ENTANGIEMENT STRUCTURE of Geometric States in Holography

Veronika Hubeny

Physics Department & center for Quantum Mathematics and Physics

In part supported by

Quantum Effects in Gravitational Fields Leipzig, August 29, 2023

[based on 1808.0787], 1812.08133, 1912.01041, 2204.00075, 2211.11858, 2307.10137 w/ T. He, S. Hernández-Cuenca, M. Rangamani, & M. Rota + WIP w/T. He & M. Rota + WIP w/ S. Hernández-Cuenca, F. Jia]

AdS/CFT after 25 years

describes gravitating systems, e.g. black holes

field theory (no gravity) "on boundary" = lower dimensions

describes experimentally accessible systems

Invaluable tool to:

- Study strongly interacting field theory (hard, but describes many systems) by working with higher-dimensional gravity on AdS (easy).
- Study quantum gravity in AdS (hard, but needed to understand spacetime) by using the field theory (easy for certain things)

- How does bulk spacetime emerge from the CFT?
 - Which CFT quantities give the bulk metric?
 - What determines bulk dynamics (Einstein's eq.)?
 - How does one recover a local bulk operator from CFT quantities?

- How does bulk spacetime emerge from the CFT?
 - Which CFT quantities give the bulk metric?
 - What determines bulk dynamics (Einstein's eq.)?
 - How does one recover a local bulk operator from CFT quantities?
- What part of bulk can we recover from a restricted CFT info?
 - What bulk region does a CFT state (at a given instant in time) encode?
 - What bulk region does a spatial subregion of CFT state encode?

- How does bulk spacetime emerge from the CFT?
 - Which CFT quantities give the bulk metric?
 - What determines bulk dynamics (Einstein's eq.)?
 - How does one recover a local bulk operator from CFT quantities?
- What part of bulk can we recover from a restricted CFT info?
 - What bulk region does a CFT state (at a given instant in time) encode?
 - What bulk region does a spatial subregion of CFT state encode?
- (How) does the CFT ''see'' inside a black hole?
 - (How) does it unitarily describe black hole formation & evaporation process?
 - How does it resolve curvature singularities?

We need to understand the AdS/CFT dictionary...

- How does bulk spacetime emerge from the CFT?
 - Which CFT quantities give the bulk metric?
 - What determines bulk dynamics (Einstein's eq.)?
 - How does one recover a local bulk operator from CFT quantities?
- What part of bulk can we recover from a restricted CFT info?
 - What bulk region does a CFT state (at a given instant in time) encode?
 - What bulk region does a spatial subregion of CFT state encode?
- (How) does the CFT ''see'' inside a black hole?
 - (How) does it unitarily describe black hole formation & evaporation process?
 - How does it resolve curvature singularities?

Recent hints / expectations: entanglement plays a crucial role...

- Understand the emergence of spacetime
 - ∼ Use holography
 - ~ Focus on classical bulk geometry (i.e. $N = \infty, \lambda = \infty$ regime)

- Understand the emergence of spacetime
 - ∼ Use holography
 - ~ Focus on classical bulk geometry (i.e. $N = \infty, \lambda = \infty$ regime)
- Hints / expectation: "spacetime built from entanglement"
 - ~ Understand entanglement structure of 'geometric' states
 - \sim Focus on entanglement entropy (EE) for spatially-delimited subsystems

- Understand the emergence of spacetime
 - ∼ Use holography
 - ~ Focus on classical bulk geometry (i.e. $N = \infty, \lambda = \infty$ regime)
- Hints / expectation: "spacetime built from entanglement"
 - ~ Understand entanglement structure of 'geometric' states
 - \sim Focus on entanglement entropy (EE) for spatially-delimited subsystems
- Characterize {EEs} relevant for holography
 - \sim Region in entropy space dubbed holographic entropy cone (HEC)
 - ~ Focus on its boundary (delimited by holographic entropy inequalities)

- Understand the emergence of spacetime
 - ∼ Use holography
 - ~ Focus on classical bulk geometry (i.e. $N = \infty, \lambda = \infty$ regime)
- Hints / expectation: "spacetime built from entanglement"
 - ~ Understand entanglement structure of 'geometric' states
 - \sim Focus on entanglement entropy (EE) for spatially-delimited subsystems
- Characterize {EEs} relevant for holography
 - \sim Region in entropy space dubbed holographic entropy cone (HEC)
 - \sim Focus on its boundary (delimited by holographic entropy inequalities)
- Seek lessons independent of # of subsystems (≡N)
 - ∼ Bootstrap from low N
 - \sim Focus on structural relations

Entanglement entropy

For CFT state $|\psi\rangle$ and bi-partition $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_{\bar{A}}$

 \rightarrow reduced density matrix $\rho_A \equiv \text{Tr}_{\bar{A}} |\psi\rangle\langle\psi|$

 $\mathsf{EE} = S(A) \equiv -\mathrm{Tr}\,\rho_A\,\log\rho_A$

Entanglement entropy

For CFT state $|\psi\rangle$ and bi-partition $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_{\bar{A}}$

 \rightarrow reduced density matrix $\rho_A \equiv \text{Tr}_{\bar{A}} |\psi\rangle\langle\psi|$ EE = $S(A) \equiv -\text{Tr} \rho_A \log \rho_A$

• Decompose CFT into N elementary subsystems

Entanglement entropy

For CFT state $|\psi\rangle$ and bi-partition $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_{\bar{A}}$

 \rightarrow reduced density matrix $\rho_A \equiv \text{Tr}_{\bar{A}} |\psi\rangle\langle\psi|$ EE = $S(A) \equiv -\text{Tr} \rho_A \log \rho_A$

• Decompose CFT into N elementary subsystems

• \rightarrow entropy vector in D = 2^N - I dimensional entropy space

e.g. for N=3, $\vec{S} = \{S(A), S(B), S(C), S(AB), S(AC), S(BC), S(ABC)\}$ conceptually useful to consider large N...

- Physically realizable entropy vectors are restricted
- Universal restrictions:
 - Sub-additivity (SA)

 \Rightarrow Mutual information positivity

 $S(A) + S(B) \ge S(AB)$

 $I(A:B) \equiv S(A) + S(B) - S(AB) \ge 0$

- Physically realizable entropy vectors are restricted
- Universal restrictions:
 - Sub-additivity (SA) S(A) + S(B) ≥ S(AB)
 ⇒ Mutual information positivity I(A : B) ≡ S(A) + S(B) S(AB) ≥ 0
 Strong sub-additivity (SSA) S(AB) + S(BC) ≥ S(B) + S(ABC)

 \Rightarrow Mutual information monotonicity $I(A:C|B) \equiv I(A:BC) - I(A:B) \ge 0$

- Physically realizable entropy vectors are restricted
- Universal restrictions:
 - Sub-additivity (SA) $S(A) + S(B) \ge S(AB)$ \Rightarrow Mutual information positivity $I(A:B) \equiv S(A) + S(B) - S(AB) \ge 0$
 - Strong sub-additivity (SSA) $S(AB) + S(BC) \ge S(B) + S(ABC)$

 $\Rightarrow \text{Mutual information monotonicity} \qquad I(A:C|B) \equiv I(A:BC) - I(A:B) \geq 0$

- ... (expect more relations with increasing N)
- always permutation & purification symmetric

```
in any pure state, S(A) = S(A^c)

\Rightarrow e.g. transforms SA into Araki-Lieb: S(A) + S(AB) \ge S(B)
```

- Physically realizable entropy vectors are restricted
- Universal restrictions:
 - Sub-additivity (SA) $S(A) + S(B) \ge S(AB)$ \Rightarrow Mutual information positivity $I(A:B) \equiv S(A) + S(B) - S(AB) \ge 0$
 - Strong sub-additivity (SSA) $S(AB) + S(BC) \ge S(B) + S(ABC)$

 $\Rightarrow \text{Mutual information monotonicity} \qquad I(A:C|B) \equiv I(A:BC) - I(A:B) \geq 0$

- ... (expect more relations with increasing N)
- always permutation & purification symmetric
- Further restrictions, depending on the system
- Our task: understand the full set in holography

Holographic entanglement entropy

Proposal [RT=Ryu & Takayanagi, '06] for static configurations, covariantized by [HRT=VH, Rangamani, Takayanagi, '07] for time-dependent situations:

Entanglement entropy S(A) for a boundary region A is captured by the area of a bulk extremal surface \mathfrak{s} homologous to A;

bulk A boundary

for multiple candidates, choose least area one.

$$S(A) = \min_{\mathfrak{s} \sim A} \frac{\operatorname{Area}(\mathfrak{s})}{4 \, G_N}$$

Holographic entanglement entropy

Proposal [RT=Ryu & Takayanagi, '06] for static configurations, covariantized by [HRT=VH, Rangamani, Takayanagi, '07] for time-dependent situations:

Entanglement entropy S(A) for a boundary region A is captured by the area of a bulk extremal surface \mathfrak{s} homologous to A;

bulk A boundary

for multiple candidates, choose least area one.

$$S(A) = \min_{\mathfrak{s} \sim A} \frac{\operatorname{Area}(\mathfrak{s})}{4 \, G_N}$$

Allows for phase transitions, e.g. jump in surface for S(AB):

- strong subadditivity: $S(AB) + S(BC) \ge S(B) + S(ABC)$
- proof in static configurations [Headrick&Takayanagi]

S(AB) + S(BC)

- strong subadditivity: $S(AB) + S(BC) \ge S(B) + S(ABC)$
- proof in static configurations [Headrick&Takayanagi]

 $S(AB) + S(BC) = \alpha + \beta$

- strong subadditivity: $S(AB) + S(BC) \ge S(B) + S(ABC)$
- proof in static configurations [Headrick&Takayanagi]

 $S(AB) + S(BC) = \alpha + \beta \geq S(B) + S(ABC)$

- strong subadditivity: $S(AB) + S(BC) \ge S(B) + S(ABC)$
- proof in static configurations [Headrick&Takayanagi]

 $S(AB) + S(BC) = \alpha + \beta \geq S(B) + S(ABC)$

• proof in time-dependent setting uses maximin prescription [Wall]

Entropy cone

{All physically allowed entropy vectors} = convex cone in entropy space

2 useful characterizations of a polyhedral cone:

Entropy cone

{All physically allowed entropy vectors} = convex cone in entropy space

2 useful characterizations of a polyhedral cone:

when restricted to geometric states in holography → holographic entropy cone (HEC) [Bao, Nezami, Ooguri, Stoica, Sully, Walter '15]

Hierarchy of cones in entropy space

Consider entropy space for fixed N

- holographic entropy cone: HEC = { holographically realizable \vec{S} }
- quantum entropy cone: QEC = { physically realizable \vec{S} }
- subadditivity cone: SAC = { \vec{S} compatible with all instances of SA }
- These are nested convex sets:
 SAC > QEC > HEC

Hierarchy of cones in entropy space

Consider entropy space for fixed N

- holographic entropy cone: HEC = { holographically realizable \vec{S} }
- quantum entropy cone: QEC = { physically realizable $ec{S}$ }
- subadditivity cone: SAC = { \vec{S} compatible with all instances of SA }

Hierarchy of cones in entropy space

Consider entropy space for fixed N

- holographic entropy cone: HEC = { holographically realizable \vec{S} }
- quantum entropy cone: QEC = { physically realizable \vec{S} }
- subadditivity cone: SAC = { \vec{S} compatible with all instances of SA }

• At N=2 all these cones in \mathbb{R}^3 coincide, at N>2 they are strictly nested

Entropy relations for N=3

Recall:

- Universal:
 - Sub-additivity (SA) $S(A) + S(B) \ge S(AB)$
 - $I(A:B) \equiv S(A) + S(B) S(AB) \ge 0$ rightarrow Mutual information positivity
 - Strong sub-additivity (SSA) $S(AC) + S(BC) \ge S(C) + S(ABC)$

 \Rightarrow Mutual information monotonicity $I(A:B|C) \equiv I(A:BC) - I(A:C) \ge 0$

- True in holography:
 - Monogamy of mutual information (MMI)

 $S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$

 \Rightarrow Tripartite information $I_3(A:B:C) \equiv I(A:B) + I(A:C) - I(A:BC) \leq 0$

Note: SSA becomes redundant since SSA = SA + MMI

OUTLINE

• HEC in terms of facets

- previously-known results: N≤5
- rewriting in tripartite form
- new holographic entropy inequalities for N=6
- no-go for correlation measures

• HEC in terms of extreme rays

- previously-known results: N≤5
- HEC from SAC and marginal independence
- new extreme rays for N=6
- gap between holographic and quantum SAC ERs
- Summary & future directions

OUTLINE

- HEC in terms of facets
 - previously-known results: N≤5
 - rewriting in tripartite form
 - new holographic entropy inequalities for N=6
 - no-go for correlation measures
- HEC in terms of extreme rays
 - previously-known results: N≤5
 - HEC from SAC and marginal independence
 - new extreme rays for N=6
 - gap between holographic and quantum SAC ERs
- Summary & future directions

HEC for N≤5

• While QEC_N is known only up to N=3, HEC_N is known up to N=5. \rightarrow Important open problem in Quantum Information Science: QEC_N

HEC for N≤5

- While QEC_N is known only up to N=3, HEC_N is known up to N=5. \rightarrow Important open problem in Quantum Information Science: QEC_N
- N=4 HEC still consists of only {SA, MMI} (gives 20 independent inequalities)

HEC for N≤5

- While QEC_N is known only up to N=3, HEC_N is known up to N=5. \rightarrow Important open problem in Quantum Information Science: QEC_N
- N=4 HEC still consists of only {SA, MMI} (gives 20 independent inequalities)
- N=5 HEC has 5 further inequalities specified in [Bao, Nezami, Ooguri, Stoica, Sully, Walter, '15] & proved to be the complete set in [Hernández-Cuenca, '19]

→ N=5 HEC has 8 orbits of facets (total 372)
HEC for N≤5

- While QEC_N is known only up to N=3, HEC_N is known up to N=5. \rightarrow Important open problem in Quantum Information Science: QEC_N
- N=4 HEC still consists of only {SA, MMI} (gives 20 independent inequalities)
- N=5 HEC has 5 further inequalities specified in [Bao, Nezami, Ooguri, Stoica, Sully, Walter, '15] & proved to be the complete set in [Hernández-Cuenca, '19]

→ N=5 HEC has 8 orbits of facets (total 372)

 $\text{e.g.:} \quad 0 \leq -\mathtt{S}_{\text{AB}} - \mathtt{S}_{\text{BC}} - \mathtt{S}_{\text{CD}} - \mathtt{S}_{\text{DE}} - \mathtt{S}_{\text{EA}} - \mathtt{S}_{\text{ABCDE}} + \mathtt{S}_{\text{ABC}} + \mathtt{S}_{\text{BCD}} + \mathtt{S}_{\text{CDE}} + \mathtt{S}_{\text{DEA}} + \mathtt{S}_{\text{EAB}}$

HEC for N≤5

- While QEC_N is known only up to N=3, HEC_N is known up to N=5. \rightarrow Important open problem in Quantum Information Science: QEC_N
- N=4 HEC still consists of only {SA, MMI} (gives 20 independent inequalities)
- N=5 HEC has 5 further inequalities specified in [Bao, Nezami, Ooguri, Stoica, Sully, Walter, '15] & proved to be the complete set in [Hernández-Cuenca, '19]

→ N=5 HEC has 8 orbits of facets (total 372)

e.g.: $0 \leq -S_{AB} - S_{BC} - S_{CD} - S_{DE} - S_{EA} - S_{ABCDE} + S_{ABC} + S_{BCD} + S_{CDE} + S_{DEA} + S_{EAB}$ $0 \leq -2S_{ABCD} - S_{ABCE} - 2S_{ABDE} - S_{ACDE} - 2S_{AB} - S_{AC} - 2S_{AD} - S_{AE} - 2S_{BC} - S_{BD} - S_{CE} - 2S_{DE}$ $3S_{ABC} + 3S_{ABD} + S_{ABE} + S_{ACD} + S_{ACE} + 3S_{ADE} + S_{BCD} + S_{BCE} + S_{BDE} + S_{CDE}$

HEC for N≤5

- While QEC_N is known only up to N=3, HEC_N is known up to N=5. \rightarrow Important open problem in Quantum Information Science: QEC_N
- N=4 HEC still consists of only {SA, MMI} (gives 20 independent inequalities)
- N=5 HEC has 5 further inequalities specified in [Bao, Nezami, Ooguri, Stoica, Sully, Walter, '15] & proved to be the complete set in [Hernández-Cuenca, '19]

→ N=5 HEC has 8 orbits of facets (total 372)

 $\text{e.g.:} \quad 0 \leq -\mathtt{S}_{\text{AB}} - \mathtt{S}_{\text{BC}} - \mathtt{S}_{\text{CD}} - \mathtt{S}_{\text{DE}} - \mathtt{S}_{\text{EA}} - \mathtt{S}_{\text{ABCDE}} + \mathtt{S}_{\text{ABC}} + \mathtt{S}_{\text{BCD}} + \mathtt{S}_{\text{CDE}} + \mathtt{S}_{\text{DEA}} + \mathtt{S}_{\text{EAB}}$

 $() \leq -2\mathbf{S}_{ABCD} - \mathbf{S}_{ABCE} - 2\mathbf{S}_{ABDE} - \mathbf{S}_{ACDE} - 2\mathbf{S}_{AB} - \mathbf{S}_{AC} - 2\mathbf{S}_{AD} - \mathbf{S}_{AE} - 2\mathbf{S}_{BC} - \mathbf{S}_{BD} - \mathbf{S}_{CE} - 2\mathbf{S}_{DE} - \mathbf{S}_{BD} - \mathbf{S}_{CE} - 2\mathbf{S}_{DE} - \mathbf{S}_{BD} - \mathbf{S}_{CE} - \mathbf{S}_{DE} - \mathbf{S}_{$

?: How do we find HEC systematically & understand its meaning / implications?

HEI in terms of I_n

- Re-write in terms of more compact expressions
 - Multipartite informations with 'singleton' arguments form a basis

HEI in terms of I_n

- Re-write in terms of more compact expressions
 - Multipartite informations with 'singleton' arguments form a basis

• Multipartite informations with composite arguments:

$$\text{e.g.} \quad I_3(\text{A:B:CD}) = \textbf{S}_{\text{A}} + \textbf{S}_{\text{B}} + \textbf{S}_{\text{CD}} - \textbf{S}_{\text{AB}} - \textbf{S}_{\text{ACD}} - \textbf{S}_{\text{BCD}} + \textbf{S}_{\text{ABCD}}$$

• In the *I*-basis, HEIs are simpler [He, Headrick,VH], but not simple enough...

$$\begin{array}{l} \text{e.g.:} \ 0 \leq \text{Q} = -\textbf{S}_{\text{ABCD}} - \textbf{S}_{\text{BCDE}} - \textbf{S}_{\text{ABE}} - \textbf{S}_{\text{BC}} - \textbf{S}_{\text{BD}} - \textbf{S}_{\text{A}} - \textbf{S}_{\text{C}} - \textbf{S}_{\text{D}} - \textbf{S}_{\text{E}} \\ & + \textbf{S}_{\text{ABC}} + \textbf{S}_{\text{ABD}} + \textbf{S}_{\text{BCD}} + \textbf{S}_{\text{BCE}} + \textbf{S}_{\text{BDE}} + \textbf{S}_{\text{AE}} + \textbf{S}_{\text{CD}} \\ & \text{vs.} \ \textbf{Q} = \ \textbf{I}_{\text{ABCD}} + \textbf{I}_{\text{BCDE}} - \textbf{I}_{\text{ABE}} - \textbf{I}_{\text{ACD}} - \textbf{I}_{\text{BCD}} - \textbf{I}_{\text{CDE}} \end{array}$$

• In the *I*-basis, HEIs are simpler [He, Headrick,VH], but not simple enough...

$$\begin{array}{l} \text{e.g.: 0 \leq Q = -S_{ABCD} - S_{BCDE} - S_{ABE} - S_{BC} - S_{BD} - S_{A} - S_{C} - S_{D} - S_{E} \\ \qquad + S_{ABC} + S_{ABD} + S_{BCD} + S_{BCE} + S_{BDE} + S_{AE} + S_{CD} \\ \\ \text{vs. } Q = \mathbf{I}_{ABCD} + \mathbf{I}_{BCDE} - \mathbf{I}_{ABE} - \mathbf{I}_{ACD} - \mathbf{I}_{BCD} - \mathbf{I}_{CDE} \end{array}$$

• However, written in terms of I_3 and its conditional form, w/ composite arguments, and all signs negative = "tripartite form":

$$Q = \sum_{i} -I_3(\mathbf{X}_i : \mathbf{Y}_i : \mathbf{Z}_i | \mathbf{W}_i) \qquad \qquad \forall \forall I_3(\mathbf{X}_i : \mathbf{Y}_i : \mathbf{Z}_i | \varnothing) \coloneqq I_3(\mathbf{X}_i : \mathbf{Y}_i : \mathbf{Z}_i)$$

HEIs become more compact [WIP: Hernández-Cuenca, VH, Jia]:

• In the *I*-basis, HEIs are simpler [He, Headrick,VH], but not simple enough...

$$\begin{array}{l} \text{e.g.: } 0 \leq \text{Q} = -\textbf{S}_{\text{ABCD}} - \textbf{S}_{\text{BCDE}} - \textbf{S}_{\text{ABE}} - \textbf{S}_{\text{BC}} - \textbf{S}_{\text{BD}} - \textbf{S}_{\text{A}} - \textbf{S}_{\text{C}} - \textbf{S}_{\text{D}} - \textbf{S}_{\text{E}} \\ & + \textbf{S}_{\text{ABC}} + \textbf{S}_{\text{ABD}} + \textbf{S}_{\text{BCD}} + \textbf{S}_{\text{BCE}} + \textbf{S}_{\text{BDE}} + \textbf{S}_{\text{AE}} + \textbf{S}_{\text{CD}} \\ & \text{vs. } \textbf{Q} = \textbf{I}_{\text{ABCD}} + \textbf{I}_{\text{BCDE}} - \textbf{I}_{\text{ABE}} - \textbf{I}_{\text{ACD}} - \textbf{I}_{\text{BCD}} - \textbf{I}_{\text{CDE}} \end{array}$$

• However, written in terms of I_3 and its conditional form, w/ composite arguments, and all signs negative = "tripartite form":

$$Q = \sum_{i} -I_3(\mathbf{X}_i : \mathbf{Y}_i : \mathbf{Z}_i \mid \mathbf{W}_i) \qquad \qquad \forall \forall I_3(\mathbf{X}_i : \mathbf{Y}_i : \mathbf{Z}_i \mid \emptyset) \coloneqq I_3(\mathbf{X}_i : \mathbf{Y}_i : \mathbf{Z}_i)$$

HEIs become more compact [WIP: Hernández-Cuenca, VH, Jia]:

VS.
$$Q = -I_3(AB:C:D) - I_3(B:D:E|C) - I_3(A:C:E|D)$$

• In the *I*-basis, HEIs are simpler [He, Headrick,VH], but not simple enough...

$$\begin{array}{l} \text{e.g.: } 0 \leq \text{Q} = -\textbf{S}_{\text{ABCD}} - \textbf{S}_{\text{BCDE}} - \textbf{S}_{\text{ABE}} - \textbf{S}_{\text{BC}} - \textbf{S}_{\text{BD}} - \textbf{S}_{\text{A}} - \textbf{S}_{\text{C}} - \textbf{S}_{\text{D}} - \textbf{S}_{\text{E}} \\ & + \textbf{S}_{\text{ABC}} + \textbf{S}_{\text{ABD}} + \textbf{S}_{\text{BCD}} + \textbf{S}_{\text{BCE}} + \textbf{S}_{\text{BDE}} + \textbf{S}_{\text{AE}} + \textbf{S}_{\text{CD}} \\ & \text{vs. } \textbf{Q} = \textbf{I}_{\text{ABCD}} + \textbf{I}_{\text{BCDE}} - \textbf{I}_{\text{ABE}} - \textbf{I}_{\text{ACD}} - \textbf{I}_{\text{BCD}} - \textbf{I}_{\text{CDE}} \end{array}$$

• However, written in terms of I_3 and its conditional form, w/ composite arguments, and all signs negative = "tripartite form":

$$Q = \sum_{i} -I_3(\mathbf{X}_i : \mathbf{Y}_i : \mathbf{Z}_i | \mathbf{W}_i) \qquad \qquad \forall I_3(\mathbf{X}_i : \mathbf{Y}_i : \mathbf{Z}_i | \varnothing) \coloneqq I_3(\mathbf{X}_i : \mathbf{Y}_i : \mathbf{Z}_i)$$

HEIs become more compact [WIP: Hernández-Cuenca, VH, Jia]:

VS.
$$Q = -I_3(AB:C:D) - I_3(B:D:E|C) - I_3(A:C:E|D)$$

• in other examples, 2 terms instead of 11 in *I*-basis or 13 in *S*-basis

HEIs for N=5

N = 5 HEI information quantities
$-\mathbf{S}_{\mathrm{ABCD}} - \mathbf{S}_{\mathrm{ACDE}} - \mathbf{S}_{\mathrm{AB}} - \mathbf{S}_{\mathrm{AD}} - \mathbf{S}_{\mathrm{DE}} - \mathbf{S}_{\mathrm{C}}$
$\mathbf{S}_{\mathrm{ABC}} + \mathbf{S}_{\mathrm{ABD}} + \mathbf{S}_{\mathrm{ACD}} + \mathbf{S}_{\mathrm{ADE}} + \mathbf{S}_{\mathrm{CDE}}$
$I_{ABCD} + I_{ACDE} - I_{ACD} - I_{ACE} - I_{BCD}$
$-I_3(AB:C:D) - I_3(A:C:E D)$
$-\mathtt{S}_{\mathrm{ABCD}}-\mathtt{S}_{\mathrm{BCDE}}-\mathtt{S}_{\mathrm{ABE}}-\mathtt{S}_{\mathrm{BC}}-\mathtt{S}_{\mathrm{BD}}-\mathtt{S}_{\mathrm{A}}-\mathtt{S}_{\mathrm{C}}-\mathtt{S}_{\mathrm{D}}-\mathtt{S}_{\mathrm{E}}$
$S_{ABC} + S_{ABD} + S_{BCD} + S_{BCE} + S_{BDE} + S_{AE} + S_{CD}$
$I_{ABCD} + I_{BCDE} - I_{ABE} - I_{ACD} - I_{BCD} - I_{CDE}$
$-I_3(AB:C:D) - I_3(A:B:E) - I_3(C:D:E B)$
$-\mathtt{S}_{\mathrm{ABCD}}-\mathtt{S}_{\mathrm{ACDE}}-\mathtt{S}_{\mathrm{BCDE}}-\mathtt{S}_{\mathrm{AB}}-\mathtt{S}_{\mathrm{AD}}-\mathtt{S}_{\mathrm{BC}}-\mathtt{S}_{\mathrm{CD}}-\mathtt{S}_{\mathrm{CE}}-\mathtt{S}_{\mathrm{DE}}$
$\mathtt{S}_{\mathrm{ABC}} + \mathtt{S}_{\mathrm{ABD}} + \mathtt{S}_{\mathrm{ACD}} + \mathtt{S}_{\mathrm{ADE}} + \mathtt{S}_{\mathrm{BCD}} + \mathtt{S}_{\mathrm{BCE}} + 2 \mathtt{S}_{\mathrm{CDE}}$
$\mathbf{I}_{\mathrm{ABCD}} + \mathbf{I}_{\mathrm{ACDE}} + \mathbf{I}_{\mathrm{BCDE}} - \mathbf{I}_{\mathrm{ACD}} - \mathbf{I}_{\mathrm{ACE}} - \mathbf{I}_{\mathrm{BCD}} - \mathbf{I}_{\mathrm{BDE}}$
$-I_3(AB:C:D) - I_3(B:D:E C) - I_3(A:C:E D)$
$-\mathtt{S}_{\mathrm{ABCE}}-\mathtt{S}_{\mathrm{ACDE}}-\mathtt{S}_{\mathrm{BCDE}}-\mathtt{S}_{\mathrm{ABD}}-\mathtt{S}_{\mathrm{AC}}-\mathtt{S}_{\mathrm{AE}}-\mathtt{S}_{\mathrm{BC}}-\mathtt{S}_{\mathrm{BE}}-\mathtt{S}_{\mathrm{CD}}-\mathtt{S}_{\mathrm{DE}}$
$\mathtt{S}_{\mathrm{ABC}} + \mathtt{S}_{\mathrm{ABE}} + \mathtt{S}_{\mathrm{ACD}} + \mathtt{S}_{\mathrm{ACE}} + \mathtt{S}_{\mathrm{ADE}} + \mathtt{S}_{\mathrm{BCD}} + \mathtt{S}_{\mathrm{BCE}} + \mathtt{S}_{\mathrm{BDE}} + \mathtt{S}_{\mathrm{CDE}}$
$\mathbf{I}_{\text{ABCE}} + \mathbf{I}_{\text{ACDE}} + \mathbf{I}_{\text{BCDE}} - \mathbf{I}_{\text{ABD}} - \mathbf{I}_{\text{ACE}} - \mathbf{I}_{\text{BCE}} - \mathbf{I}_{\text{CDE}}$
$-I_3(A:B:D) - I_3(B:C:E A) - I_3(C:D:E B) - I_3(A:C:E D)$
$-2\mathtt{S}_{\mathrm{ABCD}} - \mathtt{S}_{\mathrm{ABCE}} - \mathtt{S}_{\mathrm{ABDE}} - \mathtt{S}_{\mathrm{ACDE}} - \mathtt{S}_{\mathrm{AB}} - \mathtt{S}_{\mathrm{AC}} - \mathtt{S}_{\mathrm{AD}} - \mathtt{S}_{\mathrm{AE}} - \mathtt{S}_{\mathrm{BC}} - \mathtt{S}_{\mathrm{BD}} - \mathtt{S}_{\mathrm{CE}} - \mathtt{S}_{\mathrm{DE}}$
$3\mathtt{S}_{\mathrm{ABC}} + 3\mathtt{S}_{\mathrm{ABD}} + \mathtt{S}_{\mathrm{ABE}} + \mathtt{S}_{\mathrm{ACD}} + \mathtt{S}_{\mathrm{ACE}} + 3\mathtt{S}_{\mathrm{ADE}} + \mathtt{S}_{\mathrm{BCD}} + \mathtt{S}_{\mathrm{BCE}} + \mathtt{S}_{\mathrm{BDE}} + \mathtt{S}_{\mathrm{CDE}}$
$2\mathbf{I}_{ABCD} + \mathbf{I}_{ABCE} + 2\mathbf{I}_{ABDE} + \mathbf{I}_{ACDE} - \mathbf{I}_{ABD} - 2\mathbf{I}_{ABE} - 2\mathbf{I}_{ACD} - \mathbf{I}_{ACE} - \mathbf{I}_{BCD} - \mathbf{I}_{BDE}$
$-I_3(AB:C:D) - I_3(AE:B:D) - I_3(A:B:E C) - I_3(A:B:E D) - I_3(A:C:D B) - I_3(A:C:E D)$

New HEIs for N=6

- This provides a useful HEI generating technique: [WIP: Hernández-Cuenca, VH, Jia]
 - Posit form,
 - check if true ineq. (via contraction map) vs. not sign definite (via explicit evaluation),
 - if true, check if non-redundant (spanned by D-1 I.i. hol. entropy vectors) or sum of facets

New HEIs for N=6

- This provides a useful HEI generating technique: [WIP: Hernández-Cuenca, VH, Jia]
 - Posit form,
 - check if true ineq. (via contraction map) vs. not sign definite (via explicit evaluation),
 - if true, check if non-redundant (spanned by D-1 I.i. hol. entropy vectors) or sum of facets
- For N=6 we obtained >300 new *orbits* of HEIs
 - So far at least 384 orbits for N=6

• e.g.:
-
$$S_{ABCF} - S_{ABDE} - S_{ABEF} - S_{CDEF} - S_{AE} - S_{AF} - S_{BE} - S_{BF} - S_{CD} - S_{CF} - S_{DE} - S_{A} - S_{B}$$

 $S_{ABE} + S_{ABF} + S_{ACF} + S_{ADE} + S_{AEF} + S_{BCF} + S_{BDE} + S_{BEF} + S_{CDE} + S_{CDF} + S_{AB}$
 $I_{ABCF} + I_{ABDE} + I_{ABEF} + I_{CDEF} - I_{ABC} - I_{ABD} - I_{ABE} - I_{ABF} - I_{CEF} - I_{DEF}$
 $-I_3(CD:E:F) - I_3(A:B:EF) - I_3(A:B:D|E) - I_3(A:B:C|F)$
 $-S_{ABCDF} - S_{ACEF} - S_{BDEF} - S_{CDF} - 2S_{AF} - S_{DE} - S_{EF} - S_{A} - S_{B} - 2S_{C} - S_{D}$
 $S_{BCDF} + S_{ABF} + S_{ACF} + S_{ADF} + S_{AEF} + S_{BDE} + S_{CEF} + S_{DEF} + S_{AC} + S_{CD}$
 $-I_{ABCDF} + I_{ABCD} + I_{ABCF} + I_{ABDF} + I_{ACDF} + I_{ACEF} + I_{BDEF}$
 $-I_{ABC} - I_{ABD} - I_{ACD} - I_{ACE} - I_{ACF} - I_{BDF} - I_{BEF} - I_{CDF}$
 $-I_3(AF:C:D) - I_3(B:DE:F) - I_3(A:C:EF) - I_3(A:B:CD|F)$
 $-2S_{ABCDF} - S_{ACEF} - S_{BDEF} - S_{CDF} - S_{AF} - S_{DE} - S_{EF} - S_{A} - S_{B} - 2S_{C} - S_{D}$
 $S_{ABCF} + S_{ABDF} + S_{ACDF} + S_{BCDF} + S_{AEF} + S_{BDE} + S_{CEF} + S_{DEF} + S_{AC} + S_{CD}$
 $-I_{ABC} - I_{ABD} - I_{ACD} - I_{ACE} - I_{ACF} - I_{BDF} - I_{BEF} - I_{CDF}$
 $-2I_{ABCDF} + S_{ABDF} + S_{ACDF} + S_{BCDF} + S_{AEF} + S_{BDE} + S_{CEF} + S_{DEF} + S_{AC} + S_{CD}$
 $-2I_{ABCDF} + 2I_{ABCD} + I_{ABCF} + I_{ABDF} + I_{ACDF} + I_{ACEF} + I_{BCDF} + I_{BDEF}$
 $-I_{ABC} - I_{ABD} - I_{ACD} - I_{ACE} - I_{ACF} - I_{BCD} - I_{BCF} - I_{BEF} - I_{CDF}$
 $-I_{ABC} - I_{ABD} - I_{ACD} - I_{ACE} - I_{ACF} - I_{BCD} - I_{BDF} - I_{BEF} - I_{CDF}$
 $-I_{ABC} - I_{ABD} - I_{ACD} - I_{ACE} - I_{ACF} - I_{BCD} - I_{BDF} - I_{BEF} - I_{CDF}$
 $-I_{ABC} - I_{ABD} - I_{ACD} - I_{ACE} - I_{ACF} - I_{BCD} - I_{BDF} - I_{BEF} - I_{CDF}$
 $-I_{ABC} - I_{ABD} - I_{ACD} - I_{ACE} - I_{ACF} - I_{BCD} - I_{BCF} - I_{CDF}$

Structural relations

- Advantage of tripartite form
 - much more compact
 - easier to see structural relations
 - may suggest how to "bootstrap" to higher N

e.g.:

Structural relations

- Advantage of tripartite form
 - much more compact
 - easier to see structural relations
 - may suggest how to "bootstrap" to higher N

e.g.:
$$N \qquad Q_{\{4,2,0\}}^{[5]} = -I_3(C:E:F) - I_3(A:B:EF) - I_3(A:B:C|F) Q_{\{5,3,0\}}^{[6]} = -I_3(CD:E:F) - I_3(A:B:EF) - I_3(A:B:C|F) Q_{\{6,5,1\}}^{[6]} = -I_3(C:E:F) - I_3(AD:B:EF) - I_3(A:B:C|F) Q_{\{7,6,1\}}^{[6]} = -I_3(CD:E:F) - I_3(AD:B:EF) - I_3(A:B:C|F) (H = -I_3(D = I_3(D = I_3$$

Structural relations

- Advantage of tripartite form
 - much more compact
 - easier to see structural relations
 - may suggest how to "bootstrap" to higher N

e.g.:

$$N \qquad Q_{\{4,2,0\}}^{[5]} = -I_3(C:E:F) - I_3(A:B:EF) - I_3(A:B:C|F)$$

$$Q_{\{5,3,0\}}^{[6]} = -I_3(CD:E:F) - I_3(A:B:EF) - I_3(A:B:C|F)$$

$$Q_{\{6,5,1\}}^{[6]} = -I_3(C:E:F) - I_3(AD:B:EF) - I_3(A:B:C|F)$$

$$Q_{\{7,6,1\}}^{[6]} = -I_3(CD:E:F) - I_3(AD:B:EF) - I_3(A:B:C|F)$$

$$\{\#I_3, \#I_4, \#I_5\}$$

$$Q_{\{8,6,1\}}^{[6]} = -I_3(AF:C:D) - I_3(B:DE:F) - I_3(A:C:EF) - I_3(A:B:CD|F)$$

$$Q_{\{8,6,1\}}^{[6]} = -I_3(BF:C:D) - I_3(B:DE:F) - I_3(A:C:EF) - I_3(A:B:CD|F)$$

$$Q_{\{9,8,2\}}^{[6]} = -I_3(ABF:C:D) - I_3(B:DE:F) - I_3(A:C:EF) - I_3(A:B:CD|F)$$

- Correlation measure:
 - Non-negative
 - Monotonically increasing under inclusion

- Correlation measure:
 - Non-negative
 - Monotonically increasing under inclusion
- cf. mutual information:
 - SA: $I(A:B) \equiv S(A) + S(B) S(AB) \ge 0$
 - SSA: $I(A:B|C) \equiv I(A:BC) I(A:C) \ge 0$

- Correlation measure:
 - Non-negative
 - Monotonically increasing under inclusion
- cf. mutual information:
 - SA: $I(A:B) \equiv S(A) + S(B) S(AB) \ge 0$
 - SSA: $I(A:B|C) \equiv I(A:BC) I(A:C) \ge 0$
- Higher HEIs are *superbalanced* [He,VH, Rangamani]
 - finite on any configuration
 - in I-basis, contain only I_n for $n\geq 3$
 - \Rightarrow not monotonic under inclusion

[WIP: Hernández-Cuenca, VH, Jia]

- Correlation measure:
 - Non-negative
 - Monotonically increasing under inclusion
- cf. mutual information:
 - SA: $I(A:B) \equiv S(A) + S(B) S(AB) \ge 0$
 - SSA: $I(A:B|C) \equiv I(A:BC) I(A:C) \ge 0$
- Higher HEIs are superbalanced [He,VH, Rangamani]
 - finite on any configuration
 - in I-basis, contain only I_n for $n\geq 3$
 - \Rightarrow not monotonic under inclusion [WIP: Hernández-Cuenca, VH, Jia]
- Higher HEI quantities are <u>not</u> a correlation measures

OUTLINE

• HEC in terms of facets

- previously-known results: N≤5
- rewriting in tripartite form
- new holographic entropy inequalities for N=6
- no-go for correlation measures

• HEC in terms of extreme rays

- previously-known results: N≤5
- HEC from SAC and marginal independence
- new extreme rays for N=6
- gap between holographic and quantum SAC ERs
- Summary & future directions

HEC in terms of ERs

- ERs correspond to special/extreme states
 - HEC = convex hull of ERs
 - Simultaneously saturate (D-I) independent HEIs
 - Holographically correspond to multi-boundary wormholes
- Useful toolkit:
 - Holographic graph model
 - Pattern of marginal independence (PMI)

HEC in terms of ERs

- ERs correspond to special/extreme states
 - HEC = convex hull of ERs
 - Simultaneously saturate (D-I) independent HEIs
 - Holographically correspond to multi-boundary wormholes
- Useful toolkit:
 - Holographic graph model
 - Pattern of marginal independence (PMI) \leftarrow entanglement structure from \vec{S}

 \checkmark \vec{S} from spacetime

HEC in terms of ERs

- ERs correspond to special/extreme states
 - HEC = convex hull of ERs
 - Simultaneously saturate (D-I) independent HEIs
 - Holographically correspond to multi-boundary wormholes \bigcirc
- Useful toolkit:
 - Holographic graph model
 - Pattern of marginal independence (PMI) \leftarrow entanglement structure from $ec{S}$

 \checkmark \vec{S} from spacetime

These will lead us to study the ERs of the SAC.

cf. [Bao, Nezami, Ooguri, Stoica, Sully, Walter]

- Distill the discrete elements from a holographic configuration
 - vertices = cells in RT surface network
 - edges = pieces of RT surfaces separating neighboring regions, with weight = corresponding area
 - EE = min-cut

cf. [Bao, Nezami, Ooguri, Stoica, Sully, Walter]

- Distill the discrete elements from a holographic configuration
 - vertices = cells in RT surface network
 - edges = pieces of RT surfaces separating neighboring regions, with weight = corresponding area
 - EE = min-cut

cf. [Bao, Nezami, Ooguri, Stoica, Sully, Walter]

- Distill the discrete elements from a holographic configuration
 - vertices = cells in RT surface network
 - edges = pieces of RT surfaces separating neighboring regions, with weight = corresponding area
 - EE = min-cut

• Graphs can get complicated...

e.g. graph model for

has 43 vertices & 88 edges

• Graphs can get complicated...

e.g. graph model for

has 43 vertices & 88 edges

• But graph cone = HEC

[Bao, Nezami, Ooguri, Stoica, Sully, Walter]

• N=2 HEC has 3 extreme rays (I orbit)

- N=2 HEC has 3 extreme rays (I orbit)
- N=3 HEC has 7 extreme rays (2 orbits)

S(AB)

and:

Graph representation of HEC₅ ERs

[Hernández-Cuenca, '19]

Graph representation of HEC₅ ERs

[Hernández-Cuenca, '19]

• All deformable to tree graphs (though with multiple vertices of same color) [Hernández-Cuenca,VH, Rota '22]

PMI

- **Def**: Pattern of Marginal Independence (PMI) is a specification of full set of subsystems $\{X, Y\}$ for which I(X:Y) = 0.
 - *marginals* = reduced density matrices
 - independent if factorized structure

PMI

- Def: Pattern of Marginal Independence (PMI) is a specification of full set of subsystems { X, Y } for which I(X:Y) = 0.
 - *marginals* = reduced density matrices
 - independent if factorized structure
- Meaning & Utility
 - holographically: bdy region pairs, s.t. the joint entanglement wedge is disconnected (since connected XY ent. wedge $\implies I(X:Y) > 0$)
 - every entropy vector $ec{S}$ has a unique PMI
 - linear subspace of entropy space
 - = intersection of all saturated SA or AL hyperplanes
 - \Rightarrow discrete structure
 - for physical $ec{S}$, PMI = span of a face of the SAC
HEC from SAC

- Utilize graph model
 - ER graph has maximal min-cut degeneracy (cf. phase transition of RT surfaces)
 - Conjecture: ERs can be rendered as tree graphs (has strong evidence)
- Thm: Assuming Conjecture, every ER of HEC_N is obtained as a projection of ER of a subadditivity cone SAC_{N'} (for some N' ≥ N) [Hernández-Cuenca,VH, Rota]

Cartoon of HEC vs. SAC

HEC from SAC

- Utilize graph model
 - ER graph has maximal min-cut degeneracy (cf. phase transition of RT surfaces)
 - Conjecture: ERs can be rendered as tree graphs (has large evidence)
- Thm: Assuming Conjecture, every ER of HEC_N is obtained as a projection of ER of a subadditivity cone SAC_{N'} (for some N' ≥ N) [Hernández-Cuenca,VH, Rota]
- This in principle allows us to construct the full $\ensuremath{\mathsf{HEC}}_{\ensuremath{\mathsf{N}}}$ for any $\ensuremath{\mathsf{N}}$
 - In practice complicated: requires correct set of ERs of SAC_{N'} for all N', projecting, taking convex hull, extracting ERs, and constructing facets...
 - But conceptually demystifies the HEC (and entanglement structure of holographic states)

HEC from SAC

- Utilize graph model
 - ER graph has maximal min-cut degeneracy (cf. phase transition of RT surfaces)
 - Conjecture: ERs can be rendered as tree graphs (has large evidence)
- Thm: Assuming Conjecture, every ER of HEC_N is obtained as a projection of ER of a subadditivity cone SAC_{N'} (for some N' ≥ N) [Hernández-Cuenca,VH, Rota]
- This in principle allows us to construct the full $\ensuremath{\mathsf{HEC}}_{\ensuremath{\mathsf{N}}}$ for any $\ensuremath{\mathsf{N}}$
 - In practice complicated: requires correct set of ERs of SAC_{N'} for all N', projecting, taking convex hull, extracting ERs, and constructing facets...
 - But conceptually demystifies the HEC (and entanglement structure of holographic states)
- Crux: how can we characterize the requisite set of SAC ERs?
 - Formulate in terms of PMIs

- Not all marginal independence bipartitions are possible, due to:
 - mathematical inconsistency

• physical inconsistency

- Not all marginal independence bipartitions are possible, due to:
 - mathematical inconsistency

e.g. violates the identity $I_2(A:BC) + I_2(B:C) = I_2(B:AC) + I_2(A:C)$

• physical inconsistency

violates entropy inequality, e.g. SSA \Rightarrow $I_2(A:BC) = 0 \Rightarrow I_2(A:B) = 0$

- Not all marginal independence bipartitions are possible, due to:
 - mathematical inconsistency

e.g. violates the identity $I_2(A:BC) + I_2(B:C) = I_2(B:AC) + I_2(A:C)$

• physical inconsistency

violates entropy inequality, e.g. SSA \Rightarrow $I_2(A:BC) = 0 \Rightarrow$ $I_2(A:B) = 0$

t Klein's condition (KC) [He,VH, Rota]

- Not all marginal independence bipartitions are possible, due to:
 - mathematical inconsistency

e.g. violates the identity $I_2(A:BC) + I_2(B:C) = I_2(B:AC) + I_2(A:C)$

• physical inconsistency

violates entropy inequality, e.g. SSA \Rightarrow $I_2(A:BC) = 0 \Rightarrow I_2(A:B) = 0$

Klein's condition (KC) [He,VH, Rota]

- Marginal Independence Problem (MIP): what PMIs are realizable?
 - QMIP: what PMIs are realizable in QM? considered in [Hernández-Cuenca,VH, Rangamani, Rota]
 - HMIP: what PMIs are realizable by geometric states in holography? [He,VH, Rota] & WIP

Exploring the SAC

- No convenient characterization of all ERs directly
- Easy characterization of facets: saturation of any single SA
- Hence define ERs as I-d PMIs
 - \rightarrow collection of D-I independent MIs { I(X:Y) }

Exploring the SAC

- No convenient characterization of all ERs directly
- Easy characterization of facets: saturation of any single SA
- Hence define ERs as I-d PMIs
 - \rightarrow collection of D-I independent MIs { I(X:Y) }
- Convenient mathematical framework:
 - Matroid theory (abstractifies notion of linear dependence in combinatorial language): use to implement mathematical consistency
 - Oriented matroids:
 - use to implement consistency w/ SA
 - Lattice theory: poset order by inclusion (in MI arguments): use to implement Klein's condition as approximation to SSA
 - Closure theory: unifying framework for the above (on MI powerset)

Power of restrictions

- Linear dependence: e.g. $I_2(A:BC) + I_2(B:C) = I_2(B:AC) + I_2(A:C)$
 - Implemented by matroid circuits
- KC: i.e. $I_2(A:BC) = 0 \Rightarrow I_2(A:B) = 0$
 - Implemented as a down-set in MI poset
 - Reduces the # of potentially viable PMIs drastically:

Power of restrictions

- Linear dependence: e.g. $I_2(A:BC) + I_2(B:C) = I_2(B:AC) + I_2(A:C)$
 - Implemented by matroid circuits
- KC: i.e. $I_2(A:BC) = 0 \Rightarrow I_2(A:B) = 0$
 - Implemented as a down-set in MI poset
 - Reduces the # of potentially viable PMIs drastically:

N=3: # of subspaces	ofa	given	dimensio	n d	\leq [D:
---------------------	-----	-------	----------	-----	----------	----

d	0	1	2	3	4	5	6	7
in PMI lattice	1	11	48	107	127	75	18	1
in KC lattice	1	7	21	35	32	15	6	1

Power of restrictions

- Linear dependence: e.g. $I_2(A:BC) + I_2(B:C) = I_2(B:AC) + I_2(A:C)$
 - Implemented by matroid circuits

• KC: i.e.
$$I_2(A:BC) = 0 \Rightarrow I_2(A:B) = 0$$

- Implemented as a down-set in MI poset
- Reduces the # of potentially viable PMIs drastically:

N=3: # of subspaces of a given dimension $d \le D$:

d	0	1	2	3	4	5	6	7
in PMI lattice	1	11	48	107	127	75	18	1
in KC lattice	1	7	21	35	32	15	6	1

N=4:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	3085	66005	532585	2254005	5719656	9301825	10032200	7275805	3541900	1138826	234470	29455	2100	75	1
1	20	175	840	2465	4843	6345	5875	4100	2300	1072	430	150	45	10	1

Classes of ERs of SAC

 $\begin{array}{ll} \text{Let} & \mathcal{R}\coloneqq \{\mathbb{P}\in \mathfrak{L}_{\mathrm{PMI}}^{\mathsf{N}}:\,\dim(\mathbb{P})=1\} &= \text{set of all extreme rays of the SAC} \\ & \mathcal{R}_{\mathrm{KC}}\coloneqq \{\mathbb{P}\in \mathfrak{L}_{\mathrm{KC}}^{\mathsf{N}}:\,\dim(\mathbb{P})=1\} &= \text{set of KC-compatible ERs of the SAC} \\ & \mathcal{R}_{\mathrm{ssa}}\coloneqq \{\mathbb{P}\in \mathfrak{R}:\,\mathbb{P} \text{ is SSA-compatible}\} \\ & \mathcal{R}_{\mathrm{Q}}\coloneqq \{\mathbb{P}\in \mathfrak{R}:\,\mathbb{P} \text{ is realizable by a quantum state}\} \\ & \mathcal{R}_{\mathrm{H}}\coloneqq \{\mathbb{P}\in \mathfrak{R}:\,\mathbb{P} \text{ is realizable by a graph model}\}\,, \end{array}$

$$\Rightarrow \qquad \mathcal{R}_{_{\mathrm{H}}} \subseteq \mathcal{R}_{_{\mathrm{Q}}} \subseteq \mathcal{R}_{_{\mathrm{SSA}}} \subseteq \mathcal{R}_{_{\mathrm{KC}}} \subseteq \mathcal{R}$$

Classes of ERs of SAC

$$\begin{array}{ll} \text{Let} & \mathcal{R}\coloneqq \{\mathbb{P}\in\mathfrak{L}^{\mathsf{N}}_{\mathrm{PMI}}:\,\dim(\mathbb{P})=1\} &= \text{set of all extreme rays of the SAC} \\ & \mathcal{R}_{_{\mathrm{KC}}}\coloneqq \{\mathbb{P}\in\mathfrak{L}^{\mathsf{N}}_{\mathrm{KC}}:\,\dim(\mathbb{P})=1\} &= \text{set of KC-compatible ERs of the SAC} \\ & \mathcal{R}_{_{\mathrm{SSA}}}\coloneqq \{\mathbb{P}\in\mathcal{R}:\,\mathbb{P}\text{ is SSA-compatible}\} \\ & \mathcal{R}_{_{\mathrm{Q}}}\coloneqq \{\mathbb{P}\in\mathcal{R}:\,\mathbb{P}\text{ is realizable by a quantum state}\} \\ & \mathcal{R}_{_{\mathrm{H}}}\coloneqq \{\mathbb{P}\in\mathcal{R}:\,\mathbb{P}\text{ is realizable by a graph model}\}\,, \end{array}$$

$$\Rightarrow \quad \mathcal{R}_{_{\mathrm{H}}} \subseteq \mathcal{R}_{_{\mathrm{Q}}} \subseteq \mathcal{R}_{_{\mathrm{SSA}}} \subseteq \mathcal{R}_{_{\mathrm{KC}}} \subseteq \mathcal{R}$$

• Observations:

• For N=2, $\mathcal{R}_{SSA} = \mathcal{R}$; but otherwise $|\mathcal{R}_{SSA}| \ll |\mathcal{R}|$

Classes of ERs of SAC

$$\begin{array}{ll} \text{Let} & \mathcal{R}\coloneqq \{\mathbb{P}\in\mathfrak{L}^{\mathsf{N}}_{\mathrm{PMI}}:\,\dim(\mathbb{P})=1\} &= \text{set of all extreme rays of the SAC} \\ & \mathcal{R}_{_{\mathrm{KC}}}\coloneqq \{\mathbb{P}\in\mathfrak{L}^{\mathsf{N}}_{\mathrm{KC}}:\,\dim(\mathbb{P})=1\} &= \text{set of KC-compatible ERs of the SAC} \\ & \mathcal{R}_{_{\mathrm{SSA}}}\coloneqq \{\mathbb{P}\in\mathcal{R}:\,\mathbb{P}\text{ is SSA-compatible}\} \\ & \mathcal{R}_{_{\mathrm{Q}}}\coloneqq \{\mathbb{P}\in\mathcal{R}:\,\mathbb{P}\text{ is realizable by a quantum state}\} \\ & \mathcal{R}_{_{\mathrm{H}}}\coloneqq \{\mathbb{P}\in\mathcal{R}:\,\mathbb{P}\text{ is realizable by a graph model}\}\,, \end{array}$$

$$\Rightarrow \quad \mathcal{R}_{_{\mathrm{H}}} \subseteq \mathcal{R}_{_{\mathrm{Q}}} \subseteq \mathcal{R}_{_{\mathrm{SSA}}} \subseteq \mathcal{R}_{_{\mathrm{KC}}} \subseteq \mathcal{R}$$

• Observations:

- For N=2, $\mathcal{R}_{\rm ssa}=\mathcal{R}$; but otherwise $|\mathcal{R}_{\rm ssa}|\ll|\mathcal{R}|$
- For $\mathbb{N}\leq 5,\ \mathcal{R}_{_{\rm H}}=\,\mathcal{R}_{_{\rm SSA}}$
- Original hope: this prevails \forall N, which would give $\mathcal{R}_{H} = \mathcal{R}_{Q}$
- Establishing this would be useful since little known about QEC

Holographic - quantum gap

• However, **J** a counter-example at N=6: [He,VH, Rota, '23]

The following ER of SAC₆: $R_6 = (2, 1, 1, 1, 2, 2; 3, 3, 3, 4, 4, 2, 2, 3, 3, 2, 3, 3, 3, 3, 4;$ 2, 4, 5, 5, 4, 5, 5, 3, 5, 4, 3, 4, 4, 4, 5, 4, 4, 5, 3; 3,4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 5, 4, 4, 4; 3, 3, 2, 2, 2, 3; 1)

w/ components ordered as $(A, \ldots, F; AB, AC, \ldots, EF; ABC, \ldots; ABCDEF)$

violates MMI, since $-I_3(A:BC:DE) = -2 \ge 0$

 $\Longrightarrow \mathsf{R}_{6} \notin \mathfrak{R}_{_{\mathrm{H}}}$

Holographic - quantum gap

• However, **J** a counter-example at N=6: [He, VH, Rota, '23]

The following ER of SAC₆: $R_6 = (2, 1, 1, 1, 2, 2; 3, 3, 3, 4, 4, 2, 2, 3, 3, 2, 3, 3, 3, 3, 4;$ 2, 4, 5, 5, 4, 5, 5, 3, 5, 4, 3, 4, 4, 4, 5, 4, 4, 5, 3; 3,4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 5, 4, 4, 4; 3, 3, 2, 2, 2, 3; 1)

w/ components ordered as $(A, \ldots, F; AB, AC, \ldots, EF; ABC, \ldots; ABCDEF)$

violates MMI, since $-I_3(A:BC:DE) = -2 \ge 0$ $\implies \mathsf{R}_6 \notin \mathcal{R}_{\mathrm{H}}$

But, \exists a hypergraph which realizes $\ R_6$, so it describes a stabilizer state.

 \implies R₆ $\in \mathcal{R}_{o}$

[Walter & Witteveen]

Holographic - quantum gap

• However, **J** a counter-example at N=6: [He, VH, Rota, '23]

The following ER of SAC₆: $R_6 = (2, 1, 1, 1, 2, 2; 3, 3, 3, 4, 4, 2, 2, 3, 3, 2, 3, 3, 3, 3, 4;$ 2, 4, 5, 5, 4, 5, 5, 3, 5, 4, 3, 4, 4, 4, 5, 4, 4, 5, 3; 3,4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 5, 4, 4, 4; 3, 3, 2, 2, 2, 3; 1)

w/ components ordered as $(A, \ldots, F; AB, AC, \ldots, EF; ABC, \ldots; ABCDEF)$

violates MMI, since $-I_3(A:BC:DE) = -2 \ge 0$ $\implies \mathsf{R}_6 \notin \mathcal{R}_{\mathrm{H}}$

But, \exists a hypergraph which realizes $\ R_6$, so it describes a stabilizer state.

 \implies R₆ $\in \mathcal{R}_{o}$

[Walter & Witteveen]

 $\implies \mathcal{R}_{H} \neq \mathcal{R}_{O}$ i.e. **J** a gap between holographic and quantum ERs of SAC.

- Holographic entropy inequalities
 - Can be packaged efficiently using the tripartite form
 - Constructed 384 orbits of holographic entropy inequalities for N=6
 - These manifest rich structural relations
 - How can we bootstrap these to generate new HEIs for higher N?
 - Are all HEIs guaranteed to admit the tripartite form?
 - Is there an even better packaging?
- Interpretation?
 - Not correlation measures (since not monotonic under inclusion)
 - More generalized multipartite correlation?
 - Operational meaning?

- Main point:
 - HEC_N can be fully reconstructed from far simpler structure, at finer N': Holographically realizable ERs of $SAC_{N'}$ (\leftarrow solution to HMIP)

describe using PMIs, specified by { I(X:Y) }

- Main point:
 - HEC_N can be fully reconstructed from far simpler structure, at finer N': Holographically realizable ERs of SAC_{N'} (\leftarrow solution to HMIP) \downarrow describe using PMIs, specified by { I(X:Y) }
- Implications:
 - { $HEC_N \forall N$ } \leftarrow { $HMIP_N \forall N$ } ("Holographic entropy cone from marginal independence")
 - Any fixed N contaminated by structural (combinatorial) artifacts
 - Seemingly minimal dependence on holography (SAC universal)

- Main point:
 - HEC_N can be fully reconstructed from far simpler structure, at finer N': Holographically realizable ERs of SAC_{N'} (\leftarrow solution to HMIP) \downarrow describe using PMIs, specified by { I(X:Y) }
- Implications:
 - { $HEC_N \forall N$ } \leftarrow { $HMIP_N \forall N$ } ("Holographic entropy cone from marginal independence")
 - Any fixed N contaminated by structural (combinatorial) artifacts
 - Seemingly minimal dependence on holography (SAC universal)

- arbitrarily refined partition (N)
- classicality: admits phase transitions

Ļ

Future directions

- Within the present context:
 - Complete soln. to HMIP
 - Explain HEIs
 - Internal structure of HEC
 - Bootstrapping ERs and HEIs to higher N

- Beyond the present context:
 - Beyond classical bulk (quantum and stringy corrections)
 - Other QI quantities
 - . . .

Thank you

Covariant Holographic EE

The RT prescription for holographic EE is not well-defined outside the context of static configurations:

- In Lorentzian geometry, we can decrease the area arbitrarily by timelike deformations
- In time-dependent context, no natural notion of "const.t" slice...

In *time-dependent* situations, RT prescription must be covariantized:

Covariant Holographic EE

The RT prescription for holographic EE is not well-defined outside the context of static configurations:

- In Lorentzian geometry, we can decrease the area arbitrarily by timelike deformations
- In time-dependent context, no natural notion of "const. t" slice...

In *time-dependent* situations, RT prescription must be covariantized: [HRT = VH, Rangamani, Takayanagi '07]

 $\frac{\text{minimal}}{\text{at constant time}}$

 $\underline{\mathsf{extremal}}$ surface \mathfrak{E} in the full bulk

Entanglement wedge

Structure of generators of EW horizon

EW for composite region AB

RT cone = HRT cone

previously shown only for 2-d CFT [Czech, Dong]

- Hitherto graph representation only for static situations (RT)
 - Useful toolkit (e.g. contraction map to prove HEIs, constructing ERs, ...)

RT cone = HRT cone

previously shown only for 2-d CFT [Czech, Dong]

- Hitherto graph representation only for static situations (RT)
 - Useful toolkit (e.g. contraction map to prove HEIs, constructing ERs, ...)
- Covariant reformulation of holographic entanglement entropy
 - HRT: extremal surface
 - maximin: maximize over Cauchy slices the minimal surface area on slice [Wall]
 - minimax: minimize over 'timesheets' the maximal surface area on sheet [Headrick,VH]

RT cone = HRT cone

previously shown only for 2-d CFT [Czech, Dong]

- Hitherto graph representation only for static situations (RT)
 - Useful toolkit (e.g. contraction map to prove HEIs, constructing ERs, ...)
- Covariant reformulation of holographic entanglement entropy
 - HRT: extremal surface
 - maximin: maximize over Cauchy slices the minimal surface area on slice [Wall]
 - minimax: minimize over 'timesheets' the maximal surface area on sheet [Headrick,VH]
- Minimax (=partitioning bulk by timesheets) allows for graph model even in general time-dependent situations

[WIP: Grado-White, Grimaldi, Headrick, VH]

- Hence the toolkit developed for static case applies in general.
- All HEIs proved for static case are valid in time-dependent case as well.

Klein's condition (KC)

• Klein inequality:

$$\begin{array}{ccc} \mathrm{Tr}(f(\rho)-f(\sigma)-(\rho-\sigma)f'(\sigma))\geq 0 \\ \swarrow & \swarrow & \swarrow \\ \mathrm{convex} \ \mathrm{fn.} & \mathrm{Hermitian} \ \mathrm{matrices} & = & \longleftrightarrow \ \rho=\sigma \end{array}$$

• Apply to relative entropy

$$\begin{array}{ccc} \mathsf{R}\left(\rho \mid\mid \sigma\right) = 0 & \Longleftrightarrow & \rho = \sigma \\ \swarrow & & & & \\ \rho_{\underline{\mathsf{IK}}} & & \rho_{\underline{\mathsf{N}}} \otimes \rho_{\underline{\mathsf{K}}} \end{array} \end{array}$$

• ~ KC for MI: $I(\underline{\mathcal{I}}:\underline{\mathcal{J}}\underline{\mathcal{K}}) = 0$ $\implies \rho_{\underline{\mathcal{I}}\underline{\mathcal{I}}\underline{\mathcal{K}}} = \rho_{\underline{\mathcal{I}}} \otimes \rho_{\underline{\mathcal{J}}\underline{\mathcal{K}}}$ $\implies \rho_{\underline{\mathcal{I}}\underline{\mathcal{J}}} = \rho_{\underline{\mathcal{I}}} \otimes \rho_{\underline{\mathcal{J}}} \text{ and } \rho_{\underline{\mathcal{I}}\underline{\mathcal{K}}} = \rho_{\underline{\mathcal{I}}} \otimes \rho_{\underline{\mathcal{K}}}$ $\implies I(\underline{\mathcal{I}}:\underline{\mathcal{J}}) = 0 \text{ and } I(\underline{\mathcal{I}}:\underline{\mathcal{K}}) = 0.$

N=2 SAC in terms of MIs

- MI poset
 - order by inclusion:

- Matroid structure
 - represented by a "whirl"

Graphical representation of {I(X:Y)}

- Organize into whirls → W-complex:
 - each triangle = whirl
 - each edge = MI
 - each vertex = entropy / subsystem
- e.g. for N=3
 - 6 whirls
 - 18 (subsystem) MIs
 - 7 entropies
- Properties
 - whirls join at vertices
 - specified by I generating edge per whirl
 - automatically implements permutation & purification symmetry

Simple tree graphs

• But tree graphs have much simpler structure

- each edge specified by a unique collection of boundary vertices
- PMI follows directly from specification of min-cut structure

• **Def**: graph is *simple* if every edge defines some subsystem cut; or equivalently, if each boundary vertex has different "color"
Simple tree graphs

• But tree graphs have much simpler structure

- each edge specified by a unique collection of boundary vertices
- PMI follows directly from specification of min-cut structure

- **Def**: graph is *simple* if every edge defines some subsystem cut; or equivalently, if each boundary vertex has different "color"
- Thm: For *simple* tree graphs, min-cut subspace = PMI

Conjecture

• **Conjecture:** We can convert any holographic graph model into a tree while preserving the min-cut subspace.

- similarly, can collapse any isolated k-cycle
- Holds true for all ERs for N=5 HEC and all (hitherto-known) N=6 HEC ERs.
- generically gives a non-simple tree, but can be trivially made simple by `fine-graining':

Coarse-graining & fine-graining

- Change $N \rightarrow N'$
 - Changes dimensionality $D \rightarrow D'$ of entropy space
 - Aspects of entanglement structure preserved (inherited)
- Coarse-graining = declare multiple colors indistinguishable
 - projection of entropy vectors
 - corresponding projection of linear subspaces (V-space & PMI)
- Fine-graining = reverse of coarse-graining
 - Hence can obtain simple graph from non-simple one by fine-graining

Main theorem

- Consider ERs of N-party holographic entropy cone (HEC_N)
 - The HEC_N is a convex hull of these; so ERs (in principle) determine all holographic entropy inequalities
- Thm: Assuming Conjecture, every ER of HEC_N is obtained as a projection of ER of a subadditivity cone SAC_{N'} (for some N' ≥ N)

• Idea of Pf:

- Start w/ HEC_N ER & obtain graph representation G (has I-dV-space)
- Use Conjecture & fine-grain to transform into a simple tree G'
- Resulting V-space = PMI in D'-dimensional entropy space
- Reduce to I-d PMI (if uplifting increased V-space dimensionality)
- = ER for $SAC_{N'}$