# **THE VACUUM STRIKES BACK: BLACK STARS**

### Julio Arrechea

**Instituto de Astrofísica de Andalucía (IAA-CSIC)** 

### In collaboration with

**Carlos Barceló Raúl Carballo-Rubio** Luis J. Garay

### Quantum effects in gravitational fields August 30, 2023





Meditations Alina Mir alinamir.com

# INTRODUCTION

Black holes (BHs) are the most well-accepted candidates for the dark and compact objects observed. Among the reasons:

• Observational fits (EHT, GWs...)

• Theoretical arguments (Penrose theorem, maximum mass...)



| Julio Arrechea | The vacuum strikes back: Black stars | July 19, 2023 |
|----------------|--------------------------------------|---------------|

Can semiclassical effects overcome this limit?

Theory that takes into account the contribution of zero-point energies of quantum fields on a classical spacetime

$$G_{\mu\nu} = 8\pi (T)$$

Effectively classical SET

- The RSET is a function of the metric, field modes, and their derivatives
- It encodes both vacuum polarization and particle creation effects
- We search for self-consistent solutions

| Julio Arrechea | The vacuum stri |
|----------------|-----------------|





Expectation value *in vacuum* of the RSET

| Black stars |             |
|-------------|-------------|
|             |             |
|             | Black stars |

# Q1: How do stars polarize the vacuum?

**Obtaining accurate RSETs in** fixed backgrounds

- Exact results for many field parameters
- Computationally expensive
- Only perturbative backreaction

| Julio Arrechea | Hydrostatic equilibrium in |
|----------------|----------------------------|



# Q1: How do stars polarize the vacuum?

**Obtaining accurate RSETs in** fixed backgrounds

- Exact results for many field parameters
- Computationally expensive
- Only perturbative backreaction

| Julio Arrechea | Hydrostatic equilibrium in |
|----------------|----------------------------|



## **Q2: How does the vacuum** backreact on stars?

**Searching for approximate analytic RSETs and find their** *backreaction* 

Full self-consistent backreaction

Broad range of application

• Accuracy of approximations unclear *The approach we adopt* 

n the semiclassical approximation

May 22, 2023



### **Assumptions:**

• Spherical symmetry, staticity, asymptotic flatness

$$ds^{2} = -f(r)dt^{2} + h(r)dr^{2} + h(r)dr$$

• We model the SET as an isotropic perfect fluid with  $\rho(r) \equiv \rho = \text{const}$ .

Saturates the Buchdahl limit

• Massless scalar field in the Boulware vacuum

*The natural vacuum for stars* 





The vacuum strikes back: Black stars

July 19, 2023

# THE REGULARIZED POLYAKOV RSET

### Relate the 2D RSET of a massless scalar with a 4D RSET

### The components are

$$\begin{split} \langle \hat{T}_{t}^{t} \rangle^{\mathrm{P}} &= \frac{F}{96\pi h} \left[ \frac{2f'h'}{fh} + 3\left(\frac{f'}{f}\right)^{2} - \frac{4f''}{f} \right] \\ \langle \hat{T}_{r}^{r} \rangle^{\mathrm{P}} &= -\frac{F}{96\pi h} \left(\frac{f'}{f}\right)^{2} \\ \langle \hat{T}_{\theta}^{\theta} \rangle^{\mathrm{P}} &= -\frac{(2F + rF')}{192\pi h} \left(\frac{f'}{f}\right)^{2} \end{split}$$







# THE REGULARIZED POLYAKOV RSET

### We find whole families of $F_{reg}$ compatible with regular super-Buchdahl stars



• These exist for any *r*<sub>core</sub> and for a simple polynomial pressure • The negative mass interior (vacuum polarization) supports the structure

**Julio** Arrechea

The vacuum strikes back: Black stars

*Fig: Regular super-Buchdahl semiclassical stars* 

July 19, 2023





# THE REGULARIZED POLYAKOV RSET

### We find whole families of $F_{reg}$ compatible with regular super-Buchdahl stars



• These exist for any *r*<sub>core</sub> and for a simple polynomial pressure • The negative mass interior (vacuum polarization) supports the structure

**Julio** Arrechea

The vacuum strikes back: Black stars

*Fig: Regular super-Buchdahl semiclassical stars* 





Anderson-Hiscock-Samuel (AHS) obtained the RSET of a scalar field in four dimensions [AHS1995]

$$\langle \hat{T}_{\mu\nu} \rangle = \langle \hat{T}_{\mu\nu} \rangle^{\rm AF}$$

• The AHS-RSET exhibits higher-order derivatives of the metric

• Higher-derivatives introduce large number of boundary conditions and spurious solutions

 $HS + \langle \hat{T}_{\mu\nu} \rangle^{\text{num}}$ 

### We apply a perturbative order reduction to the AHS-RSET

# Let us derive a Matter-Order-Reduced RSET for constant density fluid spheres

$$\frac{h(1-h) - rh'}{h^2 r^2} = -8\pi\rho + \mathcal{O}(\hbar)$$
$$\frac{rf' + f - fh}{fhr^2} = 8\pi\rho + \mathcal{O}(\hbar)$$

where we have used:

• 
$$\nabla_{\mu}T^{\mu}_{r} = p' + \frac{J}{2f}(\rho + p) = 0$$

• 
$$\rho(r) = \text{const.}$$
  
•  $\nabla_{\mu} \langle \hat{T}^{\mu}_{\nu} \rangle = 0$ 

 $\rightarrow h^{(n)} = \mathscr{H}_n(h, f, p, \rho, r) + \mathcal{O}(\hbar)$  $f^{(n)} = \mathcal{F}_n(h, f, p, \rho, r) + \mathcal{O}(\hbar)$ 



The MOR-RSET is regular at *r* = 0, unambiguous and valid for all couplings



Fig: Classical pressure and Misner-Sharp mass of semiclassical stars surpassing the Buchdahl limit

Similarity with results à la Polyakov is striking

**Julio** Arrechea

The vacuum strikes back: Black stars



Fig: MOR-RSET of semiclassical stars surpassing the Buchdahl limit

### The magnitude of the components is comparable to the classical SET

### The MOR-RSET allows to explore non-minimal coupling Future work...

| Julio Arrechea | The vacuum stri |
|----------------|-----------------|

| kes | back: | Black | stars |
|-----|-------|-------|-------|
| kes | back: | Black | stars |

# **SEMICLASSICAL BLACK STARS**



*Fig: Mass-to-Radius diagram of semiclassical stars* 

| Julio Arrechea | The vacuum stri |
|----------------|-----------------|



### **Three regimes:**

- Sub-Buchdahl: perturbatively corrected constant-density stars
- Buchdahl: negative energies build up near the center and support the structure
- Super-Buchdahl: stars with negative mass and large redshift interiors



# CONCLUSIONS

• Buchdahl theorem requires the total energy density to decrease outwards

Once this assumption is broken, there is no further compactness bound

| Julio Arrechea | The vacuum strikes back: Black stars | July 19, 2023 |
|----------------|--------------------------------------|---------------|

### The key property that allows to surpass the Buchdahl limit is the negative energy densities generated at the interior

### • This phenomenon is predicted by two independent modelings of the RSET

# Thank you for your attention



### Julio Arrechea

Image credit: Walking your path Alina Mir alinamir.com



