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Entanglement entropy in QM

Entropy quantifies the amount of information an observer has access to
For a system in a pure state |Ψ⟩, everything is known ⇔ entropy is zero
For a generic state described by density matrix ρ, define von Neumann entropy
SvN(ρ) = − tr(ρ ln ρ) ≥ 0 (since 0 ≤ ρ ≤ 1)
For a system in a pure state |Ψ⟩, but with the observer having access only to degrees
of freedom within some region A, define density matrix ρA = trA⊥ |Ψ⟩⟨Ψ| (trace over
degrees of freedom of the complement region A⊥)
Entanglement entropy: S(A) = SvN(ρA) = − tr(ρA ln ρA)
Other entropy measures: Tsallis entropy ST

q (ρ) = 1
q−1(1 − trρq), Rényi entropy

SR
α (ρ) = 1

1−α ln trρα, and limq→1 ST
q (ρ) = SvN(ρ) = limα→1 SR

α (ρ)
Thermal density matrix ρ = 1

Z exp(−βH) with inverse temperature β, Z = exp(−βF )
with free energy F gives SvN = β(⟨H⟩ − F ) = S (thermodynamic entropy)
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Entanglement entropy in QFT

In QFT in d + 1 dimensions, density matrices only exist formally and the trace is
infinite, both due to the infinite number of degrees of freedom
Compute regularised entanglement entropies with UV cutoff ϵ:
S(A) = gd−1[∂A]ϵ−(d−1) + · · · + g1[∂A]ϵ−1 + g0[∂A] ln ϵ + S0(A) + O(ϵ), where the gi
are homogeneous functions depending on the boundary ∂A (area law in 4D)
Source of divergences: high-energy vacuum fluctuations of the fields
⇒ differences in entropies between different states are finite
Relative entropy (Kullback–Leibler divergence): S(ρ∥σ) = tr(ρ ln ρ − ρ ln σ)
Relative Rényi entropy: SR

α (ρ∥σ) = 1
α−1 ln tr

(
ρασ1−α

)
α-z-Rényi entropy (generalized quantum Rényi div.): SRG

α,z(ρ∥σ) = z
α−1 ln tr

(
ρ

α
z σ

1−α
z

)
and limα→1 SR

α (ρ∥σ) = S(ρ∥σ) = limα,z→1 SRG
α,z(ρ∥σ)



Relative entropy in de Sitter
Tomita–Takesaki theory

Tomita–Takesaki theory



Relative entropy in de Sitter
Tomita–Takesaki theory

Tomita–Takesaki theory

Mathematically, difference between QM and QFT is the type of (factors of) von
Neumann algebra of operators (I, II, III)
Tomita–Takesaki theory gives information on structure of vN algebra A ⊂ B(H) acting
on Hilbert space H, given a cyclic and separating vector Ω ∈ H
Tomita operator S is the closure of the map S0 : aΩ → a†Ω for a ∈ A

Polar decomposition S = J∆ 1
2 gives positive modular operator ∆ = S†S ≥ 0 and

antilinear modular conjugation J
Modular flow σs(a) = ∆isa ∆−is ∈ A for a ∈ A

State ω defined by Ω is a thermal (KMS) state: ω(σs(a)b) = (Ω, σs(a)bΩ) satisfies
ω(σs−i(a)b) = ω(b σs(a)), with inverse temperature normalised to β = 1
Both J and ∆ 1

2 map A to commutant A′
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Tomita–Takesaki theory

Relative Tomita operator SΦ|Ψ is closure of map aΦ 7→ a†Ψ for a ∈ A and cyclic and
separating vectors Φ, Ψ ∈ H, relative modular operator ∆Φ|Ψ and relative modular
conjugation JΦ|Ψ defined by polar decomposition SΦ|Ψ = JΦ|Ψ ∆1/2

Φ|Ψ
Araki formula relates relative modular Hamiltonian ln ∆Φ|Ψ to relative entropy:
S(Φ∥Ψ) = −

(
Φ, ln ∆Φ|ΨΦ

)
(well-defined and finite)

Important case: Φ = uu′Ω and Ψ = vv ′Ω for unitary operators u, v ∈ A and u′, v ′ ∈ A′

commuting with u and v
⇒ ∆Φ|Ψ = u′v∆Ωv †(u′)† and S(Φ∥Ψ) = −

(
v †uΩ, ln ∆Ωv †uΩ

)
Relative entropy between two “excited” states relative to a “vacuum” state Ω can be
computed using only the modular Hamiltonian ln ∆Ω of the “vacuum” state, e.g., for
coherent state with u = u′ = v ′ = 1 and v = exp[iϕ(f )]
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De Sitter spacetime

d-dimensional de Sitter is embedded in (d + 1)-dimensional
Minkowski space as hyperboloid ηABXAXB = H−2

Expanding half of dS (Poincaré patch) with metric
ds2 = ηAB dXA dXB = − dt2 + e2Ht dx2 describes primordial
inflation and current accelerated expansion of our universe
Maximally symmetric solution of Einstein’s equations with
cosmological constant Λ = (d − 1)H2

Generator of boosts is tangent to hyperboloid: M0j =
X0∂X j − Xj∂X0 = − 1

2H

(
H2x2 − e−2Ht + 1

)
∂j − xj∂t + Hxjxi∂i

Modular Hamiltonian is known for dS vacuum state Ω and
algebra A generated by fields restricted to intersection of
hyperboloid and wedge W1 = {XA : X 1 ≥

∣∣X 0∣∣}: ln ∆Ω = iM01

X0

Xd

Xi

(Borchers/Buchholz, Global properties of vacuum states in de Sitter space 1999)
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Relative entropy in de Sitter spacetime

Compute relative entropy S(Ω∥Ψf ) for coherent state Ψf = eiϕ(f )Ω via Araki formula
(= relative entanglement entropy, with entanglement region A the intersection of
hyperboloid and wedge A = {(t, x) : 2Hx1 ≥

∣∣∣1 − e−2Ht + H2x2
∣∣∣}, and supp f ⊂ A)

S(Ω∥Ψf ) = iπ⟨∆(M01f ), ∆f ⟩ with commutator function ∆(x , y) = i[ϕ(x), ϕ(y)] and
symplectic product ⟨f , g⟩ = i

∫ [
f ∗(t, x)ġ(t, x) − g(t, x)ḟ ∗(t, x)

]
t=0

dd−1x

Further manipulations:
S(Ω∥Ψf ) = 2π

∫ [
x1H(f̂ , x) + 1

2Hx2∂1f̂ ∂t f̂ − Hx1xi∂i f̂ ∂t f̂
]

t=0
dd−1x with

f̂ (x) =
∫

∆(x , y)f (y)
√

−g ddy and H(g , x) = 1
2

(
ġ2 + e−2Ht∂ig∂ig + m2g2

)
the

Hamiltonian density ⇒ not manifestly positive!
However, correct flat-space limit H → 0
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Relative entropy in de Sitter spacetime

Solution: evaluate symplectic product on different Cauchy surface
Σ =

{
(t, x) : 2Ht + ln

(
1 + H2x2)

= 0
}

instead of just t = 0

S(Ω∥Ψf ) = 2π

∫
Q(f̂ )

(
1 + H2x2

)− d
2 dd−1x with

Q(h) = x1

2
√

1+H2x2

[
∂nh∂nh +

[
(1 + H2x2)δkl − H2xkxl

]
∂̂kh∂̂lh + m2h2

]
Σ

≥ 0

Q(h) = −nµξ
(1)
ν T µν(h) with nµ normal to Σ, ξ

(1)
ν Killing vector associated to boosts:

M01 = ξµ
(1)∂µ, and Tµν canonical stress tensor

Q is a Noether charge, compare Wald (Black hole entropy is the Noether charge 1993)
and Floerchinger (Lectures on quantum fields and information theory)
Relative entropy is also convex: λS(Ω∥Ψf ) + (1 − λ)S(Ω∥Ψg) ≥ S(Ω∥Ψλg+(1−λ)h) for
supp f , g ⊂ A and λ ∈ [0, 1]
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Modular Hamiltonian is also known in some other cases:
De Sitter vacuum state Ω and algebra A generated by fields restricted to static patch:
i ln ∆Ω = 2π

H ∂T (static patch appears thermal with inverse temperature β = 2π/H)
Recent result for conformal theories in small diamonds of size ℓ in the static patch:
i ln ∆Ω = 2π

H ∂T − π
H2ℓ

e−HT
√

1−H2R2

[
∂T − H

(
1 − H2R2)(

R∂R + d−2
2

)]
⇒ compute relative entropy for small diamonds
Other measures: mutual information I(A, B) = S(A) + S(B) − S(A ∪ B) for A ∩ B = ∅
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Thank you for your attention

Questions?
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