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Some background on quasi-free states

CCRx*-algebras

Let (), q) be a Hermitian space.
» One can introduce the abstract CCR x-algebra CCR(), q)

generated by the symbols 1(y), ¥*(y) for y € Y with relations:
1) Y>3y~ ¢*(y) resp. ¢(y) linear resp. anti-linear,
2) [1/’(YI)=¢*(Y2)]:Y1QY2]1, yi,y2 €y7
3) [v(n)v(2)] = [¥*(n). ¥*(»2)] =0, y1,y2 €V,
4) Yy) =v¢*(y), ye .

The Euclidean vacuum state for linearized gravity on de Sit



Some background on quasi-free states

Quasi-free states

» A quasi-free state w on CCR(), q) is determined by a pair of
Hermitian forms A* on ) (called the covariances) by

w(®()*(y2)) = v1-Atye,
w(@*(y2)Y (1)) =¥1- A" y2,
w(¥(y1)Y(y2)) = w(®*(n1)¥*(y2)) = 0.

» Necessary and sufficient conditions for AT to be covariances

are
1) At — A~ =gq (CCR),

2) AT >0 (positivity).

» Useful to introduce ¢c* =: +q 1 o A*. Then ¢t + ¢~ =1 and
w is pure iff ¢* are projections.

The Euclidean vacuum state for linearized gravity on de Sit



Some background on quasi-free states

Quasi-free states for matter fields

» Let (M, g) a globally hyperbolic spacetime, V' 5> M a finite
rank Hermitian bundle.

» Let D a second order differential operator acting on
C>(M:; V) such that D = D* with principal symbol £&-g~1£1y,.
» standard example is the Klein-Gordon operator D = —0,
acting on scalar functions.

» D has unique advanced/retarded inverses Giet/ady
G := Gret — Gagy is the commutator function.
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Some background on quasi-free states

The various Hermitian spaces

G (M; V)
DC(M; V)

[u]-Qlu] = i(u| Gu)v.

» 'on shell' Hermitian space is Kerg. D (space of solutions) with

» 'off shell' Hermitian space is with

u-qu = i/ n?J,(u, u)dVoh,,
px
¥ C M (any) Cauchy surface, n future directed unit normal,
Ja(u, u) conserved current.
» 'Cauchy surface’ Hermitian space is C§°(X; V ® C?) with
e ft
f-qu:/(f1|ﬂ))v+(f0|f1)vdVolh, f = < f‘; >
b
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Some background on quasi-free states

The various covariances

» All three Hermitian spaces are isomorphic. One can use any of
the three to construct CCR(Y, q).
» 'off shell’ covariances: a pair A* : C§°(M; V) — D'(M; V)
such that
(1) DoA* =A* oD = 0(field equation)
(2) AT —A" =iG, (CCR),
(3) (ulA*u)y >0, ue C§°(M; V), (positivity).

» 'Cauchy surface’ covariances: a pair
A C(T Ve C?) — D/(T; V @ C?) such that:

(1) A~ s = a. (CCR),
(2) (FINsF)vece >0, f € C°(%: V ® C?), (positivity).
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Some background on quasi-free states

The various covariances

» The two types of covariances are related by

Af = (p*qs)" N (p*gx),
N = (pG)* Az (pG),

. u[z .
where pu = ( 1V, uls ) is the trace of u on .
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Some background on quasi-free states

The Hadamard condition

» The Hadamard condition on A* singles out the physically
meaningful states:

WF(AT) € NE x NVE,

where:

N ={(x.§) € T"M\o: x-g"}(x)¢ = 0},

characteristic manifold aka lightcone,
Nt = positive/negative energy components of A,

» WE(AT) C T*(M x M) \o is the wavefront set of
At € D'(M x M; VK V) (distributional kernel of A*).
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Some background on quasi-free states

The Hadamard condition

» The Hadamard condition can also be formulated on the
Cauchy surface covariances A% (recall \* = +g5 o c*):

WF(Us o c®) ¢ (NFUF) x T*%,

over V X X, where:

» Us solves the Cauchy problem for D, ie

Do Us =0,
psroUs =1

» F C T*M\o any conic set with F NN = 0.
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Wick rotation

Wick rotation

» Assume that M = I, x ¥, g = —dt? + hy(x)dx? and h; real
analytic in t near t = 0.

» Wick rotation amounts to set t =: is (dt = ids etc). We
obtain M = I; x ¥ with a metric § = ds? + h;s(x)dx?.

» Note that g is in general not Riemannian.

» The operator D becomes D, which is elliptic, at least near
s=0.
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Wick rotation

Calderén projectors

> Let QF = M N {£s > 0}. For u e C®(QF) we set

o uly
pe = ( —0suls )
» Key fact: the spaces
E* = {pu:ue C®(QF), Du=0in QF}

are not equal to C>°(X; C?): one cannot solve the Cauchy
problem for an elliptic equation !
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Wick rotation

Calderén projectors

+

» The Calderén projectors &+ are the projections on E* along

ET.
» This requires that ET N E~ = {0} or equivalently D injective
» ET + E~ = C™(X;C?) or equivalently D surjective.
» To do this D has to be defined as a linear operator, not only

as a formal expression:
put boundary conditions on 92 !
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Wick rotation

Calderén projectors
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Wick rotation
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Wick rotation

Hadamard states from Calderén projectors

> For scalar fields one can put Dirichlet boundary conditions on
02 to make D invertible.
Theorem (GW)

Let

)\32E = :l:qz (e} Ei.

Then A% are the Cauchy surface covariances of a Hadamard state.

» For ultrastatic spacetimes g = —dt®> + h, § = ds® + h, the
state obtained with Calderén projectors with no boundary
conditions (ie | = R) is the vacuum state.
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Linearized gravity

Einstein's equations

v

Ric,5(g) = R,.,°, Ricci curvature.

» Einstein's equations:
Ric(g) = Ag, A cosmological constant.

» non-linear system of PDE for g.
» not hyperbolic.

» Cauchy problem ill posed: Einstein equations imply constraints
on Cauchy data.

» gauge equivalence: two metrics g and x*g where x : M — M
diffeomorphism are physically equivalent.
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Linearized gravity

Linearized gravity

» fix a background metric g solution of Einstein equations and
linearize around g, ie write

(Ric — A)(g + eu) = (Ric — A)(g) + ePu + 0(62),

for u € C®(M; ®R2T*M).
» The equation
Pu=20

is called the linearized Einstein equations.
» Similarly linearize a diffeomorphism y around 1: we obtain

X =14 €L, + O(?),

L, is the Lie derivative associated to the vector field v.
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Linearized gravity

Some background

» Set V, =C®kT*M, k=0,1,2.
Vi equipped with the Hermitian form

(ulu)y, = k!U-(g®k(x))_1u, u € Vi(x),

(ulv)v, = /I\/I(U(X)|V(X))de\/01g
For example
(glg)v, = 8, (g|u)v, = 2trgu = 2g7u,p.

physical Hermitian form: (u|v); v, := (u|lv)v,, | trace reversal
(see below).)
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Linearized gravity

Symmetric differential and co-differential

» symmetric differential: we set
C®(M; Vi) = C®(M; Viy1)
(du)31~--»3k+1 = v(«31 Uajy...ak41)>

Uay...a,) 1S the symmetrization of u,, .,

» symmetric co-differential

C®(M; Vi) — C®(M; Vi_1)

— a
(6u)317~~~:3k71 = —kVUaas;. 2 ,-

d* =60 w.r.t. the Hermitian form (|-)y,.
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Linearized gravity

Trace reversal

» Trace reversal: [ is orthogonal symmetry w.r.t. Cg:

1
luzy = up — Zg(g|u2)V2’

» one has
?P=1,1lg=—g, | =1"for (:|)v,.
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Linearized gravity

Linearized gravity as a gauge theory

» Tedious computation shows that:
P=—-loO—-dodol+2/oRiem,

for

Riemu,, = Rcabd Ucd,

(preserves symmetric 2-tensors because of symmetries of the
Riemann tensor), and

Pod=0.

» The map up — uy + duy corresponds to linearized gauge
transformations (preserves solutions of Pu = 0).
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Linearized gravity

Linearized gravity as a gauge theory

» replace up by lus.
» P becomes
P=-0-1odod+ 2Riem,

> set
K:=1lod.

» The gauge invariance of P is expressed by
PoK =0,

» u> and ur + Kuy are equivalent solutions of Pu, = 0.
» the Hermitian space is
Kerg. P
Rang. K’
ie solutions of linearized Einstein modulo gauge equivalence.
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Linearized gravity

Quantization of linearized gravity

erge P
Rang. K

» To quantize linearized gravity we need to equip with
a Hermitian form.

» To do this one uses gauge fixing. We follow here the nice
exposition in [Hack-Schenkel]:

» one adds the gauge condition K*u = 0 ie u = 0 (harmonic
gauge condition).

» here A* is the adjoint w.r.t. the physical Hermitian form

(ulu)rve = (ullu)v,.
» for any u, with Puy, = 0 there exists u; such that
K*(Uz + Kul) =0.
» w7 is unique modulo a solution of K*Kv; = 0 (residual gauge
freedom).
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Linearized gravity

> |t follows that

Kerg. P Kerg. D> N Kerge K*
Rang. K K Kerge Dy ’

where

D> := P+ Ko K* = —0O + 2Riem,
Di:=K*oK=-0O+A,

» D; = Dj i — 2\ where D;  are the Lichnerowicz d’
Alembertians, D; are hyperbolic operators.

» They admit advanced/retarded inverses.
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Linearized gravity

Further gauge fixing

» |t is possible to impose further gauge fixing conditions, for
example the traceless gauge
KSUQ =0
for KSUQ = —trgun, Koug = upg.
» One obtains then the equivalent Hermitian space
Kerse Do N Kerge K* N Kerge Kg
K Kerg. D1 N Kerge K§ ’
» |t is also possible to change the gauge fixing condition. For
example the condition:

dup + edtrgur = 0,

for € € R has been used in the Euclidean framework.
» | eads to different operators D; (leading term no more scalar):
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Quantization of linearized gravity

Kerg. P , , .
—°_ represents the 'on shell’ Hermitian space.
Rang. K
» the corresponding ' off shell’ Hermitian space is
 Ker K*
~ Ran.P’

» One equips it with the Hermitian form
[u]- Q[u] = i(u[Gou) vy,

for G2 = Goret — Goady-
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Quantization of linearized gravity

Cauchy surface Hermitian space

» We have D, o K = K o D; and (taking adjoints)
K*o Dy, = Dy o K*.
therefore

v

K : Kerge D1 — Kerge Dy,
K* : Kerge Do — Kerg. D1

v

We denote by Ky, Kg the "Cauchy data’ versions of K, K*.
For example if Diu; =0, fi = piyu1, then

v

Kst = pas Kuy.

v

Since D; = K* o K we have
Kioks =o0.
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Quantization of linearized gravity

Cauchy surface Hermitian space

» We have o Dy = Dy o/, so | : Kerge Dy — Kerge Ds.
(I = trace reversal).

» We denote by /s the Cauchy data version of /.

» The Cauchy surface Hermitian space is

Ker. Ki
Ran.Ks’

equipped with the Hermitian form

[f1-q2.[f] = (flgos © Isf)\yec2, f € Kere K;
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Quantization of linearized gravity

off shell covariances

» Let AT : G°(M; Vo) — D'(M; V) be such that
(1) DyoAf =AF oDy =0 (field equation),
(2) Af — A, =iG, on Ker. K* (CCR),
(3) A3 :Ran.K — RanK (gauge invariance),
(4) (ullAfu)y, >0, Yu € Ker. K* (positivity).

Then
- Ker. K*
- erc
[u] AE[u] = (ull o AF u)vy, [u] € Ran.P
are the (off-shell) covariances of a quasi-free state on
CCR(V, Q).
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Quantization of linearized gravity

Cauchy surface covariances

If we use the Cauchy surface Hermitian space, we obtain analogous
conditions.

> Let Ay 1 C§°(Z; Vo ® C2) — D'(X; Vo ® C2). We set as
before
)\Etz =: +qoy 0 c2i.

» The analogous conditions on )\fz are:

(1) o +c; =Ton Ker K;r: (CCR),
(2) ¢ : Ran.Ks — RanKy (gauge invariance),

(3) :l:(f|lzquc2if)\/2®cz >0, Vf € Ker. K5 (positivity).
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Quantization of linearized gravity

Hadamard condition

» In addition to the above conditions, we require the Hadamard
condition ie

WFE(AS) € NE x NVE,
or equivalently

WF(Uss 0 c) € (NP UF) x T*%,
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Quantization of linearized gravity

Existence of Hadamard states

» Theorem (G)

Let (M, g) be any Einstein manifold with compact Cauchy surfaces
Then there exist gauge invariant Hadamard states for linearized

gravity on (M, g).
» The proof relies on pdo calculus and uses full gauge fixing:

» this amounts to find a convenient supplementary space to

RanKy inside Ker Kg The delicate gauge invariance property
can now be forgotten.
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de Sitter spacetime

de Sitter spacetime

» the de Sitter spacetime dS* is R; x S3, equipped with the
metric
g = —dt? + cosh?(t)h,
h canonical metric on S3 = ¥.

» By Wick rotation t + is we obtain the metric
g = ds? + cos?(s)h, s €] — w/2,7/2],
> ie the sphere S* by setting

Xo =sins, (xq,...,X4) =COSS W, w € ss.

» The Wick rotations of D; are denoted by D;.

» They are selfadjoint for the natural scalar products on S*.
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de Sitter spacetime

Wick rotated de Sitter spacetime

Euclidean dS*
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de Sitter spacetime

Wick rotated de Sitter spacetime

» The Wick rotation of~d54~ is compact: no need for boundary
conditions to define Dy, D> |

» D, is invertible,
» Dy > 2 on Ker(g| (traceless symmetric 2-tensors on S*).
> 51 is not invertible,

» Ker D; = Ker d = Ker d N Ker §= space of Killing 1-forms on
St

The Euclidean vacuum state for linearized gravity on de Sit



de Sitter spacetime

Calderén projectors

» By Wick rotating the identity D> o K = K o D; we obtain
ByoR = Koby, (K=Tod)

» If Calderén projectors Eii exist for D; then one would have

& oKy =Ky o&f

hence Ezi preserves RanKy: one would get gauge invariance !

The Euclidean vacuum state for linearized gravity on de Sit



de Sitter spacetime

Calderén projectors

> "2i exist since D5 is invertible.

> Eli do not exist on the whole space C*°(%; \71 ® C2), since 51
is not invertible.

» this problem is due to the existence of Killing one-forms |

» it is still present with any of the alternative gauge fixing
conditions explained above.
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de Sitter spacetime

Calderén projectors

» One can show that Calderén projectors Eli exist on the
subspace:
E1 = (ﬁl Ker Dl)ql,

the g;-orthogonal of 1 Ker Dy, of codimension 10 in V4 x C2.

» There is a corresponding natural subspace E, of codimension
10 in V5 x C? such that

R22E1—>E2
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de Sitter spacetime

The Euclidean vacuum state

» Let us define Cauchy surface covariances
f2- Mo fo = £(hlaes 5 & h) vysce

» We call the associated (pseudo) state w the Euclidean vacuum.

Theorem (GW)
The Euclidean vacuum satisfies
(1) the Hadamard condition,
2) the CCR on Ker K; N Ker ng, (TT gauge subspace)
the gauge invariance under Eq,
the positivity on Ker K;% N Ker ng N Es,
the invariance under all de Sitter isometries.
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de Sitter spacetime

The Euclidean vacuum state

» one can show that C‘zi do not preserve the full RanKy: in fact
& Ksf € RanKy iff f € Ey!

» We recall that Ker Kg N Ker ng correspond to Cauchy data of
transverse, traceless tensors.

» This is one of the many equivalent Hermitian spaces appearing
in linearized gravity.

The Euclidean vacuum state for linearized gravity on de Sit



de Sitter spacetime

Modified Euclidean vacuum

» one can improve the gauge invariance and positivity of w by
additional gauge fixing.
» This amounts to replace Aziz by
f2: M55 fo = £(Th| G5 5 Th)vyece;
for T a natural projection on Ej.
» Theorem (GW)
The modified Euclidean vacuum satisfies
(1) the Hadamard condition,
2) the CCR on Ker K; N Ker ng,
the full gauge invariance
the positivity on Ker K;[: N Ker ng,
the invariance under de Sitter isometries preserving ¥.
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de Sitter spacetime

» Thank you for your attention !
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