The Euclidean vacuum state for linearized gravity on de Sitter spacetime

Christian Gérard Université Paris-Saclay

August 27, 2023

< □ → < ⓓ → < ё → < ≧ → < ≧ → < ≧ → < ○ </p>
Centre Euclidean vacuum state for linearized gravity on de Sit

Some background on quasi-free states

Wick rotation

Linearized gravity

Quantization of linearized gravity

de Sitter spacetime

CCR*-algebras

Let (\mathcal{Y}, q) be a Hermitian space.

- One can introduce the abstract CCR *-algebra CCR(𝒱, q) generated by the symbols ψ(救), ψ^{*}(救) for 𝗴 ∈ 𝒱 with relations:
 - 1) $\mathcal{Y} \ni y \mapsto \psi^*(y)$ resp. $\psi(y)$ linear resp. anti-linear,

2)
$$[\psi(y_1), \psi^*(y_2)] = \overline{y}_1 \cdot qy_2 \mathbb{1}, y_1, y_2 \in \mathcal{Y},$$

3) $[\psi(y_1), \psi(y_2)] = [\psi^*(y_1), \psi^*(y_2)] = 0, \ y_1, y_2 \in \mathcal{Y},$

4)
$$\psi(y)^* = \psi^*(y), y \in \mathcal{Y}.$$

Quasi-free states

A quasi-free state ω on CCR(𝔅, q) is determined by a pair of Hermitian forms λ[±] on 𝔅 (called the covariances) by

$$\begin{split} \omega(\psi(y_1)\psi^*(y_2)) &= \overline{y}_1 \cdot \lambda^+ y_2, \\ \omega(\psi^*(y_2)\psi(y_1)) &= \overline{y}_1 \cdot \lambda^- y_2, \\ \omega(\psi(y_1)\psi(y_2)) &= \omega(\psi^*(y_1)\psi^*(y_2)) = 0. \end{split}$$

 Necessary and sufficient conditions for λ[±] to be covariances are

1)
$$\lambda^+ - \lambda^- = q$$
 (CCR),
2) $\lambda^{\pm} \ge 0$ (positivity).

Useful to introduce c[±] =: ±q⁻¹ ∘ λ[±]. Then c⁺ + c⁻ = 1 and ω is pure iff c[±] are projections.

Quasi-free states for matter fields

- Let (M, g) a globally hyperbolic spacetime, V → M a finite rank Hermitian bundle.
- Let *D* a second order differential operator acting on $C^{\infty}(M; V)$ such that $D = D^*$ with principal symbol $\xi \cdot \mathbf{g}^{-1} \xi \mathbb{1}_V$.
- standard example is the Klein-Gordon operator D = −□, acting on scalar functions.
- ► D has unique advanced/retarded inverses G_{ret/adv}, G := G_{ret} - G_{adv} is the commutator function.

The various Hermitian spaces

• 'off shell' Hermitian space is
$$\frac{C_0^{\infty}(M; V)}{DC_0^{\infty}(M; V)}$$
 with

$$\overline{[u]} \cdot Q[u] = \mathrm{i}(u|Gu)_V.$$

• 'on shell' Hermitian space is $Ker_{sc} D$ (space of solutions) with

$$\overline{u} \cdot qu = \mathrm{i} \int_{\Sigma} n^{a} J_{a}(u, u) dVol_{\mathrm{h}},$$

 $\Sigma \subset M$ (any) Cauchy surface, *n* future directed unit normal, $J_a(u, u)$ conserved current.

• 'Cauchy surface' Hermitian space is $C_0^{\infty}(\Sigma; V \otimes \mathbb{C}^2)$ with

$$\overline{f} \cdot q_{\Sigma} f = \int_{\Sigma} (f_1 | f_0)_V + (f_0 | f_1)_V dVol_h, \ f = \begin{pmatrix} f_0 \\ f_1 \end{pmatrix}.$$

The Euclidean vacuum state for linearized gravity on de Sit

The various covariances

- ► All three Hermitian spaces are isomorphic. One can use any of the three to construct CCR(𝒱, q).
- 'off shell' covariances: a pair Λ^{\pm} : $C_0^{\infty}(M; V) \to \mathcal{D}'(M; V)$ such that

(1)
$$D \circ \Lambda^{\pm} = \Lambda^{\pm} \circ D = 0$$
(field equation)
(2) $\Lambda^{+} - \Lambda^{-} = iG$, (CCR),
(3) $(u|\Lambda^{\pm}u)_{V} \ge 0$, $u \in C_{0}^{\infty}(M; V)$, (positivity)

• 'Cauchy surface' covariances: a pair $\lambda_{\Sigma}^{\pm}: C_0^{\infty}(\Sigma; V \otimes \mathbb{C}^2) \to \mathcal{D}'(\Sigma; V \otimes \mathbb{C}^2)$ such that: (1) $\lambda_{\Sigma}^{\pm} - \lambda_{\Sigma}^{-} = q_{\Sigma}$, (CCR),

(2) $(f|\lambda_{\Sigma}^{\pm}f)_{V\otimes\mathbb{C}^2} \ge 0, f \in C_0^{\infty}(\Sigma; V\otimes\mathbb{C}^2),$ (positivity).

The various covariances

The two types of covariances are related by

$$\lambda_{\Sigma}^{\pm} = (\rho^* q_{\Sigma})^* \Lambda^{\pm} (\rho^* q_{\Sigma})^* \Lambda^{\pm} (\rho G)^* \lambda_{\Sigma}^{\pm} (\rho G),$$

where
$$\rho u = \begin{pmatrix} u \upharpoonright_{\Sigma} \\ i^{-1} \nabla_n u \upharpoonright_{\Sigma} \end{pmatrix}$$
 is the trace of u on Σ .

・ロト イラト イラト イラト ラ シーへで The Euclidean vacuum state for linearized gravity on de Sit

The Hadamard condition

The Hadamard condition on Λ[±] singles out the physically meaningful states:

$$\operatorname{WF}(\Lambda^{\pm})' \subset \mathcal{N}^{\pm} \times \mathcal{N}^{\pm},$$

where:

$$\mathcal{N} = \{(x,\xi) \in T^*M \setminus o : \chi \cdot \mathbf{g}^{-1}(x)\xi = 0\},$$

characteristic manifold aka lightcone,

 $\mathcal{N}^{\pm} =$ positive/negative energy components of \mathcal{N} ,

► WF(Λ^{\pm})' ⊂ $T^*(M \times M) \setminus o$ is the wavefront set of $\Lambda^{\pm} \in \mathcal{D}'(M \times M; V \boxtimes V)$ (distributional kernel of Λ^{\pm}).

The Hadamard condition

The Hadamard condition can also be formulated on the Cauchy surface covariances λ[±]_Σ (recall λ[±] = ±q_Σ ∘ c[±]):

$$\operatorname{WF}(U_{\Sigma} \circ c^{\pm})' \subset (\mathcal{N}^{\pm} \cup \mathcal{F}) \times T^*\Sigma,$$

over $V \times \Sigma$, where:

• U_{Σ} solves the Cauchy problem for D, ie

$$\begin{cases} D \circ U_{\Sigma} = 0, \\ \rho_{\Sigma} \circ U_{\Sigma} = 1 \end{cases}.$$

• $\mathcal{F} \subset T^*M \setminus o$ any conic set with $\mathcal{F} \cap \mathcal{N} = \emptyset$.

Wick rotation

- Assume that $M = I_t \times \Sigma$, $\mathbf{g} = -dt^2 + h_t(x)dx^2$ and h_t real analytic in t near t = 0.
- ► Wick rotation amounts to set t =: is (dt = ids etc). We obtain $\tilde{M} = \tilde{l}_s \times \Sigma$ with a metric $\tilde{\mathbf{g}} = ds^2 + h_{is}(x)dx^2$.
- Note that ğ is in general not Riemannian.
- ► The operator D becomes D̃, which is elliptic, at least near s = 0.

Calderón projectors

• Let
$$\Omega^{\pm} = \tilde{M} \cap \{\pm s > 0\}$$
. For $u \in \overline{C^{\infty}}(\Omega^{\pm})$ we set

$$\tilde{\rho}u = \left(\begin{array}{c} u \upharpoonright \Sigma \\ -\partial_{s}u \upharpoonright \Sigma \end{array}\right).$$

Key fact: the spaces

$$E^{\pm} = \{ \widetilde{
ho} u : u \in \overline{C^{\infty}}(\Omega^{\pm}), \ \widetilde{D} u = 0 \text{ in } \Omega^{\pm} \}$$

are not equal to $C^{\infty}(\Sigma; \mathbb{C}^2)$: one cannot solve the Cauchy problem for an elliptic equation !

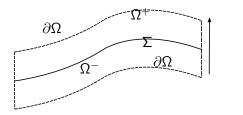
Calderón projectors

- ► The Calderón projectors č[±] are the projections on E[±] along E[∓].
- This requires that $E^+ \cap E^- = \{0\}$ or equivalently \tilde{D} injective
- $E^+ + E^- = C^{\infty}(\Sigma; \mathbb{C}^2)$ or equivalently \tilde{D} surjective.
- To do this D̃ has to be defined as a linear operator, not only as a formal expression: put boundary conditions on ∂Ω !

Calderón projectors

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ The Euclidean vacuum state for linearized gravity on de Sit

æ



s

(ロト・日本・モン・モン・モーンへで) The Euclidean vacuum state for linearized gravity on de Sit

Hadamard states from Calderón projectors

- For scalar fields one can put Dirichlet boundary conditions on $\partial \Omega$ to make \tilde{D} invertible.
- Theorem (GW)

Let

$$\lambda_{\Sigma}^{\pm} = \pm q_{\Sigma} \circ \tilde{c}^{\pm}.$$

Then λ_{Σ}^{\pm} are the Cauchy surface covariances of a Hadamard state.

For ultrastatic spacetimes g = −dt² + h, ğ = ds² + h, the state obtained with Calderón projectors with no boundary conditions (ie l̃ = ℝ) is the vacuum state.

Einstein's equations

- $\operatorname{Ric}_{ab}(\mathbf{g}) = R_{acb}^{c}$, Ricci curvature.
- Einstein's equations:

 $Ric(g) = \Lambda g$, Λ cosmological constant.

- non-linear system of PDE for g.
- not hyperbolic.
- Cauchy problem ill posed: Einstein equations imply constraints on Cauchy data.
- gauge equivalence: two metrics g and χ*g where χ : M → M diffeomorphism are physically equivalent.

Linearized gravity

 fix a background metric g solution of Einstein equations and linearize around g, ie write

$$(\operatorname{\mathsf{Ric}} - \Lambda)(\mathbf{g} + \epsilon u) = (\operatorname{\mathsf{Ric}} - \Lambda)(\mathbf{g}) + \epsilon P u + O(\epsilon^2),$$

for
$$u \in C^{\infty}(M; \otimes^2_{\mathrm{s}} T^*M)$$
.

The equation

$$Pu = 0$$

is called the linearized Einstein equations.

• Similarly linearize a diffeomorphism χ around 1: we obtain

$$\chi^* = 1 + \epsilon \mathcal{L}_{\nu} + O(\epsilon^2),$$

 \mathcal{L}_{v} is the Lie derivative associated to the vector field v.

Some background

► Set
$$V_k = \mathbb{C} \otimes_{s}^{k} T^*M$$
, $k = 0, 1, 2$.
 V_k equipped with the Hermitian form

$$(u|u)_{V_k} = k! \overline{u} \cdot (\mathbf{g}^{\otimes k}(x))^{-1} u, \ u \in V_k(x),$$

$$(u|v)_{V_k} = \int_M (u(x)|v(x))_{V_k} d\operatorname{Vol}_{\mathbf{g}}$$

For example

$$(\mathbf{g}|\mathbf{g})_{V_2} = 8, \; (\mathbf{g}|u)_{V_2} = 2\mathrm{tr}_{\mathbf{g}}u = 2\mathbf{g}^{ab}u_{ab}.$$

physical Hermitian form: $(u|v)_{I,V_2} := (u|Iv)_{V_2}$, I trace reversal (see below).)

3

Symmetric differential and co-differential

symmetric differential: we set

$$d: \begin{array}{l} C^{\infty}(M;V_k) \rightarrow C^{\infty}(M;V_{k+1}) \\ (du)_{a_1\dots,a_{k+1}} = \nabla_{(a_1}u_{a_2\dots,a_{k+1}}), \end{array}$$

 $u_{(a_1...a_k)}$ is the symmetrization of $u_{a_1...a_k}$,

symmetric co-differential

$$\delta: \begin{array}{c} C^{\infty}(M; V_k) \to C^{\infty}(M; V_{k-1}) \\ (\delta u)_{a_1, \dots, a_{k-1}} = -k \nabla^a u_{aa_1 \dots a_{k-1}}. \end{array}$$

 $d^* = \delta$ w.r.t. the Hermitian form $(\cdot | \cdot)_{V_k}$.

Trace reversal

Trace reversal: *I* is orthogonal symmetry w.r.t. $\mathbb{C}\mathbf{g}$:

$$Iu_2 = u_2 - \frac{1}{4}\mathbf{g}(\mathbf{g}|u_2)_{V_2},$$

one has

$$I^2 = \mathbb{1}, I\mathbf{g} = -\mathbf{g}, \ I = I^* \text{ for } (\cdot|\cdot)_{V_2}.$$

イロン イヨン イヨン イヨン The Euclidean vacuum state for linearized gravity on de Sit

3

Linearized gravity as a gauge theory

Tedious computation shows that:

$$P = -I \circ \Box - d \circ \delta \circ I + 2I \circ \operatorname{Riem},$$

for

$$\mathsf{Riem}\,u_{ab} = \mathsf{R}^c{}_{ab}{}^d u_{cd},$$

(preserves symmetric 2-tensors because of symmetries of the Riemann tensor), and

$$P \circ d = 0.$$

• The map $u_2 \rightarrow u_2 + du_1$ corresponds to linearized gauge transformations (preserves solutions of Pu = 0).

Linearized gravity as a gauge theory

- replace u_2 by Iu_2 .
- P becomes

$$P = -\Box - I \circ d \circ \delta + 2\mathsf{Riem},$$

set

 $K := I \circ d.$

► The gauge invariance of *P* is expressed by

$$P \circ K = 0$$
,

- u_2 and $u_2 + Ku_1$ are equivalent solutions of $Pu_2 = 0$.
- the Hermitian space is

$$\frac{\operatorname{\mathsf{Ker}}_{\operatorname{sc}} P}{\operatorname{Ran}_{\operatorname{sc}} K},$$

ie solutions of linearized Einstein modulo gauge equivalence. 🛓 🕤

The Euclidean vacuum state for linearized gravity on de Sit

Quantization of linearized gravity

- To quantize linearized gravity we need to equip $\frac{\text{Ker}_{sc} P}{\text{Ran}_{sc} K}$ with a Hermitian form.
- To do this one uses gauge fixing. We follow here the nice exposition in [Hack-Schenkel]:
- one adds the gauge condition $K^* u = 0$ ie $\delta u = 0$ (harmonic gauge condition).
- here A^* is the adjoint w.r.t. the physical Hermitian form

$$(u|u)_{I,V_2} = (u|Iu)_{V_2}.$$

- ► for any u_2 with $Pu_2 = 0$ there exists u_1 such that $K^*(u_2 + Ku_1) = 0$.
- u_1 is unique modulo a solution of $K^*Kv_1 = 0$ (residual gauge freedom).

It follows that

$$\frac{\operatorname{\mathsf{Ker}}_{\operatorname{sc}} P}{\operatorname{Ran}_{\operatorname{sc}} K} \sim \frac{\operatorname{\mathsf{Ker}}_{\operatorname{sc}} D_2 \cap \operatorname{\mathsf{Ker}}_{\operatorname{sc}} K^\star}{K \operatorname{\mathsf{Ker}}_{\operatorname{sc}} D_1},$$

where

$$D_2 := P + K \circ K^* = -\Box + 2\mathsf{Riem}$$

$$D_1 := K^* \circ K = -\Box + \Lambda,$$

- $D_i = D_{i,L} 2\Lambda$ where $D_{i,L}$ are the Lichnerowicz d' Alembertians, D_i are hyperbolic operators.
- They admit advanced/retarded inverses.

э

Further gauge fixing

It is possible to impose further gauge fixing conditions, for example the traceless gauge

$$K_0^{\star} u_2 = 0$$

for
$$K_0^{\star} u_2 = -\text{tr}_{\mathbf{g}} u_2$$
, $K_0 u_0 = u_0 \mathbf{g}$.

One obtains then the equivalent Hermitian space

$$\frac{\operatorname{\mathsf{Ker}}_{\operatorname{sc}} D_2 \cap \operatorname{\mathsf{Ker}}_{\operatorname{sc}} {\mathcal{K}}^{\star} \cap \operatorname{\mathsf{Ker}}_{\operatorname{sc}} {\mathcal{K}}_0^{\star}}{{\mathcal{K}} \operatorname{\mathsf{Ker}}_{\operatorname{sc}} D_1 \cap \operatorname{\mathsf{Ker}}_{\operatorname{sc}} {\mathcal{K}}_0^{\star}},$$

It is also possible to change the gauge fixing condition. For example the condition:

$$\delta u_2 + \epsilon d \mathrm{tr}_{\mathbf{g}} u_2 = \mathbf{0},$$

for $\epsilon \in \mathbb{R}$ has been used in the Euclidean framework.

Leads to different operators D_i (leading term no more scalar).

The Euclidean vacuum state for linearized gravity on de Sit

• $\frac{\text{Ker}_{sc} P}{\text{Ran}_{sc} K}$ represents the 'on shell' Hermitian space.

the corresponding ' off shell' Hermitian space is

 $\mathcal{V} = \frac{\operatorname{Ker}_{c} K^{\star}}{\operatorname{Ran}_{c} P}.$

One equips it with the Hermitian form

$$\overline{[u]} \cdot Q[u] = \mathrm{i}(u|G_2u)_{I,V_2},$$

for
$$G_2 = G_{2ret} - G_{2adv}$$
.

э

Cauchy surface Hermitian space

- We have D₂ ∘ K = K ∘ D₁ and (taking adjoints) K^{*} ∘ D₂ = D₁ ∘ K^{*}.
- therefore

$$K: \operatorname{Ker}_{\mathrm{sc}} D_1 \to \operatorname{Ker}_{\mathrm{sc}} D_2,$$

$$K^{*}$$
: Ker $_{
m sc}$ D_{2} $ightarrow$ Ker $_{
m sc}$ D_{1}

- We denote by K_{Σ} , K_{Σ}^{\dagger} the 'Cauchy data' versions of K, K^* .
- For example if $D_1u_1 = 0$, $f_1 = \rho_{1\Sigma}u_1$, then

$$K_{\Sigma}f_1=\rho_{2\Sigma}Ku_1.$$

• Since $D_1 = K^* \circ K$ we have

$$K_{\Sigma}^{\dagger} \circ K_{\Sigma} = 0.$$

・ロト・日本・ヨト・ヨー シーモーシーマー The Euclidean vacuum state for linearized gravity on de Sit

Cauchy surface Hermitian space

- ▶ We have $I \circ D_2 = D_2 \circ I$, so $I : \text{Ker}_{sc} D_2 \rightarrow \text{Ker}_{sc} D_2$. (I = trace reversal).
- We denote by I_{Σ} the Cauchy data version of I.
- The Cauchy surface Hermitian space is

 $\frac{\operatorname{\mathsf{Ker}}_{\mathrm{c}} \mathsf{K}_{\Sigma}^{\dagger}}{\operatorname{Ran}_{\mathrm{c}} \mathsf{K}_{\Sigma}},$

equipped with the Hermitian form

$$\overline{[f]} \cdot q_{2,I}[f] = (f|q_{2\Sigma} \circ I_{\Sigma}f)_{V_2 \otimes \mathbb{C}^2}, \ f \in \operatorname{Ker}_{c} K_{\Sigma}^{\dagger}.$$

off shell covariances

► Let
$$\Lambda_2^{\pm} : C_0^{\infty}(M; V_2) \rightarrow \mathcal{D}'(M; V_2)$$
 be such that
(1) $D_2 \circ \Lambda_2^{\pm} = \Lambda_2^{\pm} \circ D_2 = 0$ (field equation),
(2) $\Lambda_2^+ - \Lambda_2^- = iG_2$ on Ker_c K^{*} (CCR),
(3) $\Lambda_2^{\pm} : \operatorname{Ran}_c K \rightarrow \operatorname{Ran} K$ (gauge invariance),
(4) $(u|I\Lambda_2^{\pm}u)_{V_2} \ge 0, \forall u \in \operatorname{Ker}_c K^*$ (positivity).

Then

$$\overline{[u]} \cdot \Lambda^{\pm}[u] = (u|I \circ \Lambda_2^{\pm} u)_{V_2}, \ [u] \in \frac{\operatorname{Ker}_{c} K^{\star}}{\operatorname{Ran}_{c} P}$$

are the (off-shell) covariances of a quasi-free state on $\operatorname{CCR}(\mathcal{V}, Q)$.

< ≣ >

æ

Cauchy surface covariances

If we use the Cauchy surface Hermitian space, we obtain analogous conditions.

• Let $\lambda_{2\Sigma}^{\pm}: C_0^{\infty}(\Sigma; V_2 \otimes \mathbb{C}^2) \to \mathcal{D}'(\Sigma; V_2 \otimes \mathbb{C}^2)$. We set as before

$$\lambda_{2\Sigma}^{\pm} =: \pm q_{2\Sigma} \circ c_2^{\pm}.$$

• The analogous conditions on $\lambda_{2\Sigma}^{\pm}$ are:

(1)
$$c_2^+ + c_2^- = 1$$
 on $\operatorname{Ker}_c K_{\Sigma}^{\dagger}$ (CCR),
(2) $c_2^{\pm} : \operatorname{Ran}_c K_{\Sigma} \to \operatorname{Ran} K_{\Sigma}$ (gauge invariance),
(3) $\pm (f | I_{\Sigma} q_{2\Sigma} c_2^{\pm} f)_{V_2 \otimes \mathbb{C}^2} \ge 0, \ \forall f \in \operatorname{Ker}_c K_{\Sigma}^{\star}$ (positivity).

Hadamard condition

 In addition to the above conditions, we require the Hadamard condition ie

$$\operatorname{WF}(\Lambda_2^{\pm})' \subset \mathcal{N}^{\pm} \times \mathcal{N}^{\pm},$$

or equivalently

$$\operatorname{WF}(U_{2\Sigma} \circ c_2^{\pm})' \subset (\mathcal{N}^{\pm} \cup \mathcal{F}) \times \mathcal{T}^*\Sigma,$$

Existence of Hadamard states

Theorem (G)

Let (M, \mathbf{g}) be any Einstein manifold with compact Cauchy surfaces. Then there exist gauge invariant Hadamard states for linearized gravity on (M, \mathbf{g}) .

- ► The proof relies on pdo calculus and uses full gauge fixing:
- this amounts to find a convenient supplementary space to $\operatorname{Ran} K_{\Sigma}$ inside Ker K_{Σ}^{\dagger} . The delicate gauge invariance property can now be forgotten.

de Sitter spacetime

► the de Sitter spacetime dS⁴ is R_t × S³, equipped with the metric

$$\mathbf{g} = -dt^2 + \cosh^2(t)\mathbf{h},$$

h canonical metric on $\mathbb{S}^3 = \Sigma$.

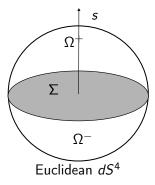
- ▶ By Wick rotation $t \mapsto is$ we obtain the metric $\tilde{\mathbf{g}} = ds^2 + \cos^2(s)$ h, $s \in] \pi/2, \pi/2[$,
- ▶ ie the sphere S⁴ by setting

$$x_0 = \sin s, \ (x_1, \ldots, x_4) = \cos s \ \omega, \ \omega \in \mathbb{S}^3.$$

- The Wick rotations of D_i are denoted by D̃_i.
- ▶ They are selfadjoint for the natural scalar products on S⁴.

• • = • • = •

Wick rotated de Sitter spacetime



臣

Wick rotated de Sitter spacetime

- ► The Wick rotation of dS^4 is compact: no need for boundary conditions to define \tilde{D}_1 , \tilde{D}_2 !
- \tilde{D}_2 is invertible,
- $\tilde{D}_2 \ge 2$ on Ker($\tilde{\mathbf{g}}$ | (traceless symmetric 2-tensors on \mathbb{S}^4).
- \tilde{D}_1 is not invertible,
- ► Ker \tilde{D}_1 = Ker d = Ker d ∩ Ker δ = space of Killing 1-forms on \mathbb{S}^4 .

Calderón projectors

▶ By Wick rotating the identity $D_2 \circ K = K \circ D_1$ we obtain

$$ilde{D}_2 \circ ilde{K} = ilde{K} \circ ilde{D}_1, \ (ilde{K} = ilde{I} \circ ilde{d}).$$

▶ If Calderón projectors \tilde{c}_i^{\pm} exist for \tilde{D}_i then one would have

$$\tilde{c}_2^{\pm} \circ \tilde{K}_{\Sigma} = \tilde{K}_{\Sigma} \circ \tilde{c}_1^{\pm}$$

hence \tilde{c}_2^{\pm} preserves $\operatorname{Ran} \tilde{\mathcal{K}}_{\Sigma}$: one would get gauge invariance !

Calderón projectors

- \tilde{c}_2^{\pm} exist since \tilde{D}_2 is invertible.
- this problem is due to the existence of Killing one-forms !
- it is still present with any of the alternative gauge fixing conditions explained above.

Calderón projectors

One can show that Calderón projectors č[±]₁ exist on the subspace:

$$E_1 := (ilde{
ho}_1 \operatorname{\mathsf{Ker}} ilde{D}_1)^{q_1},$$

the q_1 -orthogonal of $\tilde{\rho}_1$ Ker \tilde{D}_1 , of codimension 10 in $\tilde{V}_1 \times \mathbb{C}^2$.

► There is a corresponding natural subspace E₂ of codimension 10 in V
₂ × C² such that

$$ilde{K}_{\Sigma}: E_1
ightarrow E_2$$

The Euclidean vacuum state

Let us define Cauchy surface covariances

$$\overline{f}_2 \cdot \lambda_{2\Sigma}^{\pm} f_2 = \pm (f_2 | q_{2\Sigma} I_{\Sigma} \widetilde{c}_2^{\pm} f_2)_{V_2 \otimes \mathbb{C}^2}.$$

• We call the associated (pseudo) state ω the Euclidean vacuum.

Theorem (GW)

The Euclidean vacuum satisfies

- (1) the Hadamard condition,
- (2) the CCR on Ker $K_{\Sigma}^{\dagger} \cap \text{Ker } K_{0\Sigma}^{\dagger}$, (TT gauge subspace)
- (3) the gauge invariance under E_1 ,
- (4) the positivity on Ker $K_{\Sigma}^{\dagger} \cap$ Ker $K_{0\Sigma}^{\dagger} \cap E_2$,
- (5) the invariance under all de Sitter isometries.

The Euclidean vacuum state

- one can show that \tilde{c}_2^{\pm} do not preserve the full $\operatorname{Ran} \tilde{K}_{\Sigma}$: in fact $\tilde{c}_2^{\pm} \tilde{K}_{\Sigma} f \in \operatorname{Ran} \tilde{K}_{\Sigma}$ iff $f \in E_1$!
- ► We recall that Ker $K_{\Sigma}^{\dagger} \cap$ Ker $K_{0\Sigma}^{\dagger}$ correspond to Cauchy data of transverse, traceless tensors.
- This is one of the many equivalent Hermitian spaces appearing in linearized gravity.

Modified Euclidean vacuum

- one can improve the gauge invariance and positivity of ω by additional gauge fixing.
- This amounts to replace $\lambda_{2\Sigma}^{\pm}$ by

$$\overline{f}_2 \cdot \lambda_{2\Sigma}^{\pm} f_2 = \pm (Tf_2 | q_{2\Sigma} I_{\Sigma} \tilde{c}_2^{\pm} Tf_2)_{V_2 \otimes \mathbb{C}^2},$$

for T a natural projection on E_2 .

Theorem (GW)

The modified Euclidean vacuum satisfies

- (1) the Hadamard condition,
- (2) *the CCR on* Ker $K_{\Sigma}^{\dagger} \cap$ Ker $K_{0\Sigma}^{\dagger}$,
- (3) the full gauge invariance
- (4) the positivity on Ker $K_{\Sigma}^{\dagger} \cap$ Ker $K_{0\Sigma}^{\dagger}$,
- (5) the invariance under de Sitter isometries preserving Σ .

Thank you for your attention !

æ