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Introduction

The recent experimental verification of gravitational waves renewed the
interest in theoretical studies of General Relativity and black hole
perturbation theory.
In particular, we look for exact computational techniques to produce
high precision tests of General Relativity equations by computing
analytical expressions for significant gravitational quantities.
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The QNM frequencies

The QNMs are quantized frequencies which can be seen as
characteristic oscillations of black holes, and are responsible for the
damped oscillations appearing, for example, in the ringdown phase of
two colliding black holes.
Mathematically, the QNMs arise in the analysis of a linear perturbation
ψ around fixed gravitational backgrounds. The perturbation usually
obeys linear 2nd order differential equations with singularities, whose
symmetry properties are dictated by the symmetries of the background.
The quasinormal modes are obtained by imposing suitable boundary
conditions to the perturbation fields.

ψ = ψhor
in =M1ψ

sing
1 +M2ψ

sing
2 (1)

The connection coefficientsM1,M2 analytically continue the (ingoing)
local solution at the horizon, providing a linear combination of two
independent local solutions around the singularity closest to the region
where the second boundary condition is imposed.
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Schwarzschild de Sitter BH in 4 dimensions
The metric describing the Schwarzschild de Sitter black hole in four
dimensions (SdS4) is

ds2 = −f (r)dt2 + f (r)−1dr2 + r2dΩ2
2 (2)

with
f (r) = 1− 2M

r −
Λ
3 r2, (3)

where M is the mass of the black hole and Λ is the cosmological constant.
In what follows, we will fix Λ = 3.
We will denote the roots of rf (r) = 0 by

Rh, R±, (4)

where

R± =
−Rh ±

√
4− 3R2

h

2 . (5)

We will deal with the small black hole regime Rh � 1.
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Regge-Wheeler Equation

We study a class of linear perturbations with spin s ∈ {0, 1, 2}, encoded in
the following radial equation(

∂2r + f ′(r)
f (r) ∂r + ω2 − V (r)

f (r)2

)
Φ(r) = 0, (6)

where the potential is

V (r) = f (r)
[
`(`+ 1)

r2 + (1− s2)
(2M

r3
)]

. (7)

As boundary conditions, we will require the presence of only ingoing modes
near the horizon, and the presence of only outgoing modes near the
cosmological horizon. In terms of the tortoise coordinate r∗, we ask that Φ
behaves as exp(−iωr∗) for r ∼ Rh and as exp(iωr∗) for r ∼ R+.
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Heun equation
Under the change of variable

z(r) = r(R+ − R−)
R+(r − R−) , (8)

and redefinition of the wave function
ψ(z) = z−γ/2(z − 1)−δ/2(z − t)−ε/2

√
f (r) (r − R−)−1 Φ(r), (9)

where
t = Rh(R− − R+)

R+(R− − Rh) , δ = 1− 2i ω R+
(R+ − Rh)(R+ − R−) ,

γ = 1− 2s, ε = 1 + 2iωRh
1− 3R2

h
,

(10)

the equation becomes a canonical Heun equation(
d2

dz2 +
(
γ

z + δ

z − 1 + ε

z − t

) d
dz + αβz − q

z(z − 1)(z − t)

)
ψ(z) = 0,

α + β + 1 = γ + δ + ε.

(11)
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Boundary conditions

In the z coordinate, the horizon r = Rh is mapped to z = t, and the
cosmological horizon r = R+ is mapped to z = 1.
The independent solutions of the canonical Heun equation for z ∼ t are

ψ
(t)
− (z) = Heun

(
t

t − 1 ,
q − tαβ
1− t , α, β, ε, δ,

z − t
1− t

)
,

ψ
(t)
+ (z) = (z − t)1−εHeun

(
t

t − 1 ,
q − (β − γ − δ)(α− γ − δ)t − γ(ε− 1)

1− t ,−α + γ + δ,−β + γ + δ, 2− ε, δ, z − t
1− t

)
,

(12)
and the ones for z ∼ 1 are

ψ
(1)
− (z) =

(
z − t
1− t

)−α
Heun

(
t, q + α(δ − β), α, δ + γ − β, δ, γ, t 1− z

t − z

)
,

ψ
(1)
+ (z) =(z − 1)1−δ

(
z − t
1− t

)−α−1+δ
Heun

(
t, q − (δ − 1)γt − (β − 1)(α− δ + 1),−β + γ + 1, α− δ + 1, 2− δ, γ, t 1− z

t − z

)
.

(13)
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Local solutions
The boundary conditions imply the following behaviors for the function ψ:

ψ(z) ∼ 1 for z ∼ 1,
ψ(z) ∼ (z − t)1−ε for z ∼ t.

(14)

Taking into account these boundary conditions, the connection coefficient
between ψ(t)

+ and ψ(1)
+ has to be set equal to zero:

ψ
(t)
+ (z) =M+−ψ

(1)
− (z) +M++︸ ︷︷ ︸

=0

ψ
(1)
+ (z). (15)

In the small black hole regime, we have 0 < |t| � 1:
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Brief intro to Liouville CFT

Liouville CFT is an interacting CFT, with coupling b, and with central
charge c = 1 + 6Q2, where Q = b + b−1.
The spectrum of the primary fields of the theory is diagonal and
continuous. The conformal dimension ∆ is parametrized by
∆ = Q2

4 − α
2, with α ∈ iR.

The 3 point functions Cα1α2α3 are known explicitly in terms of special
functions (DOZZ formula).
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BPZ equation
Liouville CFT allows the existence of reducible representations of the
Virasoro algebra. Any invariant submodule is generated by a null state,
which is annihilated by all Ln>0. An example of null state is[

b−2L2−1 + L−2
]

Vα2,1(z), α2,1 = −b − 1
2b−1. (16)

From

〈
n−1∏
i=1

Vαi (zi )
[
b−2L2−1 + L−2

]
Vα2,1(z)〉 = 0, (17)

it follows that

ψ(b) = 〈
n−1∏
i=1

Vαi (zi )Vα2,1(z)〉 (18)

in the semiclassical limit

b → 0, αi →∞, bαi = ai finite (19)

satisfies a 2nd order ODE with regular singularities at z = zi .
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Operator Product Expansion
The product of two operators has the following structure (OPE)

Vαt (t)Vα0(0) =
∫

iR
dαCα

αtα0t
∆α−∆α1−∆α0

(
Vα(0) + c1 t L−1 Vα(0) +O

(
t2
))
,

(20)
where the series coefficients are determined by the Virasoro algebra.
If the OPE is performed in a correlator, one obtains the conformal block
expansion:

〈Vα∞(∞)Vα1(1)Vαt (t)Vα0(0)〉 =
∫

iR
dαCα∞α1α Cα

αtα0

∣∣∣∣ t∆α−∆α1−∆α0 (1 +O(t))︸ ︷︷ ︸
F(t)

∣∣∣∣2.
(21)

The OPE involving Vα2,1 is easier:

Vα2,1(z)Vαi (zi ) =
∑
±

Cαi± b
2

α2,1αi (z − zi )
bQ
2 ∓αi Vαi∓(0) +O

(
(z − zi )

bQ
2 ∓αi +1

)
(22)

and provides local expansions of the solution of the ODE.
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Crossing symmetry
Applying the OPE inside a correlator in different ways provides different
expansions of the correlator. These must agree ⇒ crossing symmetry.

〈
n−1∏
i=1

Vαi (zi )Vα2,1(z)〉 ∼


∑
± (DOZZ terms)×

∣∣∣∣F(z1)
± (z − z1)

∣∣∣∣2∑
± (DOZZ terms)×

∣∣∣∣F(z2)
± (z − z2)

∣∣∣∣2. (23)

Plugging in an Ansatz of the form

F
(z1)
± (z − z1) =

∑
±′
M±±′F

(z2)
±′ (z − z2) (24)

makes it possible to solve in exact form for the coefficientsM±±′ .
[G. Bonelli, C. Iossa, D. P. Lichtig, and A. Tanzini, Commun.Math.Phys. 397 (2023) 2, 635-727]

Thanks to AGT correspondence, these have explicit combinatorial
expressions.
[L. F. Alday, D. Gaiotto, and Y. Tachikawa, Letters in Mathematical Physics 91.2 167–197 (2010)]
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Connection problem for SdS4

α1

α∞

α0 α2,1

αt
α αt±

= F

(
α1
α∞

α
α0 αt±

α2,1
αt

;
t

t − 1
,

t − z
t

)
α1

α∞

α2,1 α0

αt
α α±

= F

(
α1
α∞

α
α2,1 α±

α0
αt

;
z − t
1− t

,
t

t − z

)
α0

αt

α∞ α2,1

α1
α α1±

= F

(
α0
αt
α
α∞ α1±

α2,1
α1

; t,
z − 1
z − t

)
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Quantization condition for SdS4 QNMs
The quantization condition is given by∑
σ=±

Γ (1 + 2at) Γ (−2a1) Γ (−2σv) Γ (1− 2σv)∏
± Γ (1/2− σv + at ± a0)

∏
± Γ (1/2− σv − a1 ± a∞) tσv e−

σ
2 ∂v F (t) = 0,

(25)
where

a0 = 1− γ
2 = s, a1 = 1− δ

2 = i ω R+
(R+ − Rh)(R+ − R−) ,

at = 1− ε
2 = − iωRh

1− 3R2
h
, a∞ = α− β

2 = i ω R−
(R− − Rh)(R− − R+) ,

(26)

F (t) =
(
4v2 − 4a20 + 4a2t − 1

) (
4v2 + 4a21 − 4a2∞ − 1

)
8− 32v2 t +O

(
t2
)
,

v = ±
{√
−1
4 − u + a2t + a20 +

( 1
2 + u − a2t − a20 − a21 + a2∞

)(
1
2 + u − 2a2t

)
2(1 + 2u − 2a2t − 2a20)

√
− 1

4 − u + a2t + a20
t +O(t2)

}
,

with u = −2q + 2tαβ + γε− t(γ + δ)ε
2(t − 1) .
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Results for QNMs

In all computed orders, we find the real part of the quasinormal modes is
zero, which agrees with the earlier observations made by numerical
computations. [R. A. Konoplya, and A. Zhidenko, Phys. Rev. D 106, 124004 (2022)]

The results for the imaginary part of the quasinormal mode frequencies
ωn,`,s , for n = 0, are

Im (ω0,0,0) = − 1− 5
8R2

h − 3R3
h −

[
1287
128 + 2 log (2Rh)

]
R4

h +O
(
R5

h
)
,

Im (ω0,1,1) = − 2− 7
12 R2

h + 7123
1728 R4

h + 8R5
h +

[
2 757 809
124 416 + 32

3 log (2Rh)
]

R6
h +O

(
R7

h
)
,

Im (ω0,2,2) = − 3− 27
40R2

h + 51 423
16 000R4

h −
72 333 747
3 200 000 R6

h −
72
5 R7

h +

+
[
60 278 884 503
512 000 000 − 144

5 log (2Rh)
]

R8
h +O

(
R9

h
)
.

(27)
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QNMs at large `

The previous quantization condition gets simplified in the large ` limit,
neglecting non-perturbative effects in ` of the form R`

h:
1
2 + v − a1 + a∞ = −n, with n ∈ Z≥0. (28)

Expanding the parameters in Rh and writing ω as ω =
∑∞

j=0 ωjR j
h, we find

ω0 = −i(`+ n + 1);
ω1 = 0;

ω2 = − i
8`(`+ 1)(2`+ 1)(2`− 1)(2`+ 3)

{
`4
(
60n2 + 60n + 22

)
+ `3

(
120n2 + 48ns2 + 122n+

+ 24s2 + 45
)

+ `2
[
8n2

(
3s2 + 2

)
+ n

(
96s2 + 19

)
+ 8s4 + 44s2 + 8

]
+

+ `
[
4n2

(
6s2 − 11

)
+ n

(
24s4 − 43

)
+ 20s4 − 4s2 − 15

]
+ 12(n + 1)2s2

(
s2 − 2

)}
;

ω3 = 0;
...

(29)
Notice that in this limit, all the odd orders ω2k+1 seem to vanish.
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Generalization to Kerr-de Sitter
The Teukolsky master equation separates in the radial and angular
equations:

∆−s
r (r) d

dr

(
∆s+1

r (r)dR(r)
dr

)
+
[

[ω(r2 + a2)− a m]2
(
1 + Λ

3 a2
)2 − i s ∆′r (r)[ω(r2 + a2)− a m]

(
1 + Λ

3 a2
)

∆r (r) +

+ 4i s ω
(
1 + Λ

3 a2
)

r − 2Λ
3 (s + 1)(2s + 1)r2 + s

(
1− Λ

3 a2
)
− A`ms

]
R(r) = 0,

d
du

[
(a2 − u2)

(
1 + Λ

3 u2
)

dS(u)
du

]
+
[
−
[(
1 + Λ

3 a2
)
[ω(a2 − u2)− a m] + s u

(Λ
3 a2 − 2Λ

3 u2 − 1
)]2

(a2 − u2)
(
1 + Λ

3 u2
) +

− 4s ω
(
1 + Λ

3 a2
)

u − 2Λ
3 (2s2 + 1)u2 + A`ms

]
S(u) = 0, with u = a cos θ,

(30)
where with A`ms we denote the separation constant.
The separation constant can be expanded in the small rotation regime as

A`ms =`(`+ 1)− s2 −
2m
[
`(`+ 1) + s2

]
`(`+ 1) a ω +O(a2). (31)
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Conclusions

In the SdS case, we found a branch of purely imaginary modes, thereby
providing analytical confirmation of the results obtained through
previous numerical studies.
The method is less effective in the anti-de Sitter case. We deal with it
using another method: the multi polylog method, that has a wide
range of applicability, being effective for several types of differential
equations and boundary conditions.
The method can be applied also in different BH geometries and can be
used to compute other relevant quantities such as the greybody factor,
or Love numbers. [G. Bonelli, C. Iossa, D. P. Lichtig and A. Tanzini, Phys. Rev. D 105 (2022) 044047]
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Multi polylog method

The problems considered in the work are two-point boundary value problems
associated with differential equations on the sphere with 4 or 5 regular
singularities.
In the SdS4 case, we divide the 4-punctured sphere in two local regions (the
minimal subdivision would be the patch decomposition), and we expand in
each region the differential equation and its wave solution in series in the
small parameter Rh,

ψ(z) = f0(z) +
∑
K≥1

fK (z)RK
h . (32)

At each order in Rh, ψ(z) is determined by a second-order equation

(fK (z))′′ + ϕ(z) (fK (z))′ + ν(z)fK (z) + ηK (z) = 0, (33)

which we solve by using the method of variation of parameters.
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Multi polylog method II
Let f0, g0 be the two solutions of the homogeneous part of (33).Then we
write the generic solution to (33) as

fK (z) = bK g0(z) + cK f0(z)− g0(z)
∫ z f0(z ′) ηK (z ′)

W0(z ′) dz ′ + f0(z)
∫ z g0(z ′) ηK (z ′)

W0(z ′) dz ′,
(34)

where W0 is the Wronskian of the two leading order solutions

W0 ≡ f0(g0)′ − (f0)′g0. (35)

In each region, the integration constants cK can be absorbed into a
normalization of the solution.
Imposing the two boundary conditions and gluing the local solutions fixes
the integration constants bK and gives the quantization of the frequency of
the perturbation.
In our case, the leading order solutions are described in terms of rational or
logarithmic functions, and their Wronskian is a rational function. Hence the
wave function at order RK

h is described in terms of multiple polylogarithms
of weight K and lower.
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Multiple Polylogarithms in a single variable

The integrals in (34) are described in terms of the multiple polylogarithms
in a single variable

Lis1,...,sk (z) =
∞∑

n1>n2>···>nk≥1

zn1

ns1
1 . . . n

sk
k
. (36)

The latter satisfies the following relation for s1 ≥ 2:

z d
d z Lis1,...,sk (z) = Lis1−1,...,sk (z) (37)

and the following relation for s1 = 1, k ≥ 2:

(1− z) d
d z Li1,s2,...,sk (z) = Lis2,...,sk (z). (38)
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SdS4 perturbation equation in Heun’s form

The full dictionary is given by

t = Rh(R− − R+)
R+(R− − Rh) ,

γ = 1− 2s,

δ = 1− 2i ω R+
(R+ − Rh)(R+ − R−) ,

ε = 1 + 2iωRh
1− 3R2

h
,

α = 1− s + 2i ω R−
(R− − Rh)(R− − R+) ,

β = 1− s,

q = `(`+ 1)
R+(R− − Rh) + (1− s)2Rh

Rh − R−
−

s(1− s)R2
−

R+(Rh − R−) .

(39)
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DOZZ formula

The Liouville three-point function is given by the DOZZ formula

Cα1α2α3 = Υ′b(0)Υb(Q + 2α1)Υb(Q + 2α2)Υb(Q + 2α3)
Υb( Q

2 + α1 + α2 + α3)Υb( Q
2 + α1 + α2 − α3)Υb( Q

2 + α1 − α2 + α3)Υb( Q
2 − α1 + α2 + α3)

,

(40)
where

Υb(x) = 1
Γb (x) Γb (Q − x) , Γb (x) = Γ2

(
x |b, b−1

)
, (41)

with the Barnes Double Gamma function being

log Γ2(s, ω1, ω2) =

 ∂

∂t

∞∑
n1,n2=0

(s + n1ω1 + n2ω2)−t


t=0

. (42)
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Young diagrams

If Y is a Young diagram, we denote with (Y1 ≥ Y2 ≥ . . . ) the heights of its
columns and with (Y ′1 ≥ Y ′2, . . . ) the lengths of its rows. For every Young
diagram Y and for every box s = (i , j), we denote the arm length and the
leg length of s with respect to the diagram Y as

AY (i , j) = Yj − i , LY (i , j) = Y ′i − j . (43)

Note that we do not require s to be in Y : if this is the case, the arm length
and the leg length are non-negative quantities, but this is not true in
general.
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Hypermultiplet and vector contributions

We introduce the main contributions coming into play for the definition of
the instanton partition function of N = 2 SU(2) gauge theory with
fundamental matter. Let us denote with ~Y = (Y1,Y2) a pair of Young
diagrams and with |~Y | = |Y1|+ |Y2| the total number of boxes. We denote
with ~a = (a1, a2) the v.e.v. of the scalar in the vector multiplet and with
ε1, ε2 the parameters characterizing the Ω-background. We define the
hypermultiplet and vector contribution as

zhyp
(
~a, ~Y ,m

)
=
∏

k=1,2

∏
(i,j)∈Yk

[
ak + m + ε1

(
i − 1

2

)
+ ε2

(
j − 1

2

)]
,

zvec
(
~a, ~Y

)
=

2∏
i,j=1

∏
s∈Yi

1
ai − aj − ε1LYj (s) + ε2(AYi (s) + 1)

∏
t∈Yj

1
−aj + ai + ε1(LYi (t) + 1)− ε2AYj (s) .

(44)
We will always take ε1 = 1 and ~a = (a,−a).
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Instanton part of NS fee energy
Let us denote with m1,m2,m3,m4 the masses of the four hypermultiplets
and let us introduce the gauge parameters a0, at , a1, a∞ satisfying

m1 = −at − a0, m2 = −at + a0,
m3 = a∞ + a1, m4 = −a∞ + a1.

(45)

Moreover, we denote with t the instanton counting parameter t = e2πiτ ,
where τ is related to the gauge coupling by

τ = θ

2π + i 4π
g2

YM
. (46)

The instanton part of the NS free energy is then given as a power series in t
by

F (t) = limε2→0 ε2 log
[

(1− t)−2ε
−1
2 ( 1

2+a1)( 1
2+at)∑

~Y t |~Y |zvec
(
~a, ~Y

)∏4
i=1 zhyp

(
~a, ~Y ,mi

)]
.

(47)
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