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CCR∗-algebras

Let (Y, q) be a Hermitian space.
I One can introduce the abstract CCR ∗-algebra CCR(Y, q)

generated by the symbols ψ(y), ψ∗(y) for y ∈ Y with relations:

1) Y 3 y 7→ ψ∗(y) resp. ψ(y) linear resp. anti-linear,

2) [ψ(y1), ψ∗(y2)] = y1 ·qy21l, y1, y2 ∈ Y,

3) [ψ(y1), ψ(y2)] = [ψ∗(y1), ψ∗(y2)] = 0, y1, y2 ∈ Y,

4) ψ(y)∗ = ψ∗(y), y ∈ Y.
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Quasi-free states

I A quasi-free state ω on CCR(Y, q) is determined by a pair of
Hermitian forms λ± on Y (called the covariances) by

ω(ψ(y1)ψ∗(y2)) = y1 ·λ+y2,

ω(ψ∗(y2)ψ(y1)) = y1 ·λ−y2,

ω(ψ(y1)ψ(y2)) = ω(ψ∗(y1)ψ∗(y2)) = 0.

I Necessary and sufficient conditions for λ± to be covariances
are

1) λ+ − λ− = q (CCR),

2) λ± ≥ 0 (positivity).

I Useful to introduce c± =·· ±q−1 ◦ λ±. Then c+ + c− = 1l and
ω is pure iff c± are projections.
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Quasi-free states for matter fields

I Let (M, g) a globally hyperbolic spacetime, V π−→ M a finite
rank Hermitian bundle.

I Let D a second order differential operator acting on
C∞(M;V ) such that D = D∗ with principal symbol ξ·g−1ξ1lV .

I standard example is the Klein-Gordon operator D = −2,
acting on scalar functions.

I D has unique advanced/retarded inverses Gret/adv,
G ··= Gret − Gadv is the commutator function.
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The various Hermitian spaces

I ’off shell’ Hermitian space is
C∞0 (M;V )

DC∞0 (M;V )
with

[u]·Q[u] = i(u|Gu)V .

I ’on shell’ Hermitian space is Kersc D (space of solutions) with

u ·qu = i
ˆ

Σ
naJa(u, u)dVolh,

Σ ⊂ M (any) Cauchy surface, n future directed unit normal,
Ja(u, u) conserved current.

I ’Cauchy surface’ Hermitian space is C∞0 (Σ;V ⊗ C2) with

f ·qΣf =

ˆ
Σ

(f1|f0)V + (f0|f1)V dVolh, f =

(
f0
f1

)
.

The Euclidean vacuum state for linearized gravity on de Sitter spacetime



Some background on quasi-free states
Wick rotation

Linearized gravity
Quantization of linearized gravity

de Sitter spacetime

The various covariances

I All three Hermitian spaces are isomorphic. One can use any of
the three to construct CCR(Y, q).

I ’off shell’ covariances: a pair Λ± : C∞0 (M;V )→ D′(M;V )
such that

(1) D ◦ Λ± = Λ± ◦ D = 0(field equation)

(2) Λ+ − Λ− = iG , (CCR),

(3) (u|Λ±u)V ≥ 0, u ∈ C∞0 (M;V ), (positivity).

I ’Cauchy surface’ covariances: a pair
λ±Σ : C∞0 (Σ;V ⊗ C2)→ D′(Σ;V ⊗ C2) such that:

(1) λ+
Σ − λ

−
Σ = qΣ, (CCR),

(2) (f |λ±Σf )V⊗C2 ≥ 0, f ∈ C∞0 (Σ;V ⊗ C2), (positivity).
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The various covariances

I The two types of covariances are related by

λ±Σ = (ρ∗qΣ)∗Λ±(ρ∗qΣ),

Λ± = (ρG )∗λ±Σ(ρG ),

where ρu =

(
u�Σ

i−1∇nu�Σ

)
is the trace of u on Σ.
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The Hadamard condition

I The Hadamard condition on Λ± singles out the physically
meaningful states:

I

WF(Λ±)′ ⊂ N± ×N±,
where:

I

N = {(x , ξ) ∈ T ∗M \o : χ·g−1(x)ξ = 0},
characteristic manifold aka lightcone,

N± = positive/negative energy components of N ,

I WF(Λ±)′ ⊂ T ∗(M ×M) \o is the wavefront set of
Λ± ∈ D′(M ×M;V � V ) (distributional kernel of Λ±).

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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The Hadamard condition

I The Hadamard condition can also be formulated on the
Cauchy surface covariances λ±Σ (recall λ± = ±qΣ ◦ c±):

WF(UΣ ◦ c±)′ ⊂ (N± ∪ F)× T ∗Σ,

over V × Σ, where:
I UΣ solves the Cauchy problem for D, ie{

D ◦ UΣ = 0,
ρΣ ◦ UΣ = 1l.

I F ⊂ T ∗M \o any conic set with F ∩N = ∅.
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Wick rotation

I Assume that M = It × Σ, g = −dt2 + ht(x)dx2 and ht real
analytic in t near t = 0.

I Wick rotation amounts to set t =·· is (dt = ids etc). We
obtain M̃ = Ĩs × Σ with a metric g̃ = ds2 + his(x)dx2.

I Note that g̃ is in general not Riemannian.
I The operator D becomes D̃, which is elliptic, at least near

s = 0.
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Calderón projectors

I Let Ω± = M̃ ∩ {±s > 0}. For u ∈ C∞(Ω±) we set

ρ̃u =

(
u�Σ
−∂su�Σ

)
.

I Key fact: the spaces

E± = {ρ̃u : u ∈ C∞(Ω±), D̃u = 0 in Ω±}

are not equal to C∞(Σ; C2): one cannot solve the Cauchy
problem for an elliptic equation !
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Calderón projectors

I The Calderón projectors c̃± are the projections on E± along
E∓.

I This requires that E+ ∩ E− = {0} or equivalently D̃ injective
I E+ + E− = C∞(Σ; C2) or equivalently D̃ surjective.
I To do this D̃ has to be defined as a linear operator, not only

as a formal expression:
put boundary conditions on ∂Ω !
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Calderón projectors
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Σ

Ω+

Ω−

∂Ω

∂Ω

s
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Hadamard states from Calderón projectors

I For scalar fields one can put Dirichlet boundary conditions on
∂Ω to make D̃ invertible.

Theorem (GW)
Let

λ±Σ = ±qΣ ◦ c̃±.

Then λ±Σ are the Cauchy surface covariances of a Hadamard state.
I For ultrastatic spacetimes g = −dt2 + h, g̃ = ds2 + h, the

state obtained with Calderón projectors with no boundary
conditions (ie Ĩ = R) is the vacuum state.
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Einstein’s equations

I Ricab(g) = R c
acb , Ricci curvature.

I Einstein’s equations:

Ric(g) = Λg, Λ cosmological constant.

I non-linear system of PDE for g.
I not hyperbolic.
I Cauchy problem ill posed: Einstein equations imply constraints

on Cauchy data.
I gauge equivalence: two metrics g and χ∗g where χ : M → M

diffeomorphism are physically equivalent.
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Linearized gravity

I fix a background metric g solution of Einstein equations and
linearize around g, ie write

(Ric− Λ)(g + εu) = (Ric− Λ)(g) + εPu + O(ε2),

for u ∈ C∞(M;⊗2
sT
∗M).

I The equation
Pu = 0

is called the linearized Einstein equations.
I Similarly linearize a diffeomorphism χ around 1l: we obtain

χ∗ = 1l + εLv + O(ε2),

Lv is the Lie derivative associated to the vector field v .
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Some background

I Set Vk = C⊗k
s T ∗M, k = 0, 1, 2.

Vk equipped with the Hermitian form

(u|u)Vk
= k!u ·(g⊗k(x))−1u, u ∈ Vk(x),

(u|v)Vk
=

ˆ
M

(u(x)|v(x))Vk
dVolg

For example

(g|g)V2 = 8, (g|u)V2 = 2trgu = 2gabuab.

physical Hermitian form: (u|v)I ,V2 := (u|Iv)V2 , I trace reversal
(see below).)
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Symmetric differential and co-differential

I symmetric differential: we set

d :
C∞(M;Vk)→ C∞(M;Vk+1)

(du)a1...,ak+1 = ∇(a1ua2...,ak+1),

u(a1...ak ) is the symmetrization of ua1...ak ,
I symmetric co-differential

δ :
C∞(M;Vk)→ C∞(M;Vk−1)

(δu)a1,...,ak−1 = −k∇auaa1...ak−1 .

d∗ = δ w.r.t. the Hermitian form (·|·)Vk
.
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Trace reversal

I Trace reversal: I is orthogonal symmetry w.r.t. Cg:

Iu2 = u2 −
1
4
g(g|u2)V2 ,

I one has
I 2 = 1l, Ig = −g, I = I ∗ for (·|·)V2 .
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Linearized gravity as a gauge theory

I Tedious computation shows that:

P = −I ◦2− d ◦ δ ◦ I + 2I ◦ Riem,

for
I

Riemuab = Rc d
ab ucd ,

(preserves symmetric 2-tensors because of symmetries of the
Riemann tensor), and

P ◦ d = 0.

I The map u2 → u2 + du1 corresponds to linearized gauge
transformations (preserves solutions of Pu = 0).
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Linearized gravity as a gauge theory

I replace u2 by Iu2.
I P becomes

P = −2− I ◦ d ◦ δ + 2Riem,
I set

K ··= I ◦ d .
I The gauge invariance of P is expressed by

P ◦ K = 0,

I u2 and u2 + Ku1 are equivalent solutions of Pu2 = 0.
I the Hermitian space is

Kersc P
RanscK

,

ie solutions of linearized Einstein modulo gauge equivalence.
The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Quantization of linearized gravity

I To quantize linearized gravity we need to equip
Kersc P
RanscK

with

a Hermitian form.
I To do this one uses gauge fixing. We follow here the nice

exposition in [Hack-Schenkel]:
I one adds the gauge condition K ?u = 0 ie δu = 0 (harmonic

gauge condition).
I here A? is the adjoint w.r.t. the physical Hermitian form

(u|u)I ,V2 = (u|Iu)V2 .

I for any u2 with Pu2 = 0 there exists u1 such that
K ?(u2 + Ku1) = 0.

I u1 is unique modulo a solution of K ?Kv1 = 0 (residual gauge
freedom).
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I It follows that

Kersc P
RanscK

∼ Kersc D2 ∩ Kersc K ?

K Kersc D1
,

where
I

D2 ··= P + K ◦ K ? = −2 + 2Riem,

D1 ··= K ? ◦ K = −2 + Λ,

I Di = Di ,L − 2Λ where Di ,L are the Lichnerowicz d’
Alembertians, Di are hyperbolic operators.

I They admit advanced/retarded inverses.
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Further gauge fixing

I It is possible to impose further gauge fixing conditions, for
example the traceless gauge

K ?
0 u2 = 0

for K ?
0 u2 = −trgu2, K0u0 = u0g.

I One obtains then the equivalent Hermitian space
Kersc D2 ∩ Kersc K ? ∩ Kersc K ?

0
K Kersc D1 ∩ Kersc K ?

0
,

I It is also possible to change the gauge fixing condition. For
example the condition:

δu2 + εdtrgu2 = 0,

for ε ∈ R has been used in the Euclidean framework.
I Leads to different operators Di (leading term no more scalar).

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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I
Kersc P
RanscK

represents the ’on shell’ Hermitian space.

I the corresponding ’ off shell’ Hermitian space is

V =
Kerc K ?

RancP
.

I One equips it with the Hermitian form

[u]·Q[u] = i(u|G2u)I ,V2 ,

for G2 = G2ret − G2adv.
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Cauchy surface Hermitian space

I We have D2 ◦ K = K ◦ D1 and (taking adjoints)
K ? ◦ D2 = D1 ◦ K ?.

I therefore
K : Kersc D1 → Kersc D2,

K ? : Kersc D2 → Kersc D1

I We denote by KΣ, K
†
Σ the ’Cauchy data’ versions of K ,K ∗.

I For example if D1u1 = 0, f1 = ρ1Σu1, then

KΣf1 = ρ2ΣKu1.

I Since D1 = K ? ◦ K we have

K †Σ ◦ KΣ = 0.

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Cauchy surface Hermitian space

I We have I ◦ D2 = D2 ◦ I , so I : Kersc D2 → Kersc D2.
(I = trace reversal).

I We denote by IΣ the Cauchy data version of I .
I The Cauchy surface Hermitian space is

Kerc K
†
Σ

RancKΣ
,

equipped with the Hermitian form

[f ]·q2,I [f ] = (f |q2Σ ◦ IΣf )V2⊗C2 , f ∈ Kerc K
†
Σ.
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off shell covariances

I Let Λ±2 : C∞0 (M;V2)→ D′(M;V2) be such that

(1) D2 ◦ Λ±2 = Λ±2 ◦ D2 = 0 (field equation),

(2) Λ+
2 − Λ−2 = iG2 on Kerc K ? (CCR),

(3) Λ±2 : RancK → RanK (gauge invariance),

(4) (u|IΛ±2 u)V2 ≥ 0, ∀u ∈ Kerc K ? (positivity).

Then
I

[u]·Λ±[u] = (u|I ◦ Λ±2 u)V2 , [u] ∈ Kerc K ?

RancP

are the (off-shell) covariances of a quasi-free state on
CCR(V,Q).
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Cauchy surface covariances

If we use the Cauchy surface Hermitian space, we obtain analogous
conditions.
I Let λ±2Σ : C∞0 (Σ;V2 ⊗ C2)→ D′(Σ;V2 ⊗ C2). We set as

before
λ±2Σ =·· ±q2Σ ◦ c±2 .

I The analogous conditions on λ±2Σ are:

(1) c+
2 + c−2 = 1l on Kerc K

†
Σ (CCR),

(2) c±2 : RancKΣ → RanKΣ (gauge invariance),

(3) ±(f |IΣq2Σc
±
2 f )V2⊗C2 ≥ 0, ∀f ∈ Kerc K ?

Σ (positivity).
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Hadamard condition

I In addition to the above conditions, we require the Hadamard
condition ie

I

WF(Λ±2 )′ ⊂ N± ×N±,

or equivalently

WF(U2Σ ◦ c±2 )′ ⊂ (N± ∪ F)× T ∗Σ,

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Existence of Hadamard states

I Theorem (G)
Let (M, g) be any Einstein manifold with compact Cauchy surfaces.
Then there exist gauge invariant Hadamard states for linearized
gravity on (M, g).
I The proof relies on pdo calculus and uses full gauge fixing:
I this amounts to find a convenient supplementary space to

RanKΣ inside KerK †Σ. The delicate gauge invariance property
can now be forgotten.
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de Sitter spacetime

I the de Sitter spacetime dS4 is Rt × S3, equipped with the
metric

g = −dt2 + cosh2(t)h,

h canonical metric on S3 = Σ.
I By Wick rotation t 7→ is we obtain the metric

g̃ = ds2 + cos2(s)h, s ∈]− π/2, π/2[,
I ie the sphere S4 by setting

x0 = sin s, (x1, . . . , x4) = cos s ω, ω ∈ S3.

I The Wick rotations of Di are denoted by D̃i .
I They are selfadjoint for the natural scalar products on S4.
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Wick rotated de Sitter spacetime

Σ

Ω+

Ω−

Euclidean dS4

s
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Wick rotated de Sitter spacetime

I The Wick rotation of dS4 is compact: no need for boundary
conditions to define D̃1, D̃2 !

I D̃2 is invertible,
I D̃2 ≥ 2 on Ker(g̃| (traceless symmetric 2-tensors on S4).
I D̃1 is not invertible,
I Ker D̃1 = Ker d = Ker d ∩ Ker δ= space of Killing 1-forms on

S4.
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Calderón projectors

I By Wick rotating the identity D2 ◦ K = K ◦ D1 we obtain

D̃2 ◦ K̃ = K̃ ◦ D̃1, (K̃ = Ĩ ◦ d̃).

I If Calderón projectors c̃±i exist for D̃i then one would have

c̃±2 ◦ K̃Σ = K̃Σ ◦ c̃±1

hence c̃±2 preserves RanK̃Σ: one would get gauge invariance !
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Calderón projectors

I c̃±2 exist since D̃2 is invertible.
I c̃±1 do not exist on the whole space C∞(Σ; Ṽ1 ⊗ C2), since D̃1

is not invertible.
I this problem is due to the existence of Killing one-forms !
I it is still present with any of the alternative gauge fixing

conditions explained above.
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Calderón projectors

I One can show that Calderón projectors c̃±1 exist on the
subspace:

E1 ··= (ρ̃1 Ker D̃1)q1 ,

the q1-orthogonal of ρ̃1 Ker D̃1, of codimension 10 in Ṽ1 × C2.
I There is a corresponding natural subspace E2 of codimension

10 in Ṽ2 × C2 such that

K̃Σ : E1 → E2

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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The Euclidean vacuum state

I Let us define Cauchy surface covariances

f 2 ·λ±2Σf2 = ±(f2|q2ΣIΣc̃
±
2 f2)V2⊗C2 .

I We call the associated (pseudo) state ω the Euclidean vacuum.

Theorem (GW)
The Euclidean vacuum satisfies

(1) the Hadamard condition,
(2) the CCR on KerK †Σ ∩ KerK †0Σ, (TT gauge subspace)
(3) the gauge invariance under E1,
(4) the positivity on KerK †Σ ∩ KerK †0Σ ∩ E2,
(5) the invariance under all de Sitter isometries.
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The Euclidean vacuum state

I one can show that c̃±2 do not preserve the full RanK̃Σ: in fact

c̃±2 K̃Σf ∈ RanK̃Σ iff f ∈ E1!

I We recall that KerK †Σ ∩KerK
†
0Σ correspond to Cauchy data of

transverse, traceless tensors.
I This is one of the many equivalent Hermitian spaces appearing

in linearized gravity.
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Modified Euclidean vacuum

I one can improve the gauge invariance and positivity of ω by
additional gauge fixing.

I This amounts to replace λ±2Σ by

f 2 ·λ±2Σf2 = ±(Tf2|q2ΣIΣc̃
±
2 Tf2)V2⊗C2 ,

for T a natural projection on E2.
I Theorem (GW)

The modified Euclidean vacuum satisfies
(1) the Hadamard condition,
(2) the CCR on KerK †Σ ∩ KerK †0Σ,
(3) the full gauge invariance
(4) the positivity on KerK †Σ ∩ KerK †0Σ,
(5) the invariance under de Sitter isometries preserving Σ.
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I Thank you for your attention !
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