\frac{k}{2}} \operatorname{erfc}\left[\frac{a}{2} \sqrt{\frac{s}{1-s}} Z+\frac{b}{2} \sqrt{\frac{1-s}{s}} Z^{\prime}\right] d s
$$

where $a, b= \pm 1$ and $I, k \in \mathbb{Z}$.

- Origin of error function is integral over the half space
- One can show the following:
\Rightarrow only need $I \in 2 \mathbb{N}_{0} \Rightarrow$ w.l.o.g. set $I=0$
$\Rightarrow k$ is even, e.g. $k=2 q$ with $q \in \mathbb{Z}$
$\Rightarrow q$ is non negative, e.g. $q \in \mathbb{N}_{0}$ (requires the "regularizing effect")
- $l_{0,2 q}^{(a, b)}$ for $q \in \mathbb{N}_{0}$ can be solved explicitly

Further Considerations

- We saw that there are negative powers of τ in the prefactors of $K=\frac{e^{\frac{-|\xi|}{4 \tau}}}{(4 \pi \tau)^{2}}\left([P]_{-} e^{\frac{-\left(z-z^{\prime}\right)^{2}}{4 \tau}}+[P]_{+} e^{\frac{-\left(z+z^{\prime}\right)^{2}}{4 \tau}}+[P]_{0} \frac{\operatorname{erfc}\left[\frac{\left.z+z^{\prime}\right]}{2 \tau}\right]}{\sqrt{\tau}}\right)$
- Can we absorb the negative τ powers into the exponentials?

Further Considerations

- We saw that there are negative powers of τ in the prefactors of

$$
K=\frac{e^{\frac{-|\xi|^{2}}{4 \tau}}}{(4 \pi \tau)^{2}}\left([P]_{-} e^{\frac{-\left(z-z^{\prime}\right)^{2}}{4 \tau}}+[P]_{+} e^{\frac{-\left(z+z^{\prime}\right)^{2}}{4 \tau}}+[P]_{0} \frac{\operatorname{erfc}\left[\frac{z+z^{\prime}}{2 \tau}\right]}{\sqrt{\tau}}\right)
$$

- Can we absorb the negative τ powers into the exponentials?

FIG.2: Sketch of $\sigma / \bar{\sigma}$

Theorem

Let $\sigma / \bar{\sigma}$ the direct/reflected half squared geodesic distence between x and x then one can rewrite:

$$
K=\frac{1}{(4 \pi \tau)^{2}}\left[\Omega\left(\tau \mid x, x^{\prime}\right) e^{\frac{-\sigma\left(x, x^{\prime}\right)}{2 \tau}}+\bar{\Omega}\left(\tau \mid x, x^{\prime}\right) e^{\frac{-\bar{\sigma}\left(x, x^{\prime}\right)}{2 \tau}}\right]
$$

here $\Omega / \bar{\Omega}$ contain only non negative powers of τ

- the expression above was also investigated by McAvity and Osborn

Outlook

- What was achived?
- Showed that asymptotic coefficients can be expressed analytically at each order
- Showed symmetry of asymptotic coefficients
- Concrete calculation up to fourth order in curvature quantities via Mathematica

Outlook

- What was achived?
- Showed that asymptotic coefficients can be expressed analytically at each order
- Showed symmetry of asymptotic coefficients
- Concrete calculation up to fourth order in curvature quantities via Mathematica
- What are the next steps?
- Perform τ integration to obtain singular structure of $G\left(x, x^{\prime}\right)$
- Check that this gives rise to a Hadamard parametrix
- Compute physical quantities (energy densities, critical boundary exponents)

References

- D. Grieser,
"Notes on heat kernel asymptotics," (2004)
http://www.staff.uni-oldenburg.de/daniel.grieser/wwwlehre/Schriebe/heat.pdf
- D. M. McAvity, H. Osborn
"A DeWitt expansion of the heat kernel for manifolds with a boundary,"
Classical and Quantum Gravity (1991) doi:10.1088/0264-9381/8/4/008
- S. Hollands and R. M. Wald,
"Local Wick polynomials and time ordered products of quantum fields in curved space-time," Commun. Math. Phys. 223, 289-326 (2001) doi:10.1007/s002200100540. [arXiv:gr-qc/0103074 [gr-qc]].
- S. Hollands and R. M. Wald,
"Existence of local covariant time ordered products of quantum fields in curved spacetime," Commun. Math. Phys. 231, 309-345 (2002) doi:10.1007/s00220-002-0719-y. [arXiv:gr-qc/0111108 [gr-qc]].

