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Introduction (1/2)

QFT vs. GR

How to describe quantum matter and gravity interplay? In first approximation,

• QFT on curved spacetimes: quantum matter field ϕ on a physical state ω

propagating over classical globally hyperbolic spacetimes (M, g)

• The formulation of interacting quantum field theories on curved spacetimes can

be achieved in a local and covariant way in the algebraic approach to

perturbative quantum field theory (pAQFT)

• Semiclassical gravity: backreaction on the background geometry

Gab = 8πG ⟨:Tab:⟩ω .

• Physical applications:

1. Black Hole Physics: Hawking effect, evaporation.

2. Cosmology : Inflationary Universe.

• Cosmological scenario: recent developments have been made in cosmological

spacetimes on the existence of local and global solutions1

2



Introduction (1/2)

QFT vs. GR

How to describe quantum matter and gravity interplay? In first approximation,

• QFT on curved spacetimes: quantum matter field ϕ on a physical state ω

propagating over classical globally hyperbolic spacetimes (M, g)

• The formulation of interacting quantum field theories on curved spacetimes can

be achieved in a local and covariant way in the algebraic approach to

perturbative quantum field theory (pAQFT)

• Semiclassical gravity: backreaction on the background geometry

Gab = 8πG ⟨:Tab:⟩ω .

• Physical applications:

1. Black Hole Physics: Hawking effect, evaporation.

2. Cosmology : Inflationary Universe.

• Cosmological scenario: recent developments have been made in cosmological

spacetimes on the existence of local and global solutions1
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Introduction (2/2)

The issue of runaway solutions

• Semiclassical theories of gravity seem to admit unstable, exponentially growing

solutions in time (runaway solutions)

• G. T. Horowitz and R. M. Wald. “Dynamics of Einstein’s equation modified by a higher-order

derivative term”, PRD 17, 414–416 (1978).

• G. T. Horowitz. “Semiclassical relativity: The weak-field limit”, PRD 21, 1445–1461 (1980).

• E. E. Flanagan and R. M. Wald. “Does back reaction enforce the averaged null energy condition in

semiclassical gravity?”, PRD 36, 6233–6283 (1996).

• Runaway solutions might invalidate the research of complete global solutions of

the Semiclassical Einstein Equations

• Perturbative expansion around background solution (linearization):

gab = ηab + εhab + o(ε2), hab = ∂εg
(ε)
ab (ε = 0)

The stability of the background solution cannot be guaranteed if the linear

perturbation becomes dominant at large times t > 0.

• Investigate the problem of stability using a semiclassical toy model.
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The toy model

Semiclassical toy model

• Quantum massive scalar field ϕ + classical scalar field ψ in flat spacetime{
□ϕ−m2ϕ = λψϕ, λ ∈ R
g2□ψ − g1ψ = λ1

〈
:ϕ2:

〉
ω
− λ2□

〈
:ϕ2:

〉
ω
, λ1, λ2, g1, g2 ∈ R

• Linearization: ψ = ψ0 + ψ1
pAQFT

1. Quantization of ϕ is performed “on the background field” ψ0.

2. Formulate an interacting theory for the classical perturbation ψ1.

3. To simplify the analysis, choose ψ0 ∈ R and the vacuum state |0⟩.

• Linearized equation for ψ1

(g2□− g1)ψ1 = (λ1 − λ2□)
〈
:ϕ2:

〉(lin)
0

,
〈
:ϕ2:

〉(lin)
0

= ℏλ Ka(ψ1),

where

Ka : D(M) → C∞(M)

Ka(x − y) = (□+ a)

∫ ∞

4m2
dM2ϱ(M2)

1

M2 + a
∆R(x − y ,M2),

ϱ(M2) =
1

16π2

√
1−

4m2

M2
, −4m2 < a < 0, (□−M2)∆R(x ,M

2) = δx
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Linear stability (1/2)

Study the following fourth-order differential equation in ψ1

ℏλ(λ2□−λ1)Ka(ψ1)+(g2□−g1)ψ1 = f , f ∈ D(M), Ka ≈ (□+a)∆R .

1. Show that past compact solutions ψ1 respect causality:

supp(ψ1) ⊂ J+(suppf ).

2. Construct the retarded fundamental solution DR : D(M) → C∞(M), such that

past compact solutions

ψ1 = DR(f )

decay at zero for large t > 0. sol

3. Prove that

(g2□− g1)ψ1 = (λ1 − λ2□)
〈
:ϕ2:

〉(lin)
0

↕
ℏλ(λ2□− λ1)Ka(ψ1) + (g2□− g1)ψ1 = 0

has a well-posed initial-value problem with initial data ψ
(0,j)
1 (0, x), with

j ∈ {0, 1} or j ∈ {0, 1, 2, 3}, and for wide ranges of values of (a, g1, g2, λ, λ1, λ2). 5



Linear stability (2/2)

Stability of the linearized backreacted system

• Well-posed initial-value problem: if one considers

1. spatially compact perturbations;

2. massive quantum fields;

3. compactly-supported initial data/source;

then there are several choices of renormalization constants such that linearized

semiclassical solutions decay as 1/t3/2 for large t > 0 (no runaway solutions).

ψ1(t, x) =
∑
j=0,1

∫
R3

(
C j
+(p)e

+iωj t + C j
−(p)e−iωj t

)
eip·x, ωj =

√
|p|2 + µ2j .

Applications in cosmological models

• Formal correspondence with the Semiclassical Einstein Equations having a

classical source τµν [g (0)]

−R = 8πG ⟨:Tρ
ρ:⟩(lin)ω ↔ (g2□− g1)ψ1 = (λ1 − λ2□)

〈
:ϕ2:

〉(lin)
0

−R = 8πG ⟨:Tρ
ρ:⟩(lin)ω + τρ

ρ ↔ (g2□− g1)ψ1 = (λ1 − λ2□)
〈
:ϕ2:

〉(lin)
0

+ f

with

λ↔ ξ, g1 ↔ −(8πG)−1, λ1 ↔ m2, etc.
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Current work

Linear Stability of Minkowski spacetime

• Backreaction of a massive quantum scalar field ϕ, with m2 > 0, 0 ≤ ξ < 1/6,

over Minkowski spacetime (M, η).

• Steps of the work:

1. Show that (M, η) is solution of the zeroth-order Semiclassical Einstein

Equations using the Minkowski vacuum state ω0

G
(0)
ab [η] = 8πG ⟨:Tab[ϕ, η]:⟩(0)ω0

(0)

2. Study stability of the linearized Semiclassical Einstein Equations

G
(1)
ab [η, h] = 8πG ⟨:Tab[ϕ, η, h]:⟩ω(1) (1)

constructing ω(1) using perturbation theory in Hollands and Wald’s

axiomatic framework.

3. Show that classical gravitational waves are solutions of Eq. (1), and

runaway solutions are ruled out.

• Preliminar results show stabilty for large times! The preprint2 should appear

soon... Stay tuned!
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1P. Meda, S. Murro, and N. Pinamonti. “Linear stability of Minkowski Spacetime in Semiclassical

Gravity” (2023). In preparation.
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Thanks for the attention!
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Perturbative construction

• Perturbation theory

V =

∫
M

LI (x)f (x)d
4x = −

λ

2

∫
M
ϕ2(x)ψ1(x)f (x)d

4x , f ∈ D(M),

RV (ϕ
2) = S(V )−1T (S(V )ϕ2), S(V ) = T

(
exp

(
i

ℏ
V

))
.

• The Bogoliubov map RV allows to obtain a perturbative expansion of the

interacting ϕ2 as formal power series in λ〈
:ϕ2:

〉
ω
= ω(RV (ϕ

2)) =
〈
:ϕ2:

〉(bac)
ω

+
〈
:ϕ2:

〉(lin)
ω

+ . . . ,〈
:ϕ2:

〉(bac)
ω

= ω(ϕ2)
|0⟩
= 0,

〈
:ϕ2:

〉(lin)
ω

=
i

ℏ
(
ω(T

(
Vϕ2

)
)− ω(Vϕ2)

)
.

• The state for the interacting theory is constructed as ω ◦ RV by means of the

free state, and it is fixed once and forever.

• Linearized expectation value of the Wick square in the adiabatic limit (f = 1)〈
:ϕ2:

〉(lin)
ω

(x) = −iℏλ
∫
M

(
∆2

F ,ω(y − x)−∆2
+,ω(y − x)

)
ψ1(y)dy ,

where ∆F ,ω(y , x) = ℏ−1 ⟨T (ϕ(y)ϕ(x))⟩ω and ∆+,ω(y , x) = ℏ−1 ⟨ϕ(y)ϕ(x)⟩ω .
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Fourier transform of the Wick square

F{
〈
:ϕ2:

〉(lin)
0

}(p0, p) = lim
ϵ→0+

λℏ
16π2

Fa(−(p0 − iϵ)2 + |p|2)ψ̂1(p0, p),

Fa(z) =

∫ ∞

4m2

√
1−

4m2

M2

(
1

M2 + a
−

1

M2 + z

)
dM2 z = −(p0 − iϵ)2 + |p|2.

Fa(z) is analytic for z ∈ C \ (−∞,−4m2], and has a branch cut on z ∈ (−∞,−4m2).

Fa(x)

xa−4m2

|ImFa(x)|

x−4m2

In the massless case [Hor80,FW96]

Fa(−p20 + |p|2) = log

(−p20 + |p|2

a

)
, −p20 + |p|2 > 0, a > 0.
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Stable linearized solutions

• Linearized equation in Fourier space

S(−(p0 − i0+)2 + |p|2)ψ̂1(p0, p) = f̂ (p0, p),

where

S(z) = −(λ1 + λ2z)
λℏ

16π2
Fa(z)− (g1 + g2z), z = −(p0 − iϵ)2 + |p|2.

• Retarded fundamental solution. Let S be the set of points z ∈ C in which

S(z) = 0: if S contains only s < 0 for choices of (a, λ, λ1, λ2, g1, g2), then

D̂R(p0, p) =
1

S(−(p0 − i0+)2 + |p|2)
,

and hence for s ∈ (−4m2,∞) ∪ {−λ1/λ2} in S

DR(x) = −
∑
s∈S

1

S ′(s)
∆R(x , s)−

λℏ
16π2

∫ ∞

4m2

√
1−

4m2

M2

(λ2M2 − λ1)

|S(−M)|2
∆R(x ,M

2)dM2,

• Past compact solution ψ1 = DR(f ), f ∈ D(M), of the form

ψ1(x) = ψO
1 (x) + ψC

1 (x).

Branch cuts do not contribute to the homogeneous equation S(z)ψ̂1 = 0.
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