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AdS/CFT after 25 years

String theory (gravity) < field theory (no gravity)

“in bulk”™ = higher dimensions “on boundary” = lower dimensions

describes gravitating systems, e.g. black holes describes experimentally accessible systems

Invaluable tool to:

~ Study strongly interacting field theory (hard, but describes many systems)
by working with higher-dimensional gravity on AdS (easy).

~ Study quantum gravity in AdS (hard, but needed to understand spacetime)
by using the field theory (easy for certain things)
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Pre-requisite:

We need to understand the AdS/CFT dictionary...

° How does bulk spacetime emerge from the CFT?

o Which CFT quantities give the bulk metric?
o What determines bulk dynamics (Einstein’s eq.)?
o How does one recover a local bulk operator from CFT quantities?

* What part of bulk can we recover from a restricted CFT info!

o What bulk region does a CFT state (at a given instant in time) encode!
o What bulk region does a spatial subregion of CFT state encode!?

° (How) does the CFT “see” inside a black hole!?

o (How) does it unrtarily describe black hole formation & evaporation process?
o How does it resolve curvature singularities?

Recent hints / expectations: entanglement plays a crucial role...
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Motivation & Context

Understand the emergence of spacetime

~ Use holography
~ Focus on classical bulk geometry (i.e. N =00,A =00 regime)

Hints / expectation: "spacetime built from entanglement"

~ Understand entanglement structure of 'geometric’ states
~ Focus on entanglement entropy (EE) for spatially-delimited subsystems

Characterize {EEs} relevant for holography

~ Region In entropy space dubbed holographic entropy cone (HEC)
~ Focus on its boundary (delimited by holographic entropy inequalities)

Seek lessons independent of # of subsystems (=N)

~ Bootstrap from low N
~ Focus on structural relations
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-ntanglement entropy

For CFT state |¢) and bi-partition H =Ha @ H 4
~ reduced density matrix pa = Trz|1) (Y]
FE= S(A) = —Trpa logpa

° Decompose CFT into N elementary subsystems

H=HAQHBRHc® -+ OHaizs-
e \/\/\/
¢ @& "purifier" O
N

° ~ entropy vector in D = 2N - | dimensional entropy space

egforN=3,  §={S(A),S(B),S(C),S(AB),S(AC), S(BC), S(ABC)}

conceptually useful to consider large N...
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=> Mutual information positivity I(A:B)=5S(A)+ S(B)—S(AB) >0
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-ntropy relations

* Physically realizable entropy vectors are restricted

° Universal restrictions:

Sub-additivity (SA) S(A) + S(B) > S(AB)

=> Mutual information positivity I(A:B)=5S(A)+ S(B)—S(AB) >0
Strong sub-additivity (SSA) S(AB)+ S(BC) > S(B) + S(ABC)

= Mutual information monotonicity  I(A:C|B)=I1(A: BC)—-1(A:B) >0

o ... (expect more relations with increasing N)
always permutation & purification symmetric

° Further restrictions, depending on the system

° Qur task: understand the full set in holography



Holographic entanglement entropy

Proposal [RT=Ryu &Takayanagi, 06] for static configurations,
covariantized by [HRT=VH, Rangamani, Takayanagi,'07] for time-dependent situations:

5
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{ Holographic entanglement entropy }

Proposal [RT=Ryu &Takayanagi, 06] for static configurations,
covariantized by [HRT=VH, Rangamani, Takayanagi,07] for time-dependent situations:

Entanglement entropy S(A) for a boundary bulk ~5

region A is captured by the area of a bulk : f :
extremal surface § homologous to A ;
boundary

for multiple candidates, choose least area one.

Allows for phase transitions, e.g. jump in surface for S(AB):

@ a ~/u
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° strong subadditivity:  S(AB) + S(BC) > S(B) + S(ABC)

° proof In static configurations [Headrick&Takayanagi]

bdy

bulk
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Proof of Strong Subadditivity

° strong subadditivity:  S(AB) + S(BC) > S(B) + S(ABC)

° proof In static configurations [Headrick&Takayanagi]

bdy

bulk

S(AB) + S(BC) = o + 3

° proof In time-dependent setting uses maximin prescription [Wall]
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-ntropy cone

{All physically allowed entropy vectors} = convex cone in entropy space

2 useful characterizations of a polyhedral cone:

intersection of half-spaces / \

delineated by entropy inequalities (facets) convex hull of extreme rays

eg. at N=2: S(AB) S(AB)

when restricted to geometric states in holography ~ holographic entropy cone (HEC)
[Bao, Nezami, Ooguri, Stoica, Sully, Walter "1 5]
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[ Hierarchy of cones In entropy space J

» Consider entropy space for fixed N

» holographic entropy cone: HEC = { holographically realizable § }
o quantum entropy cone: QEC = { physically realizable S }
» subadditivity cone: SAC = { § compatible with all instances of SA }

* [hese are nested convex sets:
SAC > QEC > HEC

° Many more.. K

{§ compatible w/ SA & SSA }

convex hull of SAC ERs in HEC

o At N=2 all these cones in R3 coincide, at N>2 they are strictly nested



N=3 example

cartoon of 3-d cross-section of R’ (not including the origin)

analogous to —
for‘ N:Z SA)

SAC QEC HEC

delimrited by:
{SA {SA, SSAL (SA, MMI}



-ntropy relations for N=3

° Universal: 4ﬁ\g
o Sub-additivity (SA) S(A) + S(B) > S(AB) \Vf
—> Mutual information positivity I(A:B)=S(A)+S5(B)—-S(AB) >0
. Strong sub-additivity (SSA) S(AC) + S(BC) > S(C) + S(ABC)

= Mutual information monotonicity  [(A: B|C)=1(A: BC)—-I(A:C) >0

° [rue In holography: /e
)

o Monogamy of mutual information (MMI)
S(AB)+ S(BC)+ S(CA) > S(A)+ S(B) +S(C) + S(ABC
= Tripartite information I3(A:B:C)=I(A:B)+1(A:C)—-I(A: BC) <0

o Note: SSA becomes redundant since SSA = SA + MM
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HEC for N<5

° While QECy 1s known only up to N=3, HECy Is known up to N=5.
~ |mportant open problem in Quantum Information Science: QECy

° N=4 HEC still consists of only {SA, MMI} (gives 20 independent inequalities)

 N=5 HEC has 5 further inequalities
specified in [Bao, Nezami, Ooguri, Stoica, Sully, Walter, ' | 5]

& proved to be the complete set in  [Hernandez-Cuenca, ' 9]

~ N=5 HEC has 8 orbits of facets (total 372)

c.8. 0< _SAB R SBC o SCD o SDE o SEA o SABCDE + SABC + SBCD + SCDE + SDEA + SEAB

O < _2SABCD o SABCE o 2SABDE o SACDE o 2SAB o SAC o 2SAD o SAE T 2SBC o SBD o SCE o 2SDE
3SABC T 3SABD T SABE T SACD + SACE T 3SADE + SBCD + SBCE T SBDE + SCDE

?. How do we find HEC systematically & understand its meaning / implications!
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° Re-write In terms of more compact expressions
o Multipartite informations with 'singleton’ arguments form a basis

{IL,(A),...,Is5(A:B),...,I3(A: B:C),...,In(A:B:...)}

w/ tripartite informaton/

[3(A:B:C) =S5, T O T 55 —O,p — Oac — Opc T Panc

& more generally, multipartite information: Iy = Z(_l)lﬂdﬂ Sy
KCJ

o Multipartite informations with composite arguments:

eg. I3(A:B:CD) =8, +S, +Suy —Sun — Saop — S S

AB ACD BCD _I_ ABCD



Tripartite form of HEls

o |n the I-basis, HEls are simpler [He, Headrick,VH],
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Tripartite form of HEls

o |n the I-basis, HEls are simpler [He, Headrick,VH],
but not simple enough...

eg:0< Q= —SABcD — PBCDE — PABE — °BC — OBD — ©A — O¢ — Op — Og
+ Sapc T9ABD T 98cD T OBCE T ODE T PAE T PcD
vs. Q= Iapep T Iscpe = Iase —Iacp — Iscp — Icpe

o However, written in terms of I3 and its conditional form, w/ composite
arguments, and all signs negative = "tripartite form":

Q — Z _[3(XZ : YZ : ZZ ‘ WZ) w/ Ig(XZ' Y, 7 | @) = Ig(XZ' Y Zi)
)
HEls become more compact [WIP: Herndndez-Cuenca,VH, Jia:

vs. Q = —I3(AB:C:D) — I3(B:D:E|C) — I3(A:C:E|D)

° in other examples, 2 terms instead of 11 in I-basis or 13 in S-basis



HEls for N=5

N = 5 HEI information quantities

_SABCD o SACDE o SAB o SAD o SDE o SC
SABC T SABD T SACD T SADE T SCDE

ABCD + IACDE o IACD o IACE — 1

—I3(AB:C:D) — I3(A:C:E|D)

I BCD

_SABCD o SBCDE o SABE o SBC o SBD o SA o Sc o SD o SE
SABC T SABD T SBCD T SBCE T SBDE T SAE T SCD

IABCD + IBCDE o IABE o IACD o IBCD o ICDE

—13(AB:C:D) — I3(A:B:E) — I3(C:D:E|B)

_SABCD o SACDE o SBCDE o SAB o SAD o SBC o SCD o SCE o SDE
SABC T SABD T SACD T SADE T SBCD T SBCE T 2SCDE

IABCD T IACDE T IBCDE o IACD o IACE o IBCD o IBDE

—I3(AB:C:D) — I3(B:D:E|C) — I3(A:C:E|D)

_SABCE o SACDE o SBCDE o SABD o SAC o SAE o SBC o SBE o SCD o SDE
SABC T SABE T SACD + SACE T SADE + SBCD T SBCE + SBDE T SCDE

IABCE T IACDE + IBCDE o IABD o IACE o IBCE o ICDE

—13(A:B:D) — I3(B:C:E|A) — I3(C:D:E|B) — Is(A:C:E|D)

—283

ABCD SABCE o 2SABDE o SACDE o 2SAB o SAC o 2SAD o SAE o 2SBC o SBD o SCE o 2SDE
3SABC T 3SABD + SABE + SACD + SACE T 3SADE T SBCD + SBCE T SBDE + SCDE

2IABCD - IABCE - 2IABDE -+ IACDE o IABD o 2IABE o 2IACD o IACE o IBCD o IBDE

—1I13(AB:C:D) — I3(AE:B:D) — I3(A:B:E|C) — I3(A:B:E|D) — I3(A:C:D|B) — I3(A:C:E|D)




New HEls for N=6

* This provides a useful HEl generating technique:  [WIP: Herndndez-Cuenca,VH, Jia]
o Posit form,
o check if true ineq. (via contraction map) vs. not sign definite (via explicit evaluation),
o If true, check if non-redundant (spanned by D-1 L.i. hol. entropy vectors) or sum of facets



New HEls for N=6

 This provides a useful HEl generating technique:  [WIP: Herndndez-Cuenca,VH, Jia]

o Posit form,
o check if true ineq. (via contraction map) vs. not sign definite (via explicit evaluation),
o If true, check if non-redundant (spanned by D-1 L.i. hol. entropy vectors) or sum of facets

* For N=6 we obtained >300 new orbits of HEls
o So far at least 384 orbits for N=6

o C.0.. , —
g ABCF SABDE o SABEF o SCDEF o SAE o SAF o SBE o SBF o SCD o SCF o SDE o SA o SB
SABE + SABF + SACF + SADE + SAEF + SBCF + SBDE + SBEF + SCDE + SCDF + SAB

IABCF + IABDE - IABEF + ICDEF o IABC o IABD o IABE o IABF o ICEF o IDEF

—I3(CD:E:F) — I3(A:B:EF) — I3(A:B:D|E) — Is(A:B:C|F)

—S

_SABCDF T SACEF T SBDEF o SCDF T 2SAF T SDE o SEF o SA o SB T 2Sc o SD
SBCDF + SABF T SACF + SADF - SAEF + SBDE + SCEF + SDEF T SAC + SCD

_IABCDF + IABCD T IABCF + IABDF + IACDF - IACEF + IBDEF
—1I — 1 — 1 — 1 — 1 — 1 — 1 — 1

ABC ABD ACD ACE ACF BDF BEF CDF
—I3(AF:C:D) — I3(B:DE:F) — I3(A:C:EF) — I3(A:B:CD|F)
_2SABCDF o SACEF o SBDEF o SCDF o SAF o SDE o SEF o SA o SB o 2Sc o SD

SABCF + SABDF + SACDF + SBCDF + SAEF + SBDE + SCEF + SDEF + SAC + SCD

_2IABCDF + 2IABCD -+ IABCF -+ IABDF + IACDF + IACEF -+ IBCDF =+ IBDEF
_IABC o IABD o IACD o IACE o IACF o IBCD o IBDF o IBEF — 1

—I3(ABF:C:D) — I3(B:DE:F) — I3(A:C:EF) — I3(A:B:CD|F)

CDF
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* Advantage of tripartite form

e much more compact
o easler to see structural relations
o may suggest how to "bootstrap” to higher N
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e much more compact
o easler to see structural relations
o may suggest how to "bootstrap” to higher N

oo N /?3‘[{12,0} — —I3(C:E:F) — I3(A:B:EF) — I5(A:B:C|F)
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—
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Structural relations

* Advantage of tripartite form

e much more compact

o easier to see structural relations

o may suggest how to "bootstrap” to higher N

e.g.

or.

;o
N Q7 = —I3(C:EF) — I3(AB:EF) — I3(A:B:C|F)
6
QY. = —Is(CD:EF) — I3(A:B:EF) — I3(A:B:C|F)
6
QY. = —Is(CEF) — I;(AD:B:EF) — I3(A:B:C|F)
6
QY. |, = —I3(CD:EF) — Is(AD:B:EF) — I5(A:B:C[F)
{#]37 #]47 #]5}
Q" |, = ~I3(AF:C:D) — I3(B:DEF) — I3(A:C:EF) — I3(A:B:CD[F)
QY. = —I3(BF:C:D) — I3(B:DEF) — I3(A:C:EF) — I3(A:B:CDF)

6
Q) .., = —I3(ABF:C:D) — I;(B:DEF) — I3(A:C:EF) — I3(A:B:CD|F)
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Higher HEls & correlation measures

* Correlation measure:
o Non-negative
o Monotonically increasing under inclusion

o cf. mutual iInformation:
o SA: I(A:B)=S(A)+ S(B)—S(AB) >0
o SSA: I(A:B|C)=I(A:BC)—-1(A:C)>0

° Higher HEls are superbalanced  [He,VH, Rangamani]
o finite on any configuration
o in I-basis, contain only I, for n >3
o = not monotonic under inclusion [WIP: Herndndez-Cuenca,VH, Jia]

° Higher HEl quantities are not a correlation measures



L OUTLIN

| 1]
-

e HEC In terms of facets

e previously-known results: N<5
o rewriting in tripartite form
e new holographic entropy inequalities for N=6

e NO-go for correlation measures

o HEC In terms of extreme rays

o previously-known results: N<5
o HEC from SAC and marginal independence
o new extreme rays for N=6

o gap between holographic and quantum SAC ERs

e Summary & future directions
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o HEC = convex hull of ERs

o Simultaneously saturate (D-1) independent HEls
o Holographically correspond to multi-boundary wormholes

o Useful toolkit:
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o Pattern of marginal independence (PMI)
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HEC In terms of ERS

* ERs correspond to special/extreme states

o HEC = convex hull of ERs

o Simultaneously saturate (D-1) independent HEls
o Holographically correspond to multi-boundary wormholes

o Useful toolkit:

» Holographic graph model <. § from spacetime
o Pattern of marginal independence (PMI) <= entanglement structure from §

/

These will lead us to study the ERs of the SAC.



{ Holographic graph models }

cf. [Bao, Nezami, Ooguri, Stoica, Sully, Walter]

* Distill the discrete elements from a holographic configuration

o vertices = cells In RT surface network

o edges = pieces of RI surfaces separating neighboring regions, with
welight = corresponding area

o EE = min-cut

@ a




{ Holographic graph models }

cf. [Bao, Nezami, Ooguri, Stoica, Sully, Walter]

* Distill the discrete elements from a holographic configuration

o vertices = cells In RT surface network

o edges = pieces of RI surfaces separating neighboring regions, with
welight = corresponding area

o EE = min-cut
..
/G | |
O
0 | | /\-T/
min-cut structure specified by cut edges
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A B
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{ Holographic graph models }

cf. [Bao, Nezami, Ooguri, Stoica, Sully, Walter]

» Distill the discrete elements from a holographic configuration

o vertices = cells In RT surface network

o edges = pieces of RI surfaces separating neighboring regions, with
welight = corresponding area

o EE = min-cut

@ a

/mm -cut structure specified by cut edges/
7% first phase incorporated by
A B selecting alternate mincut A
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Holographic graph models

* Graphs can get complicated...

e.g. graph model for

has 43 vertices & 88 edges

° But graph cone = HEC [Bao, Nezami, Ooguri, Stoica, Sully, Walter]



L Graph representation of HE

» N=2 HEC has 3 extreme rays (| orbit) /O
S(AB)
A




{ Graph representation of HE

» N=2 HEC has 3 extreme rays (| orbit) ‘/O
A

» N=3 HEC has / extreme rays (2 orbits)




{ Graph representation of HEC ERs }

» N=2 HEC has 3 extreme rays (| orbit) ‘/O
S(AB)
A

» N=3 HEC has / extreme rays (2 orbits)

° N=4 HEC has 20 extreme rays (3 orbits) adds 7%




{ Graph representation of HEC ERs }

» N=2 HEC has 3 extreme rays (| orbit) ‘ H

» N=3 HEC has / extreme rays (2 orbits) A

° N=4 HEC has 20 extreme rays (3 orbits) adds 7%

o N=5 HEC has 226/ extreme rays (|9 orbits)  adds >< : :
and:




[Hernandez

Graph representation of HECs

19]

-Rs



Graph representation of HECs ERs

[Herndandez-Cuenca, '1 9]

b D
A2
a1 2 1
- c1
a2 B —
02
E
E o B o1
o
z B D3
A C 02
- E
—_ 1 A2
A3 a3 a2
g3 a1 o B2
o) B1 D1
E
D
D1 02
C
o1
D2
1 a2
B
E2
E1 A

» All deformable to tree graphs (though with multiple vertices of same color)
[Hernandez-Cuenca,VH, Rota 22]
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° Def: Pattern of Marginal Independence (PMI) Is a specification of
full set of subsystems { X,Y } for which I(X:Y) = 0.

o marginals = reduced density matrices
o independent If factorized structure



PMI

° Def: Pattern of Marginal Independence (PMI) Is a specification of
full set of subsystems { X,Y } for which I(X:Y) = 0.

o marginals = reduced density matrices
o independent If factorized structure

° Meaning & Utllity
» holographically: bdy region pairs, s.t. the joint entanglement wedge s
disconnected (since connected XY ent. wedge = [(X:Y) > 0)
o every entropy vector S hasa unique PM|
o linear subspace of entropy space
o = Intersection of all saturated SA or AL hyperplanes
o = discrete structure

o for physical 5 PMI = span of a face of the SAC



HEC from SAC

o Utilize graph model

o ER graph has maximal min-cut degeneracy (cf. phase transition of RT surfaces)
o Conjecture: ERs can be rendered as tree graphs (has strong evidence)

° Thm: Assuming Conjecture, every ER of HEC\ I1s obtained as a
projection of ER of a subadditivity cone SACN' (for some N' > N)
[Hernandez-Cuenca, VH, Rota]
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° This in principle allows us to construct the full HECN for any N

n practice complicated: requires correct set of ERs of SACN' for all N/,
brojecting, taking convex hull, extracting ERs, and constructing facets...

But conceptually demystifies the HEC (and entanglement structure of

nolographic states)



HEC from SAC

Utilize graph model
o ER graph has maximal min-cut degeneracy (cf. phase transition of RT surfaces)
o Conjecture: ERs can be rendered as tree graphs (has large evidence)

Thm: Assuming Conjecture, every ER of HECy Is obtained as a

projection of ER of a subadditivity cone SACN' (for some N' > N)
[Hernandez-Cuenca, VH, Rota]

This in principle allows us to construct the full HECN for any N

 |n practice complicated: requires correct set of ERs of SACN' for all N,
brojecting, taking convex hull, extracting ERs, and constructing facets...

o But conceptually demystifies the HEC (and entanglement structure of
nolographic states)

Crux: how can we characterize the requisite set of SAC ERs!
o Formulate in terms of PMls



Marginal Independence Problem

» Not all marginal independence bipartitions are possible, due to:
e mathematical inconsistency

o physical inconsistency
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Marginal Independence Problem

* Not all marginal iIndependence bipartitions are possible, due to:
e mathematical inconsistency
e.g violates the identity  I2(A: BC)+ I3(B: C) = 13(B : AC) + I:(A : C)

o physical inconsistency
violates entropy inequality, e.g. SSA = I,(A: BC)=0 = I3(A:B)=0

f
Klein's condition (KC)  [He,VH, Rota]

° Marginal Independence Problem (MIP): what PMls are realizable?

o OMIP: what PMls are realizable in QM!?
considered In [Hernandez-Cuenca, VH, Rangamani, Rota]

o HMIP: what PMls are realizable by geometric states in holography?
[He,VH, Rota] & WIP
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* No convenient characterization of all ERs directly

* Fasy characterization of facets: saturation of any single SA

* Hence define ERs as |-d PMls
o ~ collection of D-1 independent Mls { I(X:Y) }




—xploring the SAC

* No convenient characterization of all ERs directly

* Fasy characterization of facets: saturation of any single SA

* Hence define ERs as |-d PMls
o ~ collection of D-1 independent Mls { I(X:Y) }

o Convenient mathematical framework:

o Matroid theory (abstractifies notion of linear dependence in combinatorial language):
use to Implement mathematical consistency

o Oriented matroids:
use to iImplement consistency w/ SA

o Lattice theory: poset order by inclusion (in Ml arguments):
use to iImplement Klein's condition as approximation to SSA

o Closure theory: unifying framework for the above (on Ml powerset)
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Power of restrictions

° Linear dependence: eg ©L(A:BC)+L(B:C)=IL(B:AC)+ I(A: C)
o Implemented by matroid circurts

o KC: ie. L{(A:BC)=0 = L(A:B)=0
o Implemented as a down-set In M| poset
o Reduces the # of potentially viable PMIs drastically:

N=3: # of subspaces of a given dimension d < D:
d|0| 1] 2 3 4 5 | 6 |7
in PMI lattice | 1 | 11 | 48 | 107 | 127 | 75 | 18 | 1
NnKClattice | 1| 7 [ 21| 35 | 32 | 15| 6 |1
N=4
1 2 3 4 ! 6 7 8 9 10 11 12 13 14 | 15
1 | 3085 | 66005 | 532585 | 2254005 | 5719656 | 9301825 | 10032200 | 7275805 | 3541900 | 1138826 | 234470 | 29455 | 2100 | 75 | 1
20 175 840 2465 4843 6345 o875 4100 2300 1072 430 150 45 10




Classes of ERs of SAC

Let R:={P € &3 : dim(P) = 1} = set of all extreme rays of the SAC
Roo = {P € £ : dim(P) = 1} = set of KC-compatible ERs of the SAC

Respn ={P € R:
R, ={PeR:
R, ={PeR:

P is SSA-compatible}

P is realizable by a quantum state}

P is realizable by a graph model} ,

SSA —
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Classes of ERs of SAC

Let R:={P € &3 : dim(P) = 1} = set of all extreme rays of the SAC
Roo = {P € £ : dim(P) = 1} = set of KC-compatible ERs of the SAC

Respn ={P € R:
R, ={PeR:
R, ={PeR:

P is SSA-compatible}

P is realizable by a quantum state}

P is realizable by a graph model} ,

-~ R,CR,CR. CR,CR

» Observations:

SSA —

o For N=2, R, = R: but otherwise |Rg,| < |R]
o ForN <5, R, = Ry,
» Original hope: this prevails v N, which would give R, =R,

o Establishing this would be useful since little known about QEC



Holographic - quantum gap

o However, 3 a counter-example at N=6: [He,VH, Rota, 23]
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4,4,4,4,3,4,4,3,3,3,5,4,4,4;3,3,2,2,2,3; 1)

w/ components ordered as  (A,...,F;AB,AC,...,EF; ABC,...; ABCDEF)

violates MM, since —I3(A: BC:DE)=-2%*0
—> R6 ¢ RH
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Holographic - quantum gap

o However, 3 a counter-example at N=6: [He,VH, Rota, 23]

The following ER of SACs:  Re =(2,1,1,1,2,2; 3,3,3,4,4,2,2,3,3,2,3,3,3,3, 4;
27 47 57 57 47 57 57 37 57 47 37 47 47 47 47 57 47 47 57 3; 37
4,4,4,4,3,4,4,3,3,3,5,4,4,4;3,3,2,2,2,3; 1)

w/ components ordered as  (A,...,F;AB,AC,...,EF; ABC,...; ABCDEF)

violates MM, since —I3(A: BC:DE)=-2%*0
—> R6 ¢ RH
But, 3 a hypergraph which realizes Rg, so it describes a stabilizer state.

[Wialter & Witteveen]
— Rg € RQ

— R, # R, e 3 agap between holographic and quantum ERs of SAC.



Summary & future directions

° Holographic entropy inequalities
o (Can be packaged efficiently using the tripartite form

o Constructed 384 orbits of holographic entropy inequalities for N=6
o [hese manifest rich structural relations

o How can we bootstrap these to generate new HEls for higher N?
o Are all HEls guaranteed to admit the tripartite form!?
o |s there an even better packaging?

° |nterpretation!?

o Not correlation measures (since not monotonic under inclusion)
o More generalized multipartite correlation?
o Operational meaning!
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Summary & future directions

° Main point:
o HEC\ can be fully reconstructed from far simpler structure, at finer N';

Holographically realizable ERs of SACN' ( « solution to HMIP)

l
describe using PMls, specified by { I(X:Y) }

° Implications:

o { HECN v N } — { HM'PN v N } ("Holographic entropy cone from marginal independence")
o Any fixed N contaminated by structural (combinatorial) artifacts

o Seemingly minimal dependence on holography (SAC universal)

}

» arbitrarily refined partition (N)
» classicality: admits phase transitions



Future directions

° Within the present context:

o Complete soln.to HMIP
o Explain HEIs
o Internal structure of HEC

o Bootstrapping ERs and HEls to higher N

* Beyond the present context:

o Beyond classical bulk (quantum and stringy corrections)
o Other QI guantrties



jlwmk you






Covariant Holographic EE

The RT prescription for holographic EE is not well-defined
outside the context of static configurations:

o In Lorentzian geometry, we can decrease

the area arbitrarily by timelike deformations A

o Intime-dependent context, no natural
notion of “const. £ slice. . e

In time-dependent situations, RT prescription must be covariantized:



Covariant Holographic EE

The RT prescription for holographic EE is not well-defined
outside the context of static configurations:

o In Lorentzian geometry, we can decrease

the area arbitrarily by timelike deformations A

o Intime-dependent context, no natural
notion of “const. £ slice. . e

In time-dependent situations, RT prescription must be covariantized:
[HRT = VH, Rangamani, Takayanagi ‘07 |

minimal surface m extremal surface ¢

&
| -5
at constant time in the full bulk C—® A




[ -ntanglement wedge J

Structure of generators EWV for composite region AB
of EW horizon




R cone = HRI cone
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R cone = HRI cone

previously shown only for 2-d CFT [Czech, Dong]

* Hitherto graph representation only for static srtuations (RT)

o Useful toolkit (e.g. contraction map to prove HEls, constructing ERs, ...)

» Covariant reformulation of holographic entanglement entropy
o HRT: extremal surface

e MaxiMmInN: maximize over Cauchy slices the minimal surface area on slice [Wall]

e MINIMax. minimize over 'timesheets' the maximal surface area on sheet [Headrick,VH]

° Minimax (=partitioning bulk by timesheets) allows for graph
model even In general time-dependent situations
[WIP: Grado-White, Grimaldi, Headrick, VH]

» Hence the toolkit developed for static case applies in general.
o All HEIs proved for static case are valid in time-dependent case as well.



Klein's condition (KC)

° Klein inequalrty:

Te(f(p) — flo) = (p—0)f'(0)) 20
AN |
convex fn.  Hermitian matrices = < p=0
° Apply to relative entropy
(pllo) = 0 = p=o0
PIX P1 & px
o ~ KC for MI: 1(J:JX) =0

= Pygx = P1 D Pgx
— Py =p1®p; and pix =
— 1(J:J)=0 and [(J:XK



N=2 SAC In terms of Mls

° Ml poset
o order by inclusion: 1(4:B0) | 1(B:40) | 1(0:4B)

 Matroid structure

o represented by a "whirl®
_— each segment = plane in -

S(AB)

I(A:BO)

_95(4) I(B:AO)




Graphical representation of {I(X:Y)}

* Organize into whirls ~ W-complex:

e each triangle = whirl
e each edge = M|

o each vertex = entropy / subsystem

° e.g for N=3
o 6 whirls
o |8 (subsystem) Mls
o / entropies

° Properties
o whirls join at vertices
o specified by | generating edge per whirl
o automatically implements permutation & purification symmetry



SImple tree graphs

* But tree graphs have much simpler structure

ﬁl B g D o each edge specified by a unique
N 4 N “ collection of boundary vertices
“ ’ o PMI follows directly from specification
AB CD .
of min-cut structure
o o
CDE
ABCDE E
° >
O E

° Def: graph is simple It every edge defines some subsystem cut;
or equivalently, It each boundary vertex has different "color”



SImple tree graphs

* But tree graphs have much simpler structure

ﬁl B g D o each edge specified by a unique
N 4 N “ collection of boundary vertices
“ ’ o PMI follows directly from specification
AB CD .
of min-cut structure
o o
CDE
ABCDE E
° >
O E

° Def: graph is simple It every edge defines some subsystem cut;
or equivalently, It each boundary vertex has different "color”

° Thm: For simple tree graphs, min-cut subspace = PM|



Conjecture

* Conjecture: We can convert any holographic graph model
into a tree while preserving the min-cut subspace.

a+b

a-+tc b+c

similarly, can collapse any isolated k-cycle

» Holds true for all ERs for N=5 HEC and all (hitherto-known) N=6 HEC ER:s.

generically gives a non-simple tree, but can be trivially made simple by fine-graining':



Coarse-graining & fine-graining

° Change N = N
o Changes dimensionality D — D' of entropy space
o Aspects of entanglement structure preserved (inherited)

o (Coarse-graining = declare multiple colors indistinguishable

o projection of entropy vectors
o corresponding projection of linear subspaces (V-space & PMI)

° Fine-graining = reverse of coarse-graining
o Hence can obtain simple graph from non-simple one by fine-graining



Main theorem

o Consider ERs of N-party holographic entropy cone (HECK\)

o The HECN Is a convex hull of these; so ERs (in principle) determine all
holographic entropy inequalities

° Thm: Assuming Conjecture, every ER of HECN Is obtained as a
projection of ER of a subadditivity cone SACK: (for some N' > N)

° |dea of Pf:

o Start w/ HECN ER & obtain graph representation G (has |-d V-space)
o Use Conjecture & fine-grain to transform into a simple tree G'

o Resulting V-space = PMI in D'-dimensional entropy space

o Reduce to |-d PMI (if uplifting increased V-space dimensionality)

o = ER for SACN!



