

1

iNδAM

Linear Stability of Semiclassical Theories of Gravity

Paolo Meda

University of Trento, Department of Mathematics TIFPA - INFN @ INdAM

August 30th, 2023

"Quantum Effects in Gravitational Fields" (Leipzig University)

P. Meda and N. Pinamonti. "Linear stability of semiclassical theories of gravity". In: Ann. Henri Poincaré 24 (2023), 1211–1243. DOI: 10.1007/s00023-022-01246-1.

QFT vs. GR

How to describe quantum matter and gravity interplay? In first approximation,

- QFT on curved spacetimes: quantum matter field ϕ on a physical state ω propagating over classical globally hyperbolic spacetimes (\mathcal{M}, g)
- The formulation of interacting quantum field theories on curved spacetimes can be achieved in a local and covariant way in the algebraic approach to perturbative quantum field theory (pAQFT)
- Semiclassical gravity: backreaction on the background geometry

$$G_{ab}=8\pi G\left<:T_{ab}:\right>_{\omega}.$$

QFT vs. GR

How to describe quantum matter and gravity interplay? In first approximation,

- QFT on curved spacetimes: quantum matter field ϕ on a physical state ω propagating over classical globally hyperbolic spacetimes (\mathcal{M}, g)
- The formulation of interacting quantum field theories on curved spacetimes can be achieved in a local and covariant way in the algebraic approach to perturbative quantum field theory (pAQFT)
- Semiclassical gravity: backreaction on the background geometry

$$G_{ab} = 8\pi G \left<: T_{ab}:\right>_{\omega}.$$

- Physical applications:
 - 1. Black Hole Physics: Hawking effect, evaporation.
 - 2. Cosmology: Inflationary Universe.
- Cosmological scenario: recent developments have been made in cosmological spacetimes on the existence of local and global solutions¹

¹See N. Pinamonti and N. Rothe's talks

The issue of runaway solutions

- Semiclassical theories of gravity seem to admit unstable, exponentially growing solutions in time (runaway solutions)
 - G. T. Horowitz and R. M. Wald. "Dynamics of Einstein's equation modified by a higher-order derivative term", PRD 17, 414–416 (1978).
 - G. T. Horowitz. "Semiclassical relativity: The weak-field limit", PRD 21, 1445–1461 (1980).
 - E. E. Flanagan and R. M. Wald. "Does back reaction enforce the averaged null energy condition in semiclassical gravity?", PRD 36, 6233–6283 (1996).
- Runaway solutions might invalidate the research of complete global solutions of the Semiclassical Einstein Equations
- Perturbative expansion around background solution (linearization):

$$g_{ab} = \eta_{ab} + \varepsilon h_{ab} + o(\varepsilon^2), \qquad h_{ab} = \partial_{\varepsilon} g_{ab}^{(\varepsilon)}(\varepsilon = 0)$$

The stability of the background solution cannot be guaranteed if the linear perturbation becomes dominant at large times t > 0.

Investigate the problem of stability using a semiclassical toy model.

Semiclassical toy model

• Quantum massive scalar field ϕ + classical scalar field ψ in flat spacetime

$$\begin{cases} \Box \phi - m^2 \phi = \lambda \psi \phi, & \lambda \in \mathbb{R} \\ g_2 \Box \psi - g_1 \psi = \lambda_1 \left\langle :\phi^2 : \right\rangle_{\omega} - \lambda_2 \Box \left\langle :\phi^2 : \right\rangle_{\omega}, & \lambda_1, \lambda_2, g_1, g_2 \in \mathbb{R} \end{cases}$$

- Linearization: $\psi = \psi_0 + \psi_1 \bigcirc PAQFT$
 - 1. Quantization of ϕ is performed "on the **background field**" ψ_0 .
 - 2. Formulate an interacting theory for the classical perturbation ψ_1 .
 - 3. To simplify the analysis, choose $\psi_0 \in \mathbb{R}$ and the vacuum state $|0\rangle$.

Semiclassical toy model

• Quantum massive scalar field ϕ + classical scalar field ψ in flat spacetime

$$\begin{cases} \Box \phi - m^2 \phi = \lambda \psi \phi, & \lambda \in \mathbb{R} \\ g_2 \Box \psi - g_1 \psi = \lambda_1 \left\langle : \phi^2 : \right\rangle_{\omega} - \lambda_2 \Box \left\langle : \phi^2 : \right\rangle_{\omega}, & \lambda_1, \lambda_2, g_1, g_2 \in \mathbb{R} \end{cases}$$

- Linearization: $\psi = \psi_0 + \psi_1 \bigcirc PAQFT$
 - 1. Quantization of ϕ is performed "on the **background field**" ψ_0 .
 - 2. Formulate an interacting theory for the classical perturbation ψ_1 .
 - 3. To simplify the analysis, choose $\psi_0 \in \mathbb{R}$ and the vacuum state $|0\rangle$.
- Linearized equation for ψ_1

$$(g_2\Box - g_1)\psi_1 = (\lambda_1 - \lambda_2\Box)\langle :\phi^2 : \rangle_0^{(\text{lin})}, \qquad \langle :\phi^2 : \rangle_0^{(\text{lin})} = \hbar\lambda \ \mathcal{K}_a(\psi_1),$$

where

l

$$\mathcal{K}_{a}: \mathcal{D}(\mathcal{M}) \to \mathcal{C}^{\infty}(\mathcal{M})$$
$$\mathcal{K}_{a}(x-y) = (\Box + a) \int_{4m^{2}}^{\infty} \mathrm{d}M^{2}\varrho(M^{2}) \frac{1}{M^{2} + a} \Delta_{R}(x-y, M^{2}),$$
$$\mathcal{D}(M^{2}) = \frac{1}{16\pi^{2}} \sqrt{1 - \frac{4m^{2}}{M^{2}}}, \qquad -4m^{2} < a < 0, \qquad (\Box - M^{2})\Delta_{R}(x, M^{2}) = \delta,$$

Linear stability (1/2)

Study the following fourth-order differential equation in ψ_1

$$\hbar\lambda(\lambda_2\Box-\lambda_1)\mathcal{K}_{\mathsf{a}}(\psi_1)+(g_2\Box-g_1)\psi_1=f,\qquad f\in\mathcal{D}(\mathcal{M}),\qquad \mathcal{K}_{\mathsf{a}}\approx(\Box+\mathsf{a})\Delta_R.$$

1. Show that **past compact solutions** ψ_1 respect causality:

$$\operatorname{supp}(\psi_1) \subset J^+(\operatorname{supp} f).$$

2. Construct the retarded fundamental solution $D_R : \mathcal{D}(\mathcal{M}) \to C^{\infty}(\mathcal{M})$, such that past compact solutions

$$\psi_1 = D_R(f)$$

decay at zero for large t > 0.

3. Prove that

$$(g_2 \Box - g_1) \psi_1 = (\lambda_1 - \lambda_2 \Box) \langle : \phi^2 : \rangle_0^{(\text{lin})}$$

$$\uparrow$$

$$\hbar \lambda (\lambda_2 \Box - \lambda_1) \mathcal{K}_s(\psi_1) + (g_2 \Box - g_1) \psi_1 = 0$$

has a well-posed initial-value problem with initial data $\psi_1^{(0,j)}(0,\mathbf{x})$, with $j \in \{0,1\}$ or $j \in \{0,1,2,3\}$, and for wide ranges of values of $(a, g_1, g_2, \lambda, \lambda_1, \lambda_2)$.

Stability of the linearized backreacted system

- Well-posed initial-value problem: if one considers
 - 1. spatially compact perturbations;
 - 2. massive quantum fields;
 - 3. compactly-supported initial data/source;

then there are several choices of renormalization constants such that linearized semiclassical solutions decay as $1/t^{3/2}$ for large t > 0 (no runaway solutions).

$$\psi_1(t,\mathbf{x}) = \sum_{j=0,1} \int_{\mathbb{R}^3} \left(C^j_+(\mathbf{p}) \mathrm{e}^{+i\omega_j t} + C^j_-(\mathbf{p}) \mathrm{e}^{-i\omega_j t} \right) \mathrm{e}^{i\mathbf{p}\cdot\mathbf{x}}, \qquad \omega_j = \sqrt{|\mathbf{p}|^2 + \mu_j^2}.$$

Stability of the linearized backreacted system

- Well-posed initial-value problem: if one considers
 - 1. spatially compact perturbations;
 - 2. massive quantum fields;
 - 3. compactly-supported initial data/source;

then there are several choices of renormalization constants such that linearized semiclassical solutions decay as $1/t^{3/2}$ for large t > 0 (no runaway solutions).

$$\psi_1(t,\mathbf{x}) = \sum_{j=0,1} \int_{\mathbb{R}^3} \left(C^j_+(\mathbf{p}) \mathrm{e}^{+i\omega_j t} + C^j_-(\mathbf{p}) \mathrm{e}^{-i\omega_j t} \right) \mathrm{e}^{i\mathbf{p}\cdot\mathbf{x}}, \qquad \omega_j = \sqrt{|\mathbf{p}|^2 + \mu_j^2}.$$

Applications in cosmological models

• Formal correspondence with the Semiclassical Einstein Equations having a classical source $\tau_{\mu\nu}[g^{(0)}]$

$$-R = 8\pi G \langle :T_{\rho}{}^{\rho}: \rangle_{\omega}^{(\text{lin})} \quad \leftrightarrow \quad (g_{2}\Box - g_{1}) \psi_{1} = (\lambda_{1} - \lambda_{2}\Box) \langle :\phi^{2}: \rangle_{0}^{(\text{lin})}$$
$$-R = 8\pi G \langle :T_{\rho}{}^{\rho}: \rangle_{\omega}^{(\text{lin})} + \tau_{\rho}{}^{\rho} \quad \leftrightarrow \quad (g_{2}\Box - g_{1}) \psi_{1} = (\lambda_{1} - \lambda_{2}\Box) \langle :\phi^{2}: \rangle_{0}^{(\text{lin})} + f$$

with

$$\lambda \leftrightarrow \xi, \qquad g_1 \leftrightarrow -(8\pi G)^{-1}, \qquad \lambda_1 \leftrightarrow m^2, \qquad {
m etc.}$$

Linear Stability of Minkowski spacetime

- Backreaction of a massive quantum scalar field φ, with m² > 0, 0 ≤ ξ < 1/6, over Minkowski spacetime (M, η).
- Steps of the work:
 - 1. Show that (\mathcal{M}, η) is solution of the zeroth-order Semiclassical Einstein Equations using the Minkowski vacuum state ω_0

$$G_{ab}^{(0)}[\eta] = 8\pi G \langle :T_{ab}[\phi,\eta] : \rangle_{\omega_0}^{(0)}$$

$$\tag{0}$$

2. Study stability of the linearized Semiclassical Einstein Equations

$$G_{ab}^{(1)}[\eta,h] = 8\pi G \left\langle :T_{ab}[\phi,\eta,h]: \right\rangle_{\omega^{(1)}}$$
(1)

constructing $\omega^{(1)}$ using perturbation theory in Hollands and Wald's axiomatic framework.

3. Show that classical gravitational waves are solutions of Eq. (1), and runaway solutions are ruled out.

Linear Stability of Minkowski spacetime

- Backreaction of a massive quantum scalar field φ, with m² > 0, 0 ≤ ξ < 1/6, over Minkowski spacetime (M, η).
- Steps of the work:
 - 1. Show that (\mathcal{M},η) is solution of the zeroth-order Semiclassical Einstein Equations using the Minkowski vacuum state ω_0

$$G_{ab}^{(0)}[\eta] = 8\pi G \langle :T_{ab}[\phi,\eta] : \rangle_{\omega_0}^{(0)}$$
(0)

2. Study stability of the linearized Semiclassical Einstein Equations

$$G_{ab}^{(1)}[\eta,h] = 8\pi G \left\langle :T_{ab}[\phi,\eta,h]: \right\rangle_{\omega^{(1)}}$$
(1)

constructing $\omega^{(1)}$ using perturbation theory in Hollands and Wald's axiomatic framework.

- 3. Show that classical gravitational waves are solutions of Eq. (1), and runaway solutions are ruled out.
- Preliminar results show stability for large times! The preprint² should appear soon... Stay tuned!

¹P. Meda, S. Murro, and N. Pinamonti. "Linear stability of Minkowski Spacetime in Semiclassical Gravity" (2023). In preparation.

Thanks for the attention!

paolo.meda@unitn.it

• Perturbation theory

$$V = \int_{\mathcal{M}} \mathcal{L}_{I}(x) f(x) d^{4}x = -\frac{\lambda}{2} \int_{\mathcal{M}} \phi^{2}(x) \psi_{1}(x) f(x) d^{4}x, \qquad f \in \mathcal{D}(\mathcal{M}),$$
$$R_{V}(\phi^{2}) = S(V)^{-1} T(S(V)\phi^{2}), \qquad S(V) = T\left(\exp\left(\frac{i}{\hbar}V\right)\right).$$

• The Bogoliubov map R_V allows to obtain a perturbative expansion of the interacting ϕ^2 as formal power series in λ

$$\langle :\phi^2: \rangle_{\omega} = \omega(R_V(\phi^2)) = \langle :\phi^2: \rangle_{\omega}^{(\text{bac})} + \langle :\phi^2: \rangle_{\omega}^{(\text{lin})} + \dots,$$

$$\langle :\phi^2: \rangle_{\omega}^{(\text{bac})} = \omega(\phi^2) \stackrel{|0\rangle}{=} 0, \qquad \langle :\phi^2: \rangle_{\omega}^{(\text{lin})} = \frac{i}{\hbar} \left(\omega(T(V\phi^2)) - \omega(V\phi^2) \right).$$

- The state for the interacting theory is constructed as ω ∘ R_V by means of the free state, and it is fixed once and forever.
- Linearized expectation value of the Wick square in the adiabatic limit (f = 1)

$$\langle :\phi^2 : \rangle^{(\text{lin})}_{\omega}(x) = -i\hbar\lambda \int_{\mathcal{M}} \left(\Delta^2_{F,\omega}(y-x) - \Delta^2_{+,\omega}(y-x)\right) \psi_1(y) \mathrm{d}y,$$

where $\Delta_{F,\omega}(y,x) = \hbar^{-1} \left\langle T\left(\phi(y)\phi(x)\right) \right\rangle_{\omega}$ and $\Delta_{+,\omega}(y,x) = \hbar^{-1} \left\langle \phi(y)\phi(x) \right\rangle_{\omega}$.

Fourier transform of the Wick square

$$\mathcal{F}\{\langle :\phi^2: \rangle_0^{(\text{lin})}\}(p_0, \mathbf{p}) = \lim_{\epsilon \to 0^+} \frac{\lambda n}{16\pi^2} F_a(-(p_0 - i\epsilon)^2 + |\mathbf{p}|^2) \hat{\psi}_1(p_0, \mathbf{p}),$$

$$F_a(z) = \int_{4m^2}^{\infty} \sqrt{1 - \frac{4m^2}{M^2}} \left(\frac{1}{M^2 + a} - \frac{1}{M^2 + z}\right) dM^2 \qquad z = -(p_0 - i\epsilon)^2 + |\mathbf{p}|^2.$$

 $F_a(z)$ is analytic for $z \in \mathbb{C} \setminus (-\infty, -4m^2]$, and has a branch cut on $z \in (-\infty, -4m^2)$.

In the massless case [Hor80,FW96]

$$F_a(-p_0^2+|\mathbf{p}|^2) = \log\left(\frac{-p_0^2+|\mathbf{p}|^2}{a}\right), \qquad -p_0^2+|\mathbf{p}|^2>0, a>0.$$

• Linearized equation in Fourier space

$$S(-(p_0 - i0^+)^2 + |\mathbf{p}|^2)\hat{\psi}_1(p_0, \mathbf{p}) = \hat{f}(p_0, \mathbf{p}),$$

where

$$S(z)=-(\lambda_1+\lambda_2 z)rac{\lambda\hbar}{16\pi^2}F_a(z)-(g_1+g_2 z), \qquad z=-(p_0-i\epsilon)^2+|\mathbf{p}|^2.$$

• Retarded fundamental solution. Let S be the set of points $z \in \mathbb{C}$ in which S(z) = 0: if S contains only s < 0 for choices of $(a, \lambda, \lambda_1, \lambda_2, g_1, g_2)$, then

$$\hat{D}_R(p_0,\mathbf{p}) = rac{1}{S(-(p_0-i0^+)^2+|\mathbf{p}|^2)},$$

and hence for $s \in (-4m^2,\infty) \cup \{-\lambda_1/\lambda_2\}$ in ${\mathcal S}$

$$D_R(x) = -\sum_{s\in\mathcal{S}} \frac{1}{S'(s)} \Delta_R(x,s) - \frac{\lambda\hbar}{16\pi^2} \int_{4m^2}^{\infty} \sqrt{1 - \frac{4m^2}{M^2} \frac{(\lambda_2 M^2 - \lambda_1)}{|S(-M)|^2}} \Delta_R(x,M^2) \mathrm{d}M^2,$$

Past compact solution ψ₁ = D_R(f), f ∈ D(M), of the form

$$\psi_1(x) = \psi_1^O(x) + \psi_1^C(x).$$

Branch cuts do not contribute to the homogeneous equation $S(z)\hat{\psi}_1 = 0$.